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Plant impedance spectroscopy:
a review of modeling approaches
and applications

Maxime Van Haeverbeke*, Bernard De Baets and Michiel Stock

Knowledge-Based Systems (KERMIT), Department of Data Analysis and Mathematical Modelling,
Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
Electrochemical impedance spectroscopy has emerged over the past decade as

an efficient, non-destructive method to investigate various (eco-)physiological

andmorphological properties of plants. This work reviews the state-of-the-art of

impedance spectra modeling for plant applications. In addition to covering the

traditional, widely-used representations of electrochemical impedance spectra,

we also consider the more recent machine-learning-based approaches.
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1 Introduction

Electrochemical impedance spectroscopy (EIS) is a popular method to characterize the

electrical properties of (bio-)electrochemical systems. Applying an alternating voltage

input1 V(f ) to a plant tissue sample gives rise to the flow of an electric current I(f ) through

the cell walls, between cells, and in the plant fluids. The polarization processes caused by

resistive and capacitive elements in the plant tissue impede the flow of this electric current,

resulting in a phase shift between the current and voltage phasors. This phenomenon is the

electrochemical impedance of the sample and can be measured at multiple frequencies f

using an analyzer. The impedance Z(w), where w = 2p f , is a complex-valued quantity that

relates to the current and voltage as

Z(w) =
V(w)
I(w)

= Z(w)j j( cos(f(w)) + j sin(f(w))) , (1)

where jZ(w)j is the magnitude of the impedance and f(w) is the phase angle between the

current and the voltage. There is ample evidence that the measurement of Z(w) over a
range of frequencies (giving rise to an impedance spectrum) holds promise in ascertaining a

range of plant physiological properties (Jócsák et al., 2019), including various types of plant

stress (Lichtenthaler, 1998). As w = 2p f , a function in terms of w is also a function of f . In

the remainder of this work, we express the impedance as a function of f to make the
1 Here, we consider potentiostatic EIS, while in galvanostatic EIS the input is an alternating current.
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dependence on the input frequency in Hz explicit. The non-invasive

nature of impedance spectroscopy measurements allows for the

influence of an (a)biotic stressor to be analyzed without being

confounded by damage caused by the measurement technique.

Phospholipid bilayer membranes in plant cells act as capacitors,

forming an electrical double layer at their interfaces when exposed

to an electrical field. Charge-carrying molecules in the symplast (i.e.,

the intracellular matrix) and apoplast (i.e., the extracellular matrix)

electrolytes give rise to electrical resistances. When an alternating

voltage input pulse is applied, the electrochemical components in

the plant cells undergo polarization and subsequent dielectric

relaxation. The nature and intensity of this polarization depend

on the properties of the measured tissue and the interrogated

frequency. At low frequencies, the capacitive membranes obstruct

current flow into the cells, and the resulting current only flows

through the extracellular matrix. At higher frequencies, the current

can penetrate the cells, allowing for the interrogation of the

intracellular impedance caused by polarization processes in the

cytoplasm, which contains charged molecules and capacitive

membrane structures. Several published works provide

visualizations of this phenomenon (Azzarello et al., 2006;

Ehosioke et al., 2020; Liu et al., 2021a; Cheng et al., 2022).

Changes in plant physiology are reflected in the different

polarization processes and their corresponding relaxation. All this

information is contained within an adequately measured

electrochemical impedance spectrum. The challenge addressed by

plant EIS modeling is to extract this information from the

impedance spectra to attain a valuable characterization of the

considered plant system.

Two types of plot are typically used to visualize impedance

spectra: Nyquist plots, which display the real values of the

impedance measurements as a function of their imaginary

components, and Bode plots, which display the magnitude and

the phase of the impedance as a function of the measured

frequencies (Orazem and Tribollet, 2008; Barsoukov and

Macdonald, 2018; Wang et al., 2021). Cole–Cole plots are also

used to represent impedance spectra and originate from a 1941

publication by the Cole brothers (Cole and Cole, 1941). They

display a material’s complex dielectric constant (related to its

impedance) over the measured frequencies. Its real and imaginary

parts are represented on the x- and y-axis, respectively. Cole–Cole

plots are often confused with Nyquist plots, as they are both Argand

diagrams. One drawback of Nyquist and Cole–Cole plots is that

they do not provide explicit frequency information. This is

sometimes mitigated by adding an indication of the frequency to

the observations in the plot. This is done by placing the frequency

values next to the observations in the plots. Alternatively, a 3D

representation is used, where the frequencies are included as an

additional axis (Macdonald et al., 1981; Arteaga et al., 2021).

Given the enormous waste of agricultural produce in the

destructive assessment of in-field and post-harvest product

quality due to the requirement of a sufficiently large sample size,

there is an ever-growing need for clean and effective non-invasive

product evaluation methods (Vanoli and Buccheri, 2012; Lakshmi

et al., 2017). A growing body of research promotes the use of EIS-

based product assessment in this regard (El Khaled et al., 2017; Ibba
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et al., 2020). While there is expensive commercial multi-modal

equipment for EIS, effective custom setups within a price range of a

few hundred USD have been used successfully in agricultural

applications (Basak et al., 2020a). In parallel with developments

in sensors and equipment, the correct and in-depth modeling of

plant impedance spectra will allow for the unravelling of the

unexplored potential of EIS further.

A panoply of plant phenotyping methods has been developed to

investigate various properties related to the agricultural yield and

health status of crops. Each of these methods has benefits and

drawbacks. An often-reported comparative advantage of EIS in

plant characterization studies is that it is less sensitive to

environmental influences (Hussain et al., 2021). Table 1 presents

a non-exhaustive overview of plant phenotyping methods for which

EIS holds promise as a complementary or competitive analysis

method. This table does not include Electrical Impedance

Tomography (EIT), Spectral Induced Polarization (SIP), or single-

frequency impedance measurements, which we consider to be

specific variants of EIS rather than complementary or competitive

methods. We refer to other works for more in-depth discussions on

non-destructive plant phenotyping methods (Zerbini, 2006;

Rahaman et al., 2015; Ali et al., 2017; Lakshmi et al., 2017; Ali

et al., 2019).

An overall impedance spectrum is obtained when conducting

impedance measurements over a range of frequencies. Yet, apart

from the electrochemical response of the system under

investigation, it can often also include other factors that affect the

impedance, such as artefacts and influences due to the experimental

equipment. When conducting EIS measurements, the experimental

setup must be carefully considered, as it will significantly impact the

appropriate choice and performance of the subsequent modeling

and analysis. Important considerations include the electrode

configuration, the applied frequency range and resolution, the use

of minimally interfering connecting cables, and the environmental

conditions. Appropriate measures should be taken to address the

challenge of decoupling the measurement equipment from the

system under test, as well as to ensure that the linearity, stability,

and causality requirements for EIS measurements are satisfied. We

refer to several excellent recent reviews for in-depth discussions

covering the above-mentioned experimental considerations (El

Khaled et al., 2017; Prasad and Roy, 2020; Wang et al., 2022;

Lazanas and Prodromidis, 2023). In this review, we closely examine

the contemporary modeling approaches for EIS in plant

applications and aim to provide direction for the recent

emergence of machine learning applications in the field.

The paper’s scope covers modeling approaches and data

analysis techniques for plant impedance spectroscopy and their

application areas. The remainder of this paper is organized as

follows. Section 2 provides an overview of plant EIS applications,

organized according to the measured organ of the plant. An

extensive survey of equivalent electrical circuit modeling

approaches for plant characterization and their interpretation is

given in Section 3. Section 4 constitutes a thorough review of

statistical and predictive modeling methods used for the

impedimetric analysis of plants using EIS. Section 5 contains a

critical discussion of the preceding sections. The conclusions of this
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TABLE 1 Plant characterization methods for which EIS holds promise as a competitive or complementary method.

Strengths Weaknesses

reliable invasive, laborious

reliable invasive, laborious

reliable expensive, invasive, complex,
laborious

reliable (Muñoz-Huerta
et al., 2013)

invasive, slow, ex situ

reliable (Muñoz-Huerta
et al., 2013)

invasive, slow, ex situ

reliable invasive, ex situ

non-invasive environment-sensitive

reliable, quantitative complex, expensive, ex situ

in situ (Abramovic et al.,
2007)

environment-sensitive,
expensive

al., 2007) non-invasive, large-scale environment-sensitive
(Humplıḱ et al., 2015)

fast, non-invasive limited applicability,
environment-sensitive

endawy non-destructive, broadly
applicable

complex, expensive

large scale environment-sensitive,
expensive

kx, 1993), fast, cheap environment-sensitive,
invasive

alia et al., non-invasive environment-sensitive

al stress non-invasive non-robust (Li et al., 2014)

fast invasive

portable, real-time, fast,
non-invasive

non-robust, environment-
sensitive

cheap invasive, qualitative
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Category Method Application(s)

Molecular (RT-)(q)PCR disease (Korimbocus et al., 2002)

DNA hybridization disease

Serological ELISA disease

Chemical Kjeldahl digestion nutrition

Dumas combustion nutrition

soluble solid content sugar content and fruit maturity

Optical VIS/IR spectroscopy/
imaging

water content (Zhang et al., 2012; Jin et al., 2017), nutrition, disease (Sankaran et al., 2011)

quantum cascade
lasers

disease (Mur et al., 2011)

FT-IR spectroscopy disease (Abramovic et al., 2007; Liaghat et al., 2014), abiotic stress (Yu et al., 2018), nutrition (Butler et al., 2017)

thermal imaging disease (Chaerle et al., 2006; Xu et al., 2006), drought stress (Hashimoto et al., 1984; Cseri et al., 2013), nutrition (Chaerle et

soil-plant analyses
development

nutrition (Yue et al., 2020)

hyper-/multispectral
imaging

water content (Kovar et al., 2019), disease (Schubert et al., 2001), fruit maturity (Gutiérrez et al., 2019), osmotic stress (El-H
et al., 2019; Mishra et al., 2019; Pieters et al., 2020)

Quickbird satellite nutrition (Wu et al., 2007; Bausch et al., 2008), disease (Jacobi et al., 2005)

colorimetry nutrition (Hytönen and Wall, 2006; Sahrawat et al., 2016), ripeness (Gonçalves et al., 2007), sugar content (Buysse and Mer
stress (Bacci et al., 1998)

digital image analysis disease (Mohanty et al., 2016; Tm et al., 2018; Singh et al., 2019; Liu and Wang, 2021; Nirmal et al., 2022), fruit quality (Ben
2016), nutrition (Chen et al., 2019)

fluorescence
spectroscopy/imaging

disease (Lins et al., 2009; Bürling et al., 2012; Granum et al., 2015; Pérez-Bueno et al., 2015; Montero et al., 2016), mechanic
(Belasque et al., 2008; Pérez-Bueno et al., 2019), nutrition (Agati et al., 2015)

Electrical ion-selective sensors nutrition

electronic nose fruit maturity (Di Natale et al., 2001; Li et al., 2009), disease (de Lacy Costello et al., 2000)

conductivity nutrition (Bodale et al., 2021)
c
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work and suggested future directions of the field finalize this paper

in Section 6.
2 Overview of plant EIS applications

In precision agriculture, the knowledge of external conditions

(e.g., soil and air properties) is insufficient to make informed

fertilizer and irrigation management decisions (Nowak, 2021).

Only interrogation of the plant itself can provide an adequate

indication of its physiological state. This statement is the basis for

the Speaking Plant Approach (SPA) proposed by Udnik ten Cate in

the late 70s (Udink ten Cate et al., 1978). The use of polyvalent EIS-

based sensors holds promise for use in precision farming. Here they

can enable fertilizer application to specific areas in the farm and

inform various farming management decisions when combined

with a range of other collected data in a “smart farm” using the

Internet of Things (IoT) (Elijah et al., 2018). As a robust, non-

destructive, and inexpensive method, EIS provides the means to

conduct analyses that conform with the SPA. The applications of

EIS to plants are numerous. EIS measurements are typically

conducted at the leaves, fruits, stems or roots, depending on the

considered application. To our knowledge, no studies report

measurements of a plant’s flowers. A general overview of some

plant properties and where they can be indirectly measured through

EIS is displayed in Figure 1. Aside from direct plant measurements,

several works explored soil EIS measurements for agricultural

applications. These include soil moisture content and indirect

plant biomass determination (Wang et al., 2019).
2.1 Roots

Roots are the plant organs responsible for interacting with the

soil to secure water, minerals, (micro)nutrients, and, for some

species, symbiotic nitrogen-fixing bacteria. A comprehensive

analysis and understanding of roots are essential to investigate the

complex interactions of plants with the soil and the climate.

Electrical methods hold promise in overcoming the difficulties in

accessing root properties (Ehosioke et al., 2020). An accurate and

thorough characterization of plant root systems allows for the

establishment of optimal use of water and fertilizer, assuring

maximal crop quality and yield. Particularly in light of current

global environmental issues such as food waste, inadequate

fertilization and irrigation management, there is a need for in-

depth, fast, easy, non-destructive, and in situ methods to evaluate

the morphological and physiological properties of plant roots. The

discovery that there is a linear relationship between the capacitance

of a plant’s roots and their size in the last century prompted the

ever-growing interest in investigating plant roots by measuring

their electrochemical properties. Ozier–Lafontaine and Bajazet

(2005) established strong correlations between the capacitance of

root tissue and the (wet and dry) weight of the root system. The EIS

method has demonstrated its potential to indirectly assess and

monitor the root biomass, morphological indices (Cao et al.,

2011), and environmental stressors, including cadmium pollution,
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alkali stress, drought, freeze–thaw damage (Repo et al., 2016), cold

acclimation (e.g., frost hardening), osmotic stress, root hypoxia

(Vozary et al., 2012) (e.g., caused by flooding; Jócsák et al., 2010),

root mycorrhizal colonization (Repo et al., 2014), and weed

competition. Liu et al. (2021a) recently conducted an in-depth

review of progress and developments in applying EIS to plant roots.
2.2 Stem

The stem of a plant grants it structural strength while providing

a means for the unidirectional upwards transport of water to the

leaves and fruits and the bidirectional transport of assimilates, other

nutrients, and signaling molecules through the phloem. EIS

measurements have been conducted at the stems of plants to

investigate a range of phenotypical properties. Direct plant

monitoring is one of the strategies in precision agriculture to

improve crop yield, working towards food security for the

increasing global population. Bar-On et al. (2021) recently

developed an EIS method for in-vivo, in situ, and non-destructive

monitoring of a plant’s physiological status. It is based on a four-

electrode setup attached to the stem of a Nicotiana tabacum plant

used as a dicot plant model.

Tomkiewicz and Piskier (2012) proposed a nutrition index,

calculated using the impedance magnitude values measures at the

stem of tomato plants over a frequency range of 1.5 kHz to 16 kHz.

This constitutes an initial step towards site-specific fertilizer

management in greenhouses. Borges et al. (2012) provided initial

evidence for the potential of EIS for early detection of plant diseases.

Differences in impedance spectra (measured at the stem) were

observed for young pine plants infected with the nematode

Bursaphelenchus xylophilus (Borges et al., 2012). The rooting

potential of shoot cuttings was investigated by Mancuso (1999)

through double-DCE equivalent electrical circuit models. Recently,

Astashev et al. (2022) also developed a sensor and model to conduct

in situ EIS measurements evaluating the physiological condition of
Frontiers in Plant Science 05
trees. Branch length, tree health, and effects of drying and

grafting were all impedimetrically evaluated. Aouane et al. (2021)

evaluated EIS as a method to monitor evapotranspiration on

a celery stalk. They found that the extracellular resistance from a

Cole EEC model can describe different stages of water loss and

nutrient depletion.
2.3 Leaves

Leaves assimilate the plant’s carbohydrates through

photosynthesis. They also regulate the flow of water during

evapotranspiration. The water potential of plants is an essential

parameter to model a range of physiological processes (De Swaef

et al., 2022). The non-invasive attachment of electrodes to plant

leaves allows for real-time in-vivo monitoring of several important

plant properties using EIS. EIS has been proposed to evaluate a plant’s

water status and potential. Basak et al. (2020a) modelled the relative

water content (RWC) of canola, corn, wheat, and soybean leaves

using multivariate linear regression with impedance magnitude

features at different frequencies that were selected using backward

elimination. They conducted a similar analysis for the leaf nitrogen

content of these crops (Basak et al., 2020b). To that end, they used a

portable and relatively cheap device. Xing et al. (2021) demonstrated

a strong correlation between the impedance of leaves and their water

status through the cell elasticity, which was measured by leaf

clamping with different gripping forces. The authors used

polyethylene glycol (PEG) to induce different osmotic stress levels

in Orychophragmus violaceus in their experiments. Ali Solangi et al.

(2021) linked plant capacitance to the vacuole and cell volume in

their study of mangrove plants’ salt storage capacity. Recently,

Nouaze et al. (2022) exhibited the potential of EIS for real-time in-

vivo physiological monitoring of lettuce, while Sugiyama and

Okajima (2022) demonstrated that the solar illumination of plants

is reflected in their impedance spectra.
FIGURE 1

An overview of a number of EIS applications organized according to the organ of the plant at which the electrodes are typically placed for interrogation.
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2.4 Fruits

The fruits of a plant contain the seeds required for reproduction.

This is of particular commercial interest due to its use as a food

product and other commodities. Applications of EIS measurements

on fruits include fruit maturity and firmness (Ivanovski et al., 2020)

and the composition and cell vitality of fruits (Caravia et al., 2015).

Caravia et al. (2015) found that the impedance of Shiraz grapes

follows the accumulation of total suspended solids during cell death

in berries at a late ripening stage. They also conducted experiments to

electrochemically evaluate changes in veraison grapes to 110 days

after anthesis and assessed the effects of freezing and thawing on

grape impedance spectra. EIS has also been applied to evaluate the

effects of processing agricultural products (e.g., drying and freeze–

thawing). The freezing of agricultural products causes the formation

of ice crystals in the plant tissues. These ice crystals cause cell

membrane rupturing, resulting in the loss of the latter’s capacitive

properties. The impedance is further decreased upon thawing due to

leakage of the intercellular matrix to the extracellular space. As the

intracellular medium is less resistive than the extracellular matrix

(Lee and Watanabe, 2022), this causes a substantial decrease in the

latter after plasmolysis and the resulting electrolyte leakage. Wu et al.

(2008) did such an evaluation on eggplant pulp. Applying EIS for

fruit status appraisal will allow for further development and

automation in horticulture (e.g., automatic picking of ripe fruit

with robotic arms; Park et al., 2022).

Watanabe et al. recently proposed a feature extracted from the

Nyquist plot to assess damage in biological tissues during the

processing of agricultural products (Watanabe et al., 2018):

LTO = Ztop

�� �� = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ZRe

top)
2 + (ZIm

top)
2

q
  : (2)

This feature is the length of the impedance vector Ztop where the

circular arc in the Nyquist plot reaches its zenith and is called the

LTO (Length Top Origin). The LTO has been used to

impedimetrically assess treatments of mechanical bruising,

hydrostatic pressure, and freeze damage of Japanese pears

(Watanabe et al., 2018; Lee et al., 2019; Lee and Watanabe, 2022).

The authors reported a correlation between the LTO and the

electrical resistance value of the extracellular matrix. The fruit

tissues analyzed using the LTO only showed a single impedance

arc in the Nyquist plot. While a correlation was found with the

resistance of the extracellular matrix, the LTO remains somewhat

arbitrary. More principled indicators, such as the cell disintegration

index presented and derived in Angersbach et al. (1999), should be

preferred. This index indicates the degree of cell permeabilization

(i.e., disintegration) based on changes in the conductivity behavior of

the sample. The cell disintegration index assumes an equivalent

electrical circuit model. Such models are discussed in the next section.
3 Plant equivalent circuit modeling

Equivalent electrical circuits (EECs) are one of the earliest-

developed and most successful tools for analyzing plant EIS

measurements. A myriad of equivalent electrical circuits for
Frontiers in Plant Science 06
analyzing biological tissues have been proposed since the second

middle of the last century. They are currently still the most widely

used models in EIS analysis, albeit they are subject to some

criticism. One such criticism is that there is degeneracy in EECs:

multiple EEC configurations are capable of modeling a given set of

EIS measurements. Several examples of such “degenerate equivalent

circuits” were compiled by Fletcher (1994). Apart from achieving a

high-quality fit, care must be taken to use circuit models with a clear

biophysical meaning without being more elaborate than they should

be. An appropriate EEC can provide insights into a variety of plant

physiological processes. Furthermore, when fit to the impedance

measurements, the parameters of an EEC are effective at

summarizing the information present, making them valuable

features in statistical models and diagnostic tools. As such, the

physiological state of a plant system can be monitored through the

tracking of EEC parameters.
3.1 Plant equivalent circuit configurations

The three circuit components typically encountered in a plant

EEC are resistors (R), capacitors (C), and constant phase elements

(CPE). Their respective impedance expressions are given by:

ZR(f ) = R (3)

ZC(f ) = −j ·
1

2p fC
(4)

ZCPE(f ) =
1

Q½cos( p2 a) + j sin( p2 a)�(2p f )a
=

1
Q(2p jf )a

: (5)

Here, f is the frequency, R is the resistance, C is the capacitance, and

Q and a ∈ ½0, 1� (dispersion or distribution coefficient, a measure of

deviation from ideal capacitive behavior) are the two parameters

associated with the CPE. CPEs get their name from their property of

giving rise to impedance measurements whose phase angle is

independent of the frequency but dependent on the parameter a .
The Warburg element is a special case of a CPE, where a = 0:5. It is

commonly used for modeling diffusion processes in mass transfer.

The impedance expressions in Eqs. (3)–(5) are used together with

Kirchoff’s laws to obtain the impedance expressions of the EEC.

Table 2 displays the simple Voigt circuit and the single and

double shell models (derivations of) that are applied in most plant

EIS applications. Voigt circuits are often serially expanded to

contain additional parallelly connected resistors and capacitors so

as to model different parts of the considered plant organ. The

substitution of capacitors with CPEs in practical applications is a

trend in the field of electrochemical power sources that has recently

also been picked up in plant applications. Equivalent electrical

circuits containing CPEs are commonly called fractional-order

circuit models (Freeborn, 2013), whereas EECs consisting of

resistors and capacitors are integer-order circuit models. In the

literature, these two categories of EECs are often called lumped and

distributed models, respectively. The Voigt circuit is often

fractionalized to model complex bioelectrochemical processes by

substituting the capacitor with a CPE, forming the single dispersion
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Cole model. The single dispersion Cole model is often expanded in

series with another parallelly connected resistor-CPE element,

resulting in the double dispersion Cole model. The impedance

expression of the Cole models is given by

ZColeN (f ) = R∞ +o
N

n=1

Rn

1 + (2p jf )aRnQn
(6)

where N is the number of resistor-CPE element elements included

in the model. N = 1 for the single dispersion Cole model and N = 2

for the double dispersion Cole model. The Cole models are simple

and often fit the measurements well due to their fractional elements.

They have been applied in various plant EIS applications (Wu et al.,

2008; Mousa et al., 2019; Aouane et al., 2021).

The ZARC element (Macdonald, 1992), also referred to as the

Distributed Circuit Element (DCE), is an alternative element often

used in EECs. Its impedance expression ZZARC(f ) is similar to that

of the resistor-CPE components discussed above, but is expressed in

terms of time constants rather than capacitances:

ZZARC(f ) =
R0

1 + (2p jf t)a
 , (7)
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where t is the mean time constant. Note that the resistor-CPE

element in Eq. (6) and the ZARC element in Eq. (7) coincide when

RnQ = ta . As such, an alternative formulation of the double (or

higher order) Cole model is a resistor in series with two (or more)

ZARC elements. Such models, where each ZARC element models a

specific part of a plant’s organ, are often applied in plant EIS

research. Some examples are the papers by Repo et al. (1994; 2002),

Ozier–Lafontaine and Bajazet (2005), Vozary et al. (2007; Vozáry

and Benko, 2010), and many more (Mancuso and Rinaldelli, 1996;

Mancuso, 1999).

The single shell model (see Table 2) is a simple EEC of plant

cells, considering the cell membrane’s capacitance and the extra-

and intracellular resistance. Its impedance expression is given by

Zsingle   shell(f ) =
RE(1 + 2p jfCMRI)

1 + 2p jfCM(RE + RI)
 , (8)

where RE is the extracellular resistance, CM is the capacitance of the

cell membrane, and RI is the intracellular resistance.

There are two commonly applied modifications of the single

shell model. The first one is the Hayden model, where an additional

resistor is parallelly connected to the cell membrane capacitance CM
TABLE 2 The basic equivalent electrical circuit models (derivations and modifications of) which are commonly used in the modeling of plant EIS
measurements.

Equivalent electrical circuit Description

The simple Voigt or Debye circuit without inductor. The single dispersion Cole model
proposed by Cole (1940) can be seen as the fractional elaboration of Voigt circuits, where a
CPE replaces the capacitor. This is one of the oldest fractional circuit models and is often
used to model biosystem impedance spectra. In that case, R∞ is the high-frequency
resistance, and R1 + R∞ is the low-frequency resistance. A drawback is the limited biological
interpretability.

The single shell model (Toyoda and Tsenkova, 1998), also called the simplified Hayden
model (Hayden et al., 1969). RE is the extracellular resistance of the apoplastic fluid, RI is the
intracellular resistance, and CM is the capacitance of the cell membrane. The name of the
model was coined by Zhang et al., contrasting it with their proposed double shell model
(Zhang and Willison, 1992).

The double shell model proposed by Zhang and Wilson (1991). CM is capacitance of the cell
membrane, CT is the capacitance of the tonoplast, RCYT is the cytoplasmic resistance, RV is
the vacuolar resistance, and RE is the extracellular resistance. In some works, RV is referred
to as the resistance of the cell wall (Harker and Maindonald, 1994).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1187573
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Van Haeverbeke et al. 10.3389/fpls.2023.1187573
(Hayden et al., 1969). As the Hayden model predates the single shell

model, the latter is sometimes called the simplified Hayden model.

The simplification of the Hayden model by the omission of the

additional resistance is motivated by the observation that this

resistance is usually much larger than the other two resistances,

as shown by Cole (1968). The second modification of the single shell

model is the replacement of CM by a constant phase element, which

leads to improved fitting to real impedance measurements in

practice. This modified single shell model has more recently been

proposed by Ando et al. (2014) with the following impedance

expression:

Zsingle shell CPE(f ) =
RE ½1+(2p f )aQ (2RI+RE)·cos(

p
2a)+(2p f )

aQRI(RE+RI)f g�
(2p f )aQ(RE+RI)f g22(2p f )aQ(RE+RI)·cos(

p
2a)+1

                                       − j� (2p f )aQR2
E·sin(

p
2a)

(2p f )aQ(RE+RI)f g22(2p f )aQ(RE+RI)·cos(
p
2a)+1

(9)

A drawback of the use of CPEs in equivalent circuit models is that

this hinders a convenient and straightforward interpretation. This

issue is typically mitigated by converting the values of the CPE’s

parameters to their corresponding apparent equivalent capacitance

values using the following conversion:

CM,apparant = Q(2p fm)
(a−1) , (10)

where fm is the frequency that minimizes the imaginary part of the

impedance. The value of fm is calculated as

fm =
(Q(RE + RI))

a

2p
  : (11)

Combining Eqs. (10) and (11), the apparent cell membrane

capacitance is calculated as

CM,apparant = Q
1
a (RR + RI)

1−a
a   : (12)

Note that the underlying assumption of Eqs. (10) and (12) is that

the frequency at which the imaginary part of the impedance is

minimal remains the same after substitution of the CPE by

CM,apparant. This fractional single shell model with the calculation

of the apparent capacitance has been used in many works since it

was introduced by Ando et al. (Imaizumi et al., 2015; Ando et al.,

2016; Meiqing et al., 2016; Watanabe et al., 2017; Watanabe et al.,

2018; Li et al., 2019). The double shell model was proposed by

Zhang and Wilson (1991) in an effort to take the electrochemical

behavior of the vacuole into account. The impedance expression of

the double shell model is reported in Inaba et al. (1995) and Wu et

al. (2008). Despite being established over 30 years ago, the double

shell model is still commonly used to analyze plant systems at

present (Nouaze et al., 2022). Juansah et al. (2012) elaborated the

double shell model further to include other fruit constituents. The

authors report improved modeling of Garut fruit ripening with their

proposed EEC. A fractional-order variant of this EEC has also been

proposed (Cabrera-López and Velasco-Medina, 2019). Other

elaborations of the double shell model, taking organelle

resistances into account, have been proposed (Zhang et al., 1990;

Harker and Maindonald, 1994), as well as a fractional variant of the
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double shell model substituting the capacitors with CPEs (AboBakr

et al., 2017).

A bespoke choice should be made for the circuit to be used for

analyzing a given set of plant EIS measurements, taking both the

biophysical interpretation and quality of fit into consideration. That

being said AboBakr et al. (2017) conducted a comparative

evaluation of a selection of integer and fractional order EECs

(including some of those discussed above) on electrochemical

impedance measurements of several fruits. The authors concluded

that the fractional single and double Cole models resulted in the

best fit for the considered examples.

Electrode polarization effects at the interface between the plant

and the measurement equipment are known to interfere with

biological EIS measurements at low frequencies (Kuang and

Nelson, 1998). Besides adjustments to the measurement setup,

these effects are sometimes dealt with at the modeling stage

through a serial addition in the EEC. Some novel EEC models

with such additions were recently proposed by Ibba et al. (2020) and

Sugiyama and Okajima (2022). Ibba et al.’s EEC model in their

apple and banana ripening study (Ibba et al., 2020) consists of a

Warburg element, modeling the interface between the fruit surface

and the electrode, serially connected to a simple Voigt circuit.

Sugiyama and Okajima (2022) proposed a fractional model that

consists of a simple Voigt circuit, modeling the electrode–leaf

contact, and a serially coupled fractionalized Hayden model

describing the plant tissues. In later work, the same authors

(Okajima and Sugiyama, 2023) simplified the part describing the

plant tissues to a fractional single shell model, while adding a

Warburg element in the part describing the electrode–leaf interface.
3.2 Parameter identification for plant EECs

A comprehensive equivalent-circuit-based analysis of EIS

measurements relies on the adequate identification of the circuit

parameters. The earliest described circuit parameterization

methods were based on graphical measurements of the Nyquist

plots (Cole, 1940). At present, the most common parameter

estimation method is Complex Non-Linear Least Squares (CNLS)

fitting, where the squared error between the measured impedance

measurements and the simulated impedance spectra using the EEC

and its parameters is minimized (Macdonald and Garber, 1977), i.e.:

F(k ) =o
N

i=0
jDZi j2 =o

N

i=0
(ZRe

i,e − ZRe
i,m(k ))

2 + (ZIm
i,e − ZIm

i,m(k ))
2 (13)

Here, DZi is the difference between the experimental measurement

and the equivalent circuit model’s corresponding impedance value

for the i-th measured frequency. ZRe
i,e and ZIm

i,e are the real and

imaginary parts of the experimental measurements at the i-th

frequency, and ZRe
i,m(k ) and ZIm

i,m(k ) are the corresponding

impedance values simulated by the circuit model using the

parameter vector k . The optimal EEC parameters for the

considered circuit are argminkF(k). The Levenberg-Marquart

algorithm (Marquardt, 1963) is commonly used to solve this

optimization problem, although many alternative algorithms have
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been proposed for bioimpedance analysis (Yousri et al., 2019;

Gadallah et al., 2022; Ghoneim et al., 2022). Most plant EIS

studies use the above method for circuit parameter identification,

typically through commercial or freely available software, such as

LEVM/LEVMW (MacDonald, 2013), EIS Spectrum Analyzer

(Bondarenko and Ragoisha, 2005), LabView (Kodosky, 2020), or

ZView (Johnson, 2000). A drawback of this method is that carefully

chosen initial values for the equivalent electrical circuit model must

be provided to the algorithm to ensure proper convergence. This

parameter initialization can be done using graphical estimates, as in

Ozier-Lafontaine and Bajazet (2005). Some researchers have

circumvented the need for a good initialization by using

optimization procedures that are less likely to get stuck in a local

optimum due to an inadequate initial guess, such as evolutionary

algorithms. The CNLS objective function in Eq. (13) is ubiquitously

used and usually yields adequate results. However, it has also been

subject to due criticism. In particular, an appropriate weighting of

the two terms by the variance of the measurements (if available) or

by the magnitudes of the experimental or model impedances (which

are assumed to be proportional to the measurement variance) has

been reported to be more appropriate in some works (Zoltowski,

1984; Orazem et al., 1994; Van Haeverbeke et al., 2021). This is

especially the case when the measurements differ by several orders

of magnitude, where a simple unit weighing causes F(k ) to be

dominated by the larger impedance measurements.

In agricultural applications of EIS, it is desirable to conduct

quick and efficient EIS measurements with inexpensive and portable

hardware. EEC parameter estimation on incomplete measurements

reduces the computational and hardware burden for such real-time

and in-field applications. Freeborn et al. (2013) applied a non-linear

least squares fitting method to accurately extract the parameters of

the Cole model from the electrical current-excited step responses

without requiring direct impedance measurements. Maundy et al.

(2015) showed that the same could be done using only the

impedance magnitudes, which also decreases the computational

burden. Recently, Vastarouchas et al. (2019) developed a method to

extract the Cole model parameters using only two measurements.

Note that these methods are developed specifically for the Cole

models described in Section 3.1 and are not applicable for general

circuit parameter identification.
4 Statistical and machine learning
methods for plant EIS

Researchers routinely apply various statistical methods when

analyzing plant EIS measurements. These methods are typically

applied to EIS features such as equivalent circuit parameters or

impedance values at specific frequencies. They include various

kinds of correlation analysis (Tomkiewicz and Piskier, 2012;

Imaizumi et al., 2015; Hamed et al., 2016), as well as the

comparison of multiple treatments using Analysis of Variance

(ANOVA) (Jamaludin et al., 2014; Roy et al., 2019) with a range

of posthoc tests (Harker and Forbes, 1997; Vozáry et al., 2007;

Imaizumi et al., 2015; Meiqing et al., 2017).
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Machine learning is the sub-discipline of artificial intelligence

that focuses on automatically detecting patterns in data. In

unsupervised learning, there is no outcome variable to be

predicted. Here, patterns are detected within the unlabeled input

data. Two important applications of unsupervised learning are

clustering and dimensionality reduction. While being originally a

classical statistical method, Principal Component Analysis (PCA) is

an unsupervised learning algorithm commonly used to analyze

plant EIS measurements (Cavalieri and Bertemes-Filho, 2021),

where it aids in visualizing the impedimetric behavior resulting

from different treatments in a study (Conesa et al., 2016; Hamed

et al., 2016; Meiqing et al., 2016; Serrano-Pallicer et al., 2018; Ibba

et al., 2020; Aparisi et al., 2021). It is a dimensionality reduction

method that reduces the number of features in such a way that the

most important information is retained. Some authors have applied

dimensionality reduction methods to pre-process impedance

features before conducting a supervised learning analysis (Guo

et al., 2015; Conesa et al., 2016; Yu et al., 2016; Islam et al., 2018;

Ochandio Fernández et al., 2019; Li et al., 2022). Alternatively,

various methods have been used to select the most useful features

before the analysis (Repo et al., 2014; Meiqing et al., 2016; Liu and

Guo, 2017; Khaled et al., 2022).

In supervised learning, the goal is to predict an outcome

variable that is often impractical to measure directly using a list

of input variables (features). Depending on the nature of the

response variable, a distinction is made between (i) regression

problems, for which a continuous output value is to be predicted,

and (ii) classification problems, for which the output is constrained

to a discrete set of classes. After training (calibration) of supervised

machine learning models, their predictive performance can be

evaluated. For this, an appropriate performance metric should be

selected. The model accuracy is the most common performance

metric for plant EIS classification problems, which is the proportion

of correct predictions relative to the total number of predictions.

For regression problems, some commonly reported performance

metrics are the coefficient of determination (R2) and the root-mean-

square error (RMSE). The coefficient of determination is calculated

for a set of N observations and regression model outputs as

R2 = 1 −o
N
i=1(Yi − bYi)

2

oN
i=1(Yi − �Y)2

(14)

This can be interpreted as the proportion of the variance in the

dependent variable observations Yi that the regression model

outputs Ŷi can explain. �Y is the mean of the observations Yi. The

RMSE is expressed in the same unit as the response variable and is

calculated as

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=1(Yi − bYi)
2

N

s
  : (15)

Another important consideration is the generalization ability of

the model. A model generalizes well if it has a good predictive

performance on new observations not used during model

calibration. Overly complex models will fit the training data well

but do not necessarily generalize well. This phenomenon is called

overfitting. An appropriate model evaluation or selection,
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TABLE 3 Supervised machine learning approaches in plant electrochemical impedance spectroscopy.

Description Type Algorithm Metric Performance Size Year Ref

Apple mouldy core Classification SVM Accuracy 0.94 98 2016 (Yu et al., 2016)

Avocado ripeness Classification SVM Accuracy 0.90 100 2018 (Islam et al., 2018)

Grapefruit freeze damage Classification MLP Accuracy 1.00 180 2022 (Romero Fogué et al., 2022)

Lemon freeze damage Classification MLP Accuracy 1.00 10 2019 (Ochandio Fernández et al., 2019)

Oil palm basal stem rot Classification LDA Accuracy 0.86 240 2022 (Khaled et al., 2022)

Olive variety Classification MLP Accuracy 1.00 90 2020 (Luna et al., 2020)

Orange freeze damage Classification MLP Accuracy 1.00 270 2018 (Serrano-Pallicer et al., 2018)

Plant tissue discrimination Classification MLP Accuracy 1.00 100 2020 (Cavalieri and Bertemes-Filho, 2020)

Rice seed vigor Classification LDA Accuracy 0.90 100 2021 (Feng et al., 2021)

Strawberry ripeness Classification MLP F1 0.72 923 2021 (Ibba et al., 2021)

Strawberry ripeness Classification MLR Accuracy 0.773 150 2017 (González-Araiza et al., 2017)

Tangerine freeze damage Classification MLP Accuracy 1.00 270 2021 (Aparisi et al., 2021)

Tomato ripeness Classification LDA Accuracy 0.88 240 2019 (Li et al., 2019)

Wood chips Classification KNN Accuracy 0.91 NA 2020 (Tiitta et al., 2020)

Apple moisture content Regression PLS R2 0.88 140 2018 (Reyes et al., 2018)

Apple soluble solids content Regression ELM R2 0.908 160 2015 (Guo et al., 2015)

Banana soluble solids content Regression LR R2 0.716 90 2014 (Jamaludin et al., 2014)

Crop leaf nitrogen content Regression MLR R2 0.94 111 2020 (Basak et al., 2020b)

Date acidity Regression MLP R2 0.938 800 2022 (Mohammed et al., 2022)

Durian dry matter content Regression PLS RMSE 4.63% 120 2013 [Kuson and Terdwongworakul, 2013]

Korla pear hardness Regression NFS R2 0.911 61 2022 (Yu et al., 2022)

Korla pear soluble solids content Regression GRNN R2 0.974 300 2020 (Lan et al., 2020)

Leaf moisture content Regression MLR R2 0.959 28 2021 (Hao et al., 2021)

Lettuce Chlorophyll content Regression MLR RMSE 1.05 mg/L 70 2021 (Chowdhury et al., 2021)

Lime moisture content Regression PLS R2 0.934 82 2016 (Huong and Teerachaichayut, 2016)

Melon sugar content Regression ELM R2 0.887 480 2021 (Liu et al., 2021b)

Palm fruitlet oil content Regression LR RMSE 5.71% 90 2022 (Chin-Hashim et al., 2022)

Peach firmness Regression CART RMSE 1.59 N 200 2022 (Ivanovski et al., 2022)

Peach firmness Regression LR MSE 0.67 200 2020 (Ivanovski et al., 2020)

Persimmon soluble solids content Regression LS-SVM RMSE 0.97°Brix 105 2017 (Liu and Guo, 2017)

Pineapple sugars content Regression MLP R2 0.973 54 2016 (Conesa et al., 2016)

Sea buckthorn soluble solids Regression MLR R2 0.648 NA 2022 (Li et al., 2022)

Sweet potato moisture content Regression PLS R2 0.44 80 2018 (Reyes et al., 2018)

Tomato leaf nitrogen content Regression MLR R2 0.8374 35 2017 (Meiqing et al., 2017)

Tomato leaf phosphor content Regression MLR R2 0.864 34 2016 (Meiqing et al., 2016)

Tomato leaf potassium content Regression MLR R2 0.8561 34 2016 (Jinyang et al., 2016)
F
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The encountered algorithms are K-nearest neighbors (KNN), (least-squares-) Support Vector Machine ((LS-)SVM), Linear Discriminant Analysis (LDA), Classification And Regression Trees
(CART), Extreme Learning Machines (ELM), Neuro-Fuzzy System (NFS), Generalized regression neural network (GRNN), Partial Least Squares (PLS), Multi-layer Perceptron (MLP), and
(Multivariate) Linear Regression (M)LR. When multiple classification problems or algorithms were considered, a single one was selected and reported per reference. If multiple algorithms were
used, only the highest-performing one was reported. Data prepossessing steps are not reported.
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considering the possibility of overfitting, requires training and

testing of the model to take place using separate sets of

observations. In K-fold cross-validation, the full dataset is split

into K different parts. The model is then consecutively trained on

the dataset, excluding each of these parts and concurrently

evaluating the excluded parts. The final performance estimation is

the average evaluated performance on the K subsets. Statistical tests

are also used for model selection. An example is a sequential F-test

which can be used to compare models of varying complexity and

assess the significance of newly introduced model elements.

We searched the literature for machine learning applications in

EIS applied to plants. Table 3 presents the research works retrieved.

The vast majority of these applications predict fruit properties, such

as ripeness or quality characteristics. Over half of these entries are

studies published within the last 3 years, indicating that supervised

machine learning methods are rapidly gaining interest in plant

impedance spectroscopy. The most commonly used classification

methods are Artificial Neural Networks (ANN) (Goodfellow et al.,

2016) and Linear Discriminant Analysis (LDA) (Bishop and

Nasrabadi, 2006). The most commonly used regression methods

are Partial Least Squares (PLS) regression (Wold et al., 2001) and

Multivariate Linear Regression (MLR) (Bishop and Nasrabadi,

2006). The number of measurements in the collected studies

typically varies from tens to hundreds. Overall, high prediction

performances are reported. The impedance values at specific

frequencies were the most commonly used features to train the

reported models. In several of these studies, the impedance

spectrum was not completely measured, but only a few different

frequencies were considered.
5 Discussion

Valid EIS measurements of electrochemical systems conform to

stability, causal, and time-invariance standards (Van Haeverbeke

et al., 2022). Good practice dictates that the validity of

measurements is verified before further analysis. EIS data

validation through the Kramers–Kronig relations (Kronig, 1926)

is an important standard in other EIS application areas (e.g., battery

science). These relations evaluate the feasibility of computing the

real part of the EIS measurements from the imaginary part and vice

versa, which is a theoretical prerequisite for stable electrochemical

systems. This data validation is rarely done for plant or other

biological applications. The partial measurement of the impedance

spectra (e.g., only measuring the real or imaginary parts to reduce

the computational burden) described in Section 3.2 rules out the

possibility of an adequate validation using the Kramers–

Kronig relations.

The EIS field generally suffers from a lack of publicly available

data. A notable exception, in the field of animal tissues, is the

database of body tissue measurements compiled by Gabriel and

Gabriel (1996). The further development of novel methods to

analyze impedance spectroscopy measurements for plant

applications would greatly benefit from publishing such collected

data in well-maintained public databases accessible to other
Frontiers in Plant Science 11
researchers. This could be done in a fashion similar to the

MassIVE public database for mass-spectrometry measurements

(Choi et al., 2020) or the many databases available for the bio-

informatics community, such as Uniprot (Apweiler et al., 2004) and

Genbank (Benson et al., 2012), to name a few.

Equivalent electrical circuits are still the standard tools for EIS

analysis. Commonly applied EEC models in recent years are the

double shell model and some fractionalized models such as the

modified single shell model, the Cole model and distributed circuit

element models with ZARC elements. The original integer-order

Hayden and single-shell models are no longer commonly used. In

some cases, arbitrarily complex EEC configurations are proposed in

order to achieve an adequate fit to the plant EIS measurements

(Islam et al., 2019). This results in the loss of the biophysical

interpretation of the models, with a loss of the advantage of using

EEC models over other non-linear models. Equation (10) is the

widely applied mathematical formula proposed by Hsu and

Mansfield (2001) for estimating the effective capacitance from

CPE parameters in the fractional single shell model. Hirschorn

et al. (2010) conducted a comparative evaluation of this formula

and an alternative formula formerly proposed by Brug et al. (1984).

A biological material was included in this study (human skin),

where the formula by Brug et al. turned out to yield more

satisfactory results. These results advocate further study on the

most appropriate effective capacitance estimation procedure for

plant systems.

A recent development in bio-impedance spectroscopy analysis is

the use of the Distribution of Relaxation Times (DRT), which does

not require the selection of a specific EECmodel. Its strengths include

the increased resolution in distinguishing different polarization

processes and its general applicability. This analysis method has

proven to be very effective in characterizing electrochemical power

sources (Weiß et al., 2017). The initial development of a distribution

of relaxation times analysis dates back to the beginning of the 19th

century in work by von Schweidler (1907). The theory and methods

were then further developed by the Cole brothers (Cole and Cole,

1941), among others. Schwan considered the theoretical description

of a DRT for the analysis of biological tissues later in the last century

(Schwan, 1957; Foster and Schwan, 1989). The improvement of EIS

measurement technology and the development of adequate DRT

deconvolution methods in the last decade have permitted its practical

use. Recently, some promising evaluations of this method have been

done for biological applications, such as the analysis of microbial fuel

cells (Wang et al., 2022), animal tissues (Shi and Kolb, 2020), and cells

in suspension (Ramıŕez-Chavarrıá et al., 2020). While this method

has not yet been evaluated for plant EIS, recent developments in other

fields suggest it could potentially become a valuable plant

characterization method and provide informative features for

machine learning models.

Due to the high dimensionality of EIS measurements and the

typically limited (i.e., up to a few hundred) number of collected

observations, current machine learning strategies benefit greatly

from dimensionality reduction data preprocessing steps. Besides

dimensionality reduction, there has not been much consideration

for useful feature engineering strategies. Equivalent electrical circuit
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parameters, which contain the information from the impedance

spectra after being fit, and distribution time constants are two

interesting feature engineering strategies that can be evaluated in

future work. A general remark on the machine learning approaches

where classification is performed for ordinal outcomes, such as fruit

ripeness or heartwood content of Scotts pine and the health state of

oil palms (Khaled et al., 2018), is that the authors did not take the

ordinality of the outcome variables into account (Frank and Hall,

2001). An exemplary consequence of neglecting this ordinality is

that the misclassification of an overripe avocado as a firm avocado is

not considered to be a larger error than the misclassification of a

ripe avocado as an overripe avocado. Ordinality should be

considered during the model development and evaluation stages

(Cardoso and Sousa, 2011).

A few other criticisms of the works presented in Table 3 are that

i) sometimes no validation of the calibrated models on external

datasets was performed (Basak et al., 2020b), ii) the necessary unit

of the response variable when reporting the RMSE is often omitted,

and iii) the results of some of the classification accuracies should be

taken with a grain of salt, as the artificial classification settings may

not be representative of actual practice. An example is the

evaluation of freeze injury in citrus fruits. If the authors subject

the fruits to intense freeze treatments, the differences between the

impedance spectra of the two classes (damaged and non-damaged)

are very large, such that even a simple model could achieve high

classification performance. In this case, it is uncertain how the

model would perform when faced with observations where the

fruits are subjected to a lesser extent of freeze treatment.

Artificial neural networks are often reported in the new

machine-learning-based impedimetric fruit quality monitoring

trend. These appear to always be fully connected multi-layer

perceptrons. Given the time-series nature of the EIS signals, other

architectures, such as convolutional neural networks (CNN) or

recurrent neural networks (RNN), may be more effective, as they

have demonstrated high predictive performance in similar signal

processing problem settings (Kiranyaz et al., 2019; Zhang

et al., 2019).

Few studies have evaluated which non-destructive plant

characterization methods complement each other well, bearing in

mind the trade-off between increased depth and performance of a

combination of complementary methods on the one hand and the

increased labor and costs on the other hand (Srivastava and

Sadistap, 2022). The rapid development and miniaturization of

sensors and equipment hold promise for in situ applications and

online operando plant monitoring. IoT data from different

measured environmental variables (e.g., images, temperature, light

intensity, and humidity) can be combined with electrochemical

properties for agricultural management decision making, focusing

on uncertainty quantification and interpretability in a bespoke

probabilistic model in “smart farms” and greenhouses. As such,

we can obtain highly accurate plant variables and quantifiable

uncertainty, allowing for informed farm management decisions.

To this end, we can take inspiration from Li-ion battery state of

health research, where the authors probabilistically determined the
Frontiers in Plant Science 12
state of health of the battery using impedance parameters in

addition to the temperature and the state of charge of the battery

(Zhang et al., 2022). If such models prove robust and reliable, it will

lead to further advances in automation in “smart farms”.
6 Conclusion and future perspectives

A great deal of information on the physiological status of plants

is contained in their electrochemical impedance spectra. One of the

main challenges for plant EIS practitioners is extracting this

information. In this work, we first provided an overview of the

various physicochemical properties of plants that can be

interrogated by EIS measurement on various plant organs. We

then provided an overview of plant equivalent electrical circuit

analysis as well as statistical and more recent machine

learning approaches.

This paper proposed several suggestions to transfer knowledge

and progress from the field of electrochemical power sources, which

constitutes the most active area in EIS modeling research, to plant

applications. These include adopting validation strategies, the

fractionalization of equivalent circuit models, and the novel

DRT method.
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