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Plants against cancer: the
immune-boosting herbal
microbiome: not of the
plant, but in the plant. Basic
concepts, introduction, and
future resource for vaccine
adjuvant discovery

Elizabeth Mazzio1, Andrew Barnes1, Ramesh Badisa1,
Stevie Council2 and Karam F. A. Soliman1*

1Divison of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of
Public Health, Florida A & M University, Tallahassee, FL, United States, 2John Gnabre Science
Research Institute, Baltimore, MD, United States
The presence of microorganism communities (MOCs) comprised of bacteria,

fungi, archaea, algae, protozoa, viruses, and the like, are ubiquitous in all living

tissue, including plant and animal. MOCs play a significant role in establishing

innate and acquired immunity, thereby influencing susceptibility and resistance

to disease. This understanding has fostered substantial advancements in several

fields such as agriculture, food science/safety, and the development of vaccines/

adjuvants, which rely on administering inactivated-attenuated MOC pathogens.

Historical evidence dating back to the 1800s, including reports by Drs Busch,

Coley, and Fehleisen, suggested that acute febrile infection in response to

“specific microbes” could trigger spontaneous tumor remission in humans.

This discovery led to the purposeful administration of the same attenuated

strains, known as “Coley’s toxin,” marking the onset of the first microbial

(pathogen) associated molecular pattern (MAMPs or PAMPs)-based tumor

immunotherapy, used clinically for over four decades. Today, these same

MAMPS are consumed orally by billions of consumers around the globe,

through “specific” mediums (immune boosting “herbal supplements”) as

carriers of highly concentrated MOCs accrued in roots, barks, hulls, sea algae,

and seeds. The American Herbal Products Association (AHPA) mandates

microbial reduction in botanical product processing but does not necessitate

the removal of dead MAMP laden microbial debris, which we ingest. Moreover,

while existing research has focused on the immune-modulating role of plant

phytochemicals, the actual immune-boosting properties might instead reside

solely in the plant’s MOC MAMP laden biomass. This assertion is logical,

considering that antigenic immune-provoking epitopes, not phytochemicals,

are known to stimulate immune response. This review explores a neglected area

of research regarding the immune-boosting effects of the herbal microbiome –

a presence which is indirectly corroborated by various peripheral fields of study

and poses a fundamental question: Given that food safety focuses on the
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elimination of harmful pathogens and crop science acknowledges the existence

of plant microbiomes, what precisely are the immune effects of ingesting MAMPs

of diverse structural composition and concentration, and where are these

distributed in our botanicals? We will discuss the topic of concentrated edible

MAMPs as acid and thermally stable motifs found in specific herbs and how these

would activate cognate pattern recognition receptors (PPRs) in the upper gut-

associated lymphoid tissue (GALT), including Peyer’s patches and the lamina

propria, to boost antibody titers, CD8+ and CD4+ T cells, NK activity,

hematopoiesis, and facilitating M2 to M1 macrophage phenotype transition in a

similar manner as vaccines. This new knowledge could pave the way for

developing bioreactor-grown/heat-inactivated MOC therapies to boost human

immunity against infections and improve tumor surveillance.
KEYWORDS

edible microbiome, bugs as drugs, herbal microbiome, immune boosting, edible
vaccine, immunotherapies, cancer, plant microbiome
1 Introduction

Microorganism communities (MOCs), encompassing bacteria,

fungi, archaea, algae, protozoa, and viruses, often colloquially

referred to as “bugs,” shape both innate and acquired immunity

across all living systems, including plants, humans, and even

malignant tumors, each of which hosts a unique microbiome. The

rapidly evolving role of MOCs in cancer therapy, propelled by

advances in metagenomics, has historical roots tracing back to the

late 19th century. Physicians, including Busch, Coley, and

Fehleisen, observed cancer patients undergoing remarkable

spontaneous remission following acute febrile infections (38-

40°C) induced by Streptococcus pyogenes (1, 2). These

observations inspired collaborations and deliberate attempts to

treat cancer patients with live MOCs, sometimes resulting in fatal

sepsis. The sucessful approach involved the use of attenuated

Streptococcus pyogenes (gram-positive) and Serratia marcescens

(gram-negative), constituting the first microbial-associated

molecular pattern (MAMP) tumor vaccine immunotherapy,

comprised of toll-like receptor (TLRs 2,4) agonists bacterial LPS

endotoxin/peptidoglycan (3). Coley’s tumor immunotherapy

induced curative remission in approximately 50% of mesodermal

embryonic origin cancers (sarcoma, lymphoma, leukemia, kidney,

ovarian, and so on) for over 40 years (4). However, this approach

was eventually supplanted by advancements in radiation, surgery,

and immunosuppressive chemotherapies, which dominated the

field of oncology for several decades (5, 6).

There is a resurgence of interest in tumor immunotherapies to

achieve the same remission that Coley initially pursued over a

century ago (5, 7, 8). However, these therapies must now overcome

the immunosuppression imposed by mainstream chemotherapies

and painkillers (e.g., cytostatic antineoplastics, opioids, and

corticosteroids) (9–14), which destroy hematopoiesis (e.g.,

cytopenia, neutropenia), and lead to greater risk of infection,

further aggravated by use of immunosuppressive antibiotics, and
02
antipyretics (acetaminophen) (15). Infections, whether post-

operative or otherwise, continue to be the leading cause of death

in cancer patients (16–19). Moreover, the widespread use of

synthetic drugs has had a cumulative negative impact on human

immune intelligence in civilized societies. The human immune

system relies on its capacity to amass a library of data on foreign

pathogens, allowing it to eliminate recognized threats swiftly. Initial

interaction often involves rapid infection resolution via fever and a

robust immune defense.

Modern tendencies towards comfort over enduring sickness,

and the overuse of antibiotics, antipyretics (Tylenol), and

painkillers, have dulled immune intelligence. To add insult to

injury, poor diet and pervasive societal stress, contribute to a

widespread dysbiosis of the gut and host-immune dysfunction

(effects transferable in utero from mother to child) (20, 21). The

“hygiene hypothesis,” posing that minimal exposure to microbes in

early life leads to dysbiosis, compounds the problem. This situation

has been tied to epidemic non-communicable disorders and human

cancers (22–24). Catering to sanitation and comfort is leading to an

atrophy of human immune intelligence. As a result, there is an

epidemic rise in chronic infections/inflammation which create

refractory “T cell exhaustion” and a state of immune suppression,

leading to greater susceptibility to various cancers (25–29).

Conversely, nurturing immune intelligence through rigorous

exposure to MOCs provides the routine cross-reactive targeting

needed to destroy self-host malignant cells harboring similar

tumor-associated antigens (TAAs) in a manner akin to infection

response (30).

Immune suppression manifests itself as a loss of tumor immune

surveillance, which is the controlling gateway for all human cancers

to establish, develop, and thrive (31–34). In addition, immune

suppression increases tumor initiation upon exposure to

environmental carcinogens (e.g. pollutants, occupational fumes/

dust, ionizing UV radiation (35)) carcinogenic microbes (36, 37),

(H pylori), parasites (O viverrine, C Sinensis, and S haematobium)
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viruses (Epstein–Barr, human papilloma, hepatitis B, C, human

herpes type-8, and human T-cell lymphotropic type-1) (38). These

factors necessitate exploring new methods to enhance the immune

system’s capacity to combat human cancers.
2 Plant medicine: the
plant microbiome

Immunological resilience is enhanced through the introduction

of MOC antigens, a principle foundational to vaccines (39–43).

That said, as of today there is meager research into the study of

inactivated/attenuated plant microbiomes in our botanical

medicines which contain product specific MOCs (including lethal

pathogens) and how they impact human immunity. Plant-specific

MOCs, are destroyed during food processing techniques like retort

and pasteurization. However, not all MOCs leave a trail of immune

provoking microbiome-associated molecular patterns (MAMPs),

and their ubiquity varies, issues discussed below. Edible, immune-

provoking MAMPs are nature’s concentrated reservoirs of immune

stimulants within the plant world. Figure 1 MOCs are ever present

as controlling elements in plant health, growth, maturation, and

ecological control whereby numerous factors influence the diversity

and concentration. These include the plant’s/part phytochemical

profile (e.g., anti-biotic, anti-fungal properties), its location and part

(e.g., above-ground stems/leaves exposed to UV sterilizing sunlight

and rainwater wash, or subsurface parts exposed to different gas
Frontiers in Oncology 03
compositions and minerals), the plant’s tactile nature (e.g.,

alginates), MOCs altered during maturity at harvest, and complex

interactions during growth, among others. All medicinal herbs and

spices contain MOCs, where food safety regulations by the

American Herbal products association (AHPA) and National

Science Foundation/American National Standards Institute (NSF/

ANSI) (44–47) require microbial reduction and third-party testing

to establish 1) an absence of viable pathogens and mycotoxins, 2) a

residual threshold yield of live non-pathogenic coliform, aerobic

plate counts, total yeast & molds reported as colony forming units

(CFU)/g (44–49). However, our understanding of which plant

microbiomes are immune-boosting and how their residual trail of

microbiome/MAMPs impacts health, from pathogenic to non-

pathogenic, remains limited. Edible MAMPs, often acid and

thermally stable, can act on pattern recognition receptors (PRRs)

in the upper gut-associated lymphoid tissue (GALT), Peyer’s

patches, and lamina propria, influencing innate and acquired

immune systems (44–47, 50). Yet, despite their ubiquity in foods,

most studies on the “edible plant microbiome” focus on identifying

the taxonomy of live microorganisms present, with little

consideration of their potential health implications (51–58).

Humans have consumed plant medicines and their resident

MOCs for millennia, attributing the health benefits only to the plant

and constituent phytochemicals. However, a small number of

research teams have proposed that the health benefits of certain

herbs may instead be due to their inactivated microbial biomass

after separating the plants bioactive MAMPs from the plant itself
FIGURE 1

Microorganisms are diverse communities (MOCs) of bacteria, virus, fungus, protozoa etc. being ubiquitous in nature. MOCs are ever present within
the richest reservoirs in roots, seeds, and sea algae’s. These MOCs end up in our foods, water and botanical medicines. Botanical products undergo
post-harvest sterilization to ensure food safety, where MOCS (inactivated remain) . These MOCS are high in specific over the counter botanicals, few
which are rich in MAMPs from gram negative bacteria. These TLR4 activating MAMPs have been inadvertently consumed for thousands of years,
which can enhance innate and acquired immunity, while research efforts have been focused predominantly on the therapeutic effects of the plant/
phytochemical constituents. Given the plants microbiome is a unique component within/ but not of the plant - MOCS can be cultivated in a
bioreactor / prior to inactivation and evaluated for effects on human health. Created with BioRender.com.
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(39–41). This theory aligns with the broader field of microbiomic

science and the simple logic that the immune system responds

aggressively not to phytochemicals or drugs but to the presence of

foreign antigenic microorganism debris (MAMPs), the basis for

vaccine and adjuvant development. A few research teams have

discovered that MOC-MAMP PRR TLR4 agonists are responsible

for immune boosting effects in the following herbs; Black walnut,

Echinacea Root, Ginseng Root, Alfalfa Seeds (59) Astragalus Root

(60, 61), Angelica Root (62), and Wheat, the latter who introduces

the concept of edible LPS found in wheat from Pantoea agglomerans

as a “modern-day nontoxic Coleys toxin” with limitless capacity

when taken orally (63–66). Our recent research corroborates the

findings of all of these studies, indicating the immune boosting

properties are not of the plant, but rather attributable to its MAMP

MOC biomass, while we now expand this list to include 65 out of

approximately 2000 OTC products tested containing TLR4 PRR

agonists (Publication Pending, Mazzio et al., 2023. Journal of

Funcitonal Foods ).

Our research findings directly align with ecological studies

reporting similar soil-embedded rhizome microbiomes (67) (e.g.,

echinacea, stinging nettle, burdock etc.) and high concentrations of

gram-negative microbes and biofilms in edible sea kelps and other

marine vegetation, including Granulosicoccus antarcticus, hellea

balneolensis (Gammaproteobacteria) bacteroidetes and

Alphaproteobacteria, these including Fucus vesiculosus, N.

leutkeana (Bladderwrack), P. scouleri (Surf Grass), Laminaria

setchellii (Kelp) Chondrus crispus (Irish Moss), Laminaria

ochroleuca (Kelp/Brown Seaweed), Palmaria palmate (Dulse), etc.

(68, 69).

According to our research, approximately 98% of herbs, fruits,

and vegetables do not contain bioactive toll-like receptor (TLR4)

agonists, which suggests that immune-modulating microbiomes in

plants and herbs are not ubiquitous but instead result from natural

forces that encourage their accumulation.
2.1 Diverting research focal points

Significant research has been directed toward peripheral topics,

often overlooking the potential human health aspect of ingesting

inactivated MOCs. None the less, the concept that ingestion of “dead

bugs” can impact human health is gradually gaining acceptance, as seen

in the emerging fields of para-probiotics (inactivated probiotics) (70–

72) development of oral vaccines (73, 74) and with greater

understanding as to the anatomy of the human gut microbiome

and its PRRs (44–47, 50, 75). Despite this, most of the work carried out

on the human microbiome to date has focused on the “living

microbiome” (probiotics, prebiotics, and microbiota cultures) as

symbionts/pathobionts (76–79). Meanwhile, therapeutic research in

plant medicine continues to focus on plant phytochemicals rather than

the plant’s inactivated microbiome. Plants contain a diverse array of

“phytochemicals” such as flavonoids, phenolics, alkaloids, glycosides,

lignans, and triterpenoids, which exhibit a broad range of protective

properties, including anti-inflammatory, analgesic, antipyretic,

antimalarial, antibacterial, antiprotozoal, antioxidant, antifungal, and

antiviral effects (80). Inadvertently, the antimicrobial capabilities of
Frontiers in Oncology 04
these plant chemicals have been exploited for centuries for the

preservation and treatment of infections. Today, the predominant

focus on anti-cancer natural medicines, also continues to be on the

phytochemicals. Thousands of studies demonstrate phytochemicals to

manipulate cellular signaling pathways such as apoptosis (Bcl-2/Bax),

oncogene transcription, gene induction, enzyme expression/activity

(e.g., topoisomerase, cyclooxygenase, matrix metalloproteases), cell

cycle regulation, and modulation of signaling systems associated with

rapid tumor growth (e.g., MAPK/ERK pathway, PI3K/AKT/

mTORC1), or to activate DNA repair mechanisms (80–85). A

similar emphasis on chemicals is observed in research exploring the

interaction between microbes and cancer, specifically focusing on

secondary metabolites produced by Actinobacteria and Streptomyces

spp. These metabolites, which include polyphenols, indolocarbazoles,

anthracyclines, halogenated compounds, polyketides, anthracenes, and

alkaloids, form the foundation of traditional chemotherapy drugs like

doxorubicin, mithramycin, and mitomycin C (86).

While plant chemicals can prevent cancer by attenuating

chronic inflammation that initiates cancer (27, 87), managing

already-established cancer requires a robust and sharp immune

boost, necessitating a pro-inflammatory response.
2.2 MAMPS in anti-tumor
immune therapies

The potential to boost the immune system to overpower and

destroy a human tumor forms the foundation for future

immunotherapy breakthroughs. All tumor immune therapies

share a common goal: to “boost,” “activate,” or “reawaken” a

dormant host immune system subdued by the tumor ’s

immunosuppressive barrier to regain control over the

mechanisms capable of destroying malignant cells (5, 7, 8); this

requires a pro-inflammatory (immune-boosting) response, not an

anti-inflammatory response. Therapies (similar to Coley) have thus

far explored combination of synthetic hyperthermia (fever) ±

inactivated microbes containing potent MAMPS (6, 88, 89),

MAMP vaccines (90, 91), exogenous cytokines (IL-2, 15),

interferon-alpha (IFNa) or granulocyte-macrophage colony-

stimulating factor (GM-CSF)), adoptive T cell therapies with

direct targeting of (tumor-associated (TAA)/tumor-specific

antigens (TSA)), checkpoint inhibitors which remove/braking

systems (mAb), ipilimumab, nivolumab, pembrolizumab, etc.)

(92–95) or autologous/allogenic tumor vaccines primed with

strong immunological bacterial laden adjuvants and co-

stimulatory cytokines (96).

Pharmacodynamically and mechanistically edible MAMPS may

do the same, having direct access to the immune system through the

gut mucosa. The upper GI can capture (by mucin), identify,

respond to, and build an acquired immunity database to foreign

antigens while offering 15 times the surface area than the large

intestine (97). The upper GI also houses plentiful GALT-/LP PRRs,

in epithelial intestinal and immune cells (neutrophils,

macrophages/monocytes, dendritic cells, mast cells, T and B

lymphocytes), and a highly integrated signaling surface readily

acted upon by MAMPS on C-type lectin-like receptors (CLRs)
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(Dectins, Mincle, and Mcl), nucleotide-binding oligomerization

domain (NOD)-like receptors (NLRs), and Toll-like receptors

(TLRs) (98). As for TLRs, these are housed in the gut immune

plexus on either cell surfaces (TLR1, 2, 4, 5, 6) or/in (endosomes

TLR3, 7, 8, 9) (99, 100). Known edible MAMPS that would activate

these include food-based bacterial LPS, lipoproteins, zymosan,

byglycans, acylated lipopeptides, lipoteichoic acid, peptidoglycans,

modulin, dsRNA from bacteria, glycolipids, fibrinogen/fibronectin,

heat shock proteins, uric acid, flagellin (TLR5), ssRNA of microbial

origin and unmethylated CpG rich DNA (101–104).

Just in the case of TLR agonists alone, these are widely in our

foods and vaccines as adjuvants, being pro-inflammatory, with a

capacity to boost antibody titers, CD8+ and CD4+ T cells, cytokine

levels (IL-12, TNF-a, IFN-g, IL-6 and type I interferon),

chemokines (monocyte chemoattractant protein-1 (MCP-1/

CCL2), macrophage inflammatory proteins (MIP-a/1-b) MyD88,

IL-1R), and related signaling pathways (IRAK, MAPK) through

transcriptional activation of NF-kB and AP-1 (42, 43). PRR TLR

adjuvants used in vaccines include agonists of TLR9 (CpG

oligodeoxynucleotides (ODN)) - the hepatitis B virus vaccine

Heplisav-B, MGN1703 for cancer vaccines; TLR3 (poly-IC/ICLC

derivates (Ampligen® Hiltonol®)) for cancer and HIV vaccines,

TLR4 (monophosphoryl lipid A derivative agonist AS04, for

Cervarix (human HPV)/Hep B (Fendrix®), AS01 for the herpes

zoster vaccine Shingrix®, glucopyranosyl Lipid A for influenza

vaccines), TLR 5 agonists (flagellin derivatives such as Mobilan or

entolimod) or TLR7 (resiquimod (an imidazoquinoline) employed

with cancer vaccines (42).

While dead bugs in our botanical medicines have not yet been

explored in large, fungal molecules are subject to exhaustive

research, as in the case of the peptide fragment zymosan; also

known as b-glucan derived from Saccharomyces cerevisiae (105–

112). When ingested orally, b-glucans activate (M-cells)/, Peyer’s

patches and boost innate and systemic acquired intelligence (107–

109). This mechanism of action has direct relevance to tumor

immunotherapies given it can elicit sharp responses which foster

1) macrophage phenotype polarization in tumor-associated

macrophages (TAMs) to M1 anti-tumor fighter macrophages

(110, 111), 2) reduce the load of tumor immune suppressors such

as myeloid-derived suppressor cells (MDSC) or Tregs (112) 3)

heighten activated CD4(+), CD8(+) T cells and the IL-2 IFN-g
response (113) 4) augment hematopoiesis (106) prompt maturation

of neutrophils, macrophages, dendritic cells, and NK cells (Dectin/

TLR/complement receptor 3 (CR3), CD11b CD18) (114, 115) and

5) initiate iC3b-opsonized targeting of tumor cells for phagocytosis

and degranulation (106, 107, 114, 116), linked to reduced tumor

burden in mammals (105, 114, 115, 117–119).

Using edible immune boosters such as zymosan could synergize

the efficacy of checkpoint inhibitors, whereby taking the foot off the

tumor immunosuppressive barrier (immune checkpoint inhibitors)

combined with the second foot on acceleration “immune boosting”

would provide therapeutic advantage. (115, 120, 121). Edible

MAMPS (zymogen or other) reaching the GI would evoke the

transfer of enemy antigenic data through M cells to antigen-

presenting cells (APCs), which then travel to the mesenteric

lymph node (122) concomitant to lamina propria APC dendritic
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cell branching to systemic lymphatic vessels (75, 123–125) evoking

T cell clonal expansion (126–128). Moreover, oral administration of

MAMPS, like LPS, may enter into blood circulation through lipid

absorption or chylomicrons by intestinal epithelial cells (50)

triggering systemic innate and acquired immune system response

as evidenced in mammals (75).
2.3 Are edible PRR-TLR4
agonists endotoxin?

Are we suggesting that edible endotoxin can alter immunity? Yes,

the practice of consuming endotoxin has been applied for hundreds -

thousands of years, before the discovery of microbes in cultural

medicine for example edible spirulina, chlorella, sea moss, and sea

kelps. There is enormous confusion surrounding the term

“endotoxin” because it is a misnomer. The term “endotoxin” today

is an open-ended, vague term to describe all gram-negative microbial

cell wall LPS with the lipid A the “ toxin” all alive or dead, all

pathogenic or non-pathogenic, and all-inclusive to every type of

taxonomic and cell wall polysaccharide variation. The term

endotoxin is one term, used to ascribe deadly infectious (sepsis)

with multi-organ failure and death, to health products sold OTC

taken by billions of consumers across the globe every day, e.g., as

previously stated: LPS Arthrospira platensis (Spirulina). Endotoxins

are in many cases endo-immunomodulators (not toxins) with

beneficial effects justifying their use as peptide-based anti-cancer

vaccines adjuvants (101). Many studies show endotoxin in

immune-competent cancer models can reverse the negative effects

of chemotherapy and shrink/sometimes eradicate human tumors in a

manner as described by Coley (129–138) with the ability to boost NK

cell activity, activate macrophages and stimulate hematopoiesis of

lymphocytes (139–155). And, if MAMP-laden edible products bear

resemblance to Coley’s toxin (156), then as longitudinal fibrils

contiguous (157) they too could very likely evoke mitogenic B cell

activation (158) influence the complement system (156), stimulate

macrophages to lyse tumor cells (159) and bestow all benefits known

to LPS/TLR4 agonists and their use in anti-cancer medicines when

taken orally (63, 65, 66).

This concept is substantiated further by, numerous animal and

human studies demonstrating that exposure to LPS in early life can

stimulate systemic immunity, being inversely related to the occurrence

of hay fever, atopic asthma, and atopic sensitization (160). Moreover,

LPS, a standard endotoxin, has been identified as a vital immune

system stimulant (161). Specifically, LPS derived from Escherichia coli

has been proven to elicit a robust immune response via TLR4 signaling;

this, in turn, triggers the release of pro-inflammatory cytokines, leading

to an enhanced immune response (162). Immunotherapies that

leverage LPS have shown promise in preclinical and clinical studies.

For instance, MPL (monophosphoryl lipid A), a derivative of LPS, has

been successfully used as an adjuvant in anti-cancer vaccines (162,

163). Despite these advancements, the potential of dead bugs, especially

their endotoxins, in therapeutics and immunotherapies remains largely

unexplored. The primary barrier has been the conventional perception

of endotoxins as harmful substances associated with diseases such as

sepsis. Therefore, the potential of dead bugs in therapeutics and
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immunotherapies warrants further exploration. Future studies should

focus on unraveling the specific immune-modulatory mechanisms of

endotoxins and other components of dead bugs and their potential

applications in treating diseases such as cancer. With technological

advancements and an understanding of the gut microbiome, the

prospect of leveraging dead bugs in therapeutics is promising.
3 LPS/TRL4 agonists and
cancer models

If the administration of gram-negative (non-strain specific) LPS

can reduce tumor burden, then why is the literature riddled with

contradiction? These conflicting reports appear consistent when

organized by model type and route of administration. For example,

pro-tumor effects of LPS are consistently reported in (immune-

deficient) animal models, or isolated cancer cells in vitro (without

an immune coculture) or by assumptions drawn on greater

expression levels for TLR4 reported in cancer vs. healthy adjacent

tissue (164–175). However, anti-tumor effects of LPS/TLR4 agonists

are consistently reported in fully immune competent animals, the

majority showing greater survival time, curative remission in a

significant % of test groups similar to Coley’s toxin, reduction of

adverse effects of chemotherapy and radiation, including resistance

(130–133, 176–178), and effects augmented when combined with

anti-tumor cytokines (e.g. G-CSF) (134). LPS administration, when

injected directly into tumors (immune-competent models) - elicits

massive macrophage and neutrophil trafficking (135) evoking nearly

complete and total tumor regression consistently reported (136, 137).

In humans, oral administration of LPS from wheat (Pantoea

agglomerans) shows recovery and remission in 62% of cancer

patients (138), whereas other sources (e.g., LPS Alistipes shahii) can

achieve a reduction in side effects associated with radiation/

chemotherapies (129).
3.1 LPS/TLR4 agonists: mechanism
of action

The mechanism by which LPS reduces tumor size remains a

topic of continued research, but it is generally thought to be closely

tied to its critical role in regulating macrophages. Several steps

mediate its anti-tumor effects: 1) LPS first binds to the LPS first

binds to protein/sensitizer CD14 (179) 2), both then binding to the

TLR4/MD-2 complex (180), 3) which triggers MyD88 signaling, 4)

and leads to an IFN-type 1 response, NF-kappaB and activation of

TAMs in the TME, thus switching “on” the M1 anti-cancer fighter

phenotype (pro-inflammatory, anti-tumorigenic) and overcoming

the acquiescent M2 (anti-inflammatory pro-tumorigenic

phenotype) (7, 181, 182). Figure 2 In immune-competent

animals, the transition from M2 to M1 TAM phenotype is

associated with the re-awakening of T-cell mediated adaptive host

immune response that recognizes malignant cells However, this

transition’s mechanisms are still poorly understood (101, 183–186).

M1 TAM phenotypes coincide with increased activation of CD4(+)

and CD8(+) T cytotoxic cells, NK cells, higher IFN-gamma,
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reduction in myeloid-derived suppressor cells, and Tregs, all of

which contribute to reducing tumor burden (186–188). These

responses are also directly related to the functional relay of TLR4/

Myd88 receptor adaptor response (133, 189, 190). For instance,

TLR4−/− mice exhibit rapid tumor growth following inoculation

(191) which corresponds to a deficiency in CD8+ CD4+ T and

activated NK cells (42, 192).

The factors that maintain the M2 phenotype are still debated,

but reportedly involve continuous exposure to cytokines released

from the stroma/tumor itself, such as suppressive E-receptor factor,

hyaluronan (193–196) or the dominance of gram-negative bacteria

in the ‘tumor microbiome,’ as seen in gemcitabine-resistant

pancreatic ductal carcinoma (197). The future therapeutic use of

LPS/TLR4 agonists could enhance the efficacy of immune

checkpoint inhibitors (ICIs) (198–201), increase the effectiveness

of monoclonal antibodies (MAbs) (e.g., trastuzumab) (202) and

boost the potency of platinum- and taxol-based chemotherapies

(203). As of now, TLR4 agonists are primarily used as adjuvants in

tumor vaccines (204–207) and in adoptive anti-tumor

immunotherapies (208) as well as in dendritic cell-based therapies

specific to tumor antigens (209).
3.2 The tumor microbiome: an immune
suppressive barrier

The discovery of the tumor microbiome has brought

significant challenges to the conceptual basis of tumor vaccines.

This discovery creates a model akin to a house within a house.

The larger house represents the human microbiome’s role in

regulating systemic immunity, while the smaller house

symbolizes the tumor microbiome’s role in controlling its local

environment. The host microbiome, which largely colonizes the

mucosal tissue of the oral/nasal cavity and gastrointestinal,

vaginal, and urogenital tracts (97, 210), is sensitive to

environmental factors (e.g., drugs, including antibiotics and

chemotherapy, prebiotics, probiotics, alcohol, diet, stress aging,

and exercise) (211–213).

When the normal flora is overtaken by pathogenic flora, as

documented in thousands of studies [indicating changes in the

composition of microbial communities in malignant versus healthy

non-malignant tissues], it increases the risk of cancer (76, 214–216).

Pathogenic flora that contribute to cancer can spread locally (e.g.,

from the vagina to the cervix (217), or from the respiratory system

to the lungs (218)) or distally as bacteria originating in the oral

cavity (e.g., Porphyromonas gingivalis, Tannerella forsythia,

Veillonella parvula, F. nucleatum, Parvimonas Micra, etc.), have

been found associated with cancers of the esophagus (219), GI/

colon (220) pancreas (221) and liver (87). Once cancer is

establ ished, microorganisms can infi l trate the tumor

microenvironment (TME), working synergistically with tumor-

infiltrated leukocyte subpopulations (LSPs); tumor-associated

macrophages (TAMs), tumor-associated neutrophils (TANs),

myeloid-derived suppressor cells (MDSCs), CD4+CD25+Foxp3

+Tregs creating a robust and strong immunosuppressive barrier

(37, 87, 222, 223).
frontiersin.org

https://doi.org/10.3389/fonc.2023.1180084
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mazzio et al. 10.3389/fonc.2023.1180084
Overcoming the immunosuppressive barrier circumscribing

tumors can be achieved by either the complete obliteration of the

tumor microbiome, which can restore immune competence,

decrease immune suppressors (MDSCs), and enhance Th1-type

CD4+/cytotoxic CD8+ T function (221) or boosting the immune

system (using immunotherapies), similar to the original MAMP

vaccine by Coley, but with greater specificity (90, 224).
4 MAMPS and chronic inflammation

There is a potential double-edged sword involving the

biological effects of LPS/TLR agonists, which on the one hand

may boost immune response, and on the other hand are used in

experimental models of inflammatory oxidative injury.

Generally, repeated administration of LPS in animals is an

established model of inflammatory injury to assess the value of

anti-inflammatory agents (225, 226). The understudy of the

paradox between immune stimulating vs chronic inflammation

is a needed area of research given the large number of
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individuals, globally, who consume daily supplements

containing fungal yeast (b-glucan)/microbial MAMP TLR

agonists. There are several major plausible outcomes of

repeated daily use 1) the establishment of biological tolerance,

which can provide resilience to allergies (e.g., pollen) (227),

eczema (228), or osteoporosis (229), infection and cancer (230,

231) or 2) chronic inflammation (232, 233) leading to refractory

T-cell exhaustion, upregulation of (PD-1)/(PD-L1) axis, MDSCs

and enhanced capacity of carcinogen-mediated tumorigenesis

(26, 27, 234, 235);this raises an important question: Could

repeated oral administration of MAMP-rich herbs like sea

moss/kelp and roots result in immune suppression due to

chronic inflammation, either of which could potentially initiate

human cancers? In this context, promoting the intake of anti-

inflammatory phytochemicals might be advisable to reduce the

risk of cancer initiation (28, 236). By contrast, repeated TLR-4

stimulation could be linked to chronic infections and

inflammatory conditions and may be contraindicated for

individuals with autoimmune diseases (237). These are

pressing issues that require further investigation for clarity.
FIGURE 2

LPS TLR4 activated M1 tumor suppressor Macrophage Phenotype; triggers recruitment of MyD88 to the cytosolic domain, activates mitogen
activated protein kinase signaling to elicit translocation of nuclear factor kappa-light-chain enhancer of activated B cells (NF-kB) and upregulation a
host of genes involved with leukocyte recruitment (CCL2,CCL6,CCL12, CXCL10, CXCL11,CXCL12,CXCL13), a pro-inflammatory response (IFN-g,
TNF –a, IL-6 or Type I interferons IFN-a and IFN-b), iNOS induction and production of NO2.[(42)] Created with BioRender.com
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5 Conclusion

This review looks into the potential of heat inactivated MOCs,

particularly in botanicals, to boost immunity and improve illness

outcomes. Specific immune-boosting herbs are abundant with dead

microbes, thereby holding significance for drug discovery endeavors

to develop oral, edible tumor immunotherapies. Future research

should explore the intriguing hypothesis that the health benefits of

certain herbs may be due to their inactivated microbial biomass

rather than the plant’s phytochemicals; this would not only align

with the broader field of microbiome science but also with the

simple logic that the immune system reacts to foreign antigenic

microorganism debris (MAMPs), the basis for vaccine and adjuvant

development. Despite our growing knowledge, significant gaps still

need to be discovered. For example, current research primarily

focusing on cataloging the live microorganisms in the “edible or

medicinal plant microbiome,” are often without considering

potential health implications. While we understand which plant

microbiomes survive food safety regulations, we need

comprehensive knowledge of MAMPS from inactivated MOCs

and their immune-boost ing potent ia l , inc luding the

concentrations and taxonomy, from pathogenic to non-pathogenic.

This potential paradigm shift could have significant

implications for our understanding of plant-based health and for

developing new therapeutic approaches. Furthermore, the historical

backdrop of MOCs’ influence on immunity, as indicated by cases of

spontaneous tumor remission due to acute febrile illnesses, lays the

groundwork for investigating MOCs’ therapeutic potential in

cancer immunotherapy. This has the potential to transform our

approach to disease prevention and treatment, specifically by using
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the ability of MOCs to strengthen human defense against pathogens

and improve tumor surveillance.
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