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Neural precursors generate neurons in the embryonic brain and in restricted 
niches of the adult brain in a process called neurogenesis. The precise control of 
cell proliferation and differentiation in time and space required for neurogenesis 
depends on sophisticated orchestration of gene transcription in neural precursor 
cells. Much progress has been made in understanding the transcriptional regulation 
of neurogenesis, which relies on dose- and context-dependent expression of 
specific transcription factors that regulate the maintenance and proliferation of 
neural progenitors, followed by their differentiation into lineage-specified cells. 
Here, we review some of the most widely studied neurogenic transcription factors 
in the embryonic cortex and neurogenic niches in the adult brain. We compare 
functions of these transcription factors in embryonic and adult neurogenesis, 
highlighting biochemical, developmental, and cell biological properties. Our goal 
is to present an overview of transcriptional regulation underlying neurogenesis in 
the developing cerebral cortex and in the adult brain.
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Introduction

Neurogenesis happens primarily during embryonic stages, while the nervous system 
develops, although some regions in the adult brain retain the capacity to generate new neurons 
throughout life (Jurkowski et al., 2020). In both cases, neural progenitors need to balance their 
own proliferation with the production of differentiated cells to ensure that appropriate numbers 
of neurons and glia are made. During embryonic neurogenesis, progenitors first proliferate 
through symmetric divisions until about E11.5, when they change their division mode and start 
producing neurons through asymmetric divisions. Once all necessary neurons have been 
generated, they will begin generating glial cells in an irreversible switch that signifies the end of 
embryonic neurogenesis (Martynoga et al., 2012). Because transitions between phases cannot 
be reversed, accurate control of proliferation vs. differentiation is paramount to ensure the 
correct development of the nervous system. Postnatally, some radial glial cells become the 
specialized neural stem cells (NSCs) for postnatal and adult neurogenesis (Bond et al., 2020). In 
neurogenic regions [subventricular zone, hippocampus and hypothalamus, reviewed in 
Jurkowski et  al., 2020], NSCs generate intermediate progenitor cells through asymmetric 
division. Intermediate progenitor cells expand rapidly and eventually differentiate into neuronal 
progenitor cells that migrate to their destination where they integrate into neuronal circuitry 
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upon terminal differentiation. Contrastingly to embryonic 
neurogenesis, adult NSCs can simultaneously generate glial cells 
through a much less understood process.

The balance between proliferation and differentiation of neural 
stem and progenitor cells requires exquisite control at the 
transcriptional level. Transcriptional control of embryonic and adult 
neurogenesis relies on shared transcription factors (TFs) that become 
spatially confined over time, are expressed at specific timepoints, or 
both. The cell type-specific transcriptional activity of such neurogenic 
TFs is mediated by epigenetic signatures, chromatin changes, and 
other protein partners. In this mini-review, we  provide a brief 
overview focusing on the role of some of the best-characterized TFs 
that control neurogenesis in the embryonic dorsal telencephalon 
(Table 1) and in the adult subgranular zone (SGZ) of the hippocampus 
and the subventricular zone (SVZ) of the lateral ventricles (Table 2). 

For more comprehensive analyses of the role of specific TFs, we refer 
the reader to appropriate reviews.

bHLH transcription factors in 
neurogenesis

Transcription factors of the bHLH (basic helix loop helix) 
superfamily work as dimers and bind DNA through a basic domain at 
their amino terminal end (Jones, 2004). Several bHLH TFs play 
important and sometimes opposing roles during embryonic and 
adult neurogenesis.

HES (Hairy and Enhancer of Split homologs) family members of 
the bHLH TF family are effectors of the Notch signaling pathway 
(Ohtsuka et  al., 1999). During corticogenesis, they regulate cell 

TABLE 1 Role of different transcription factors in embryonic neurogenesis.

DNA-binding domain Transcription 
factor

Role References

Basic helix–loop–helix (bHLH) HES1 Represses neuronal differentiation of NSC pool Ishibashi et al. (1994), Nakamura et al. 

(2000), Shimojo et al. (2008), Dhanesh et al. 

(2016), and Gozlan and Sprinzak (2023)

Heterogenous differentiation of NSCs Kobayashi et al. (2009) and Kobayashi and 

Kageyama (2011)

NGN2 Proneural differentiation of NSCs, regulation of 

progenitor maturation and of neuronal vs. glial fate 

decision

Nieto et al. (2001), Parras et al. (2002), Britz 

et al. (2006), Mattar et al. (2008), Miskinyte 

et al. (2018), and Han et al. (2021)

ASCL1 Lineage commitment of NPCs to neuronal fate Castro et al. (2011) and Vasconcelos and 

Castro (2014)

Defines neurogenic patterning and cortical folding Han et al. (2021)

Homeodomain PAX6 Controls balance between neural stem cell (NSC) self-

renewal and neurogenesis

Estivill-Torrus et al. (2002), Sansom et al. 

(2009), Mi et al. (2013), and Manuel et al. 

(2015)

Dorsoventral patterning of the mammalian 

telencephalon

Toresson et al. (2000) and Yun et al. (2001)

SOX2 Promotes progenitor proliferation and prevents 

differentiation

Miyagi et al., 2008

Zinc finger + leucine zipper + forkhead 

domain

FOXG1 Maintains balance between proliferation and 

differentiation in neural progenitors

Xuan et al. (1995), Dou et al. (1999), 

Hanashima et al. (2002), Shen et al. (2006), 

Eagleson et al. (2007), and Siegenthaler et al. 

(2008)

FOXM1 Maintains stem cell pluripotency and self-renewal 

capacity of stem cells

Kalin et al. (2011) and Wu et al. (2014)

FOXP1 Maintains progenitor pool by promoting progenitor 

self-renewal

Pearson et al. (2020)

Promotes progenitor differentiation Braccioli et al. (2017)

FOXP2 Induces generation of intermediate progenitors Tsui et al. (2013)

FOXP4 Promotes progenitor differentiation Rousso et al. (2012) and Li et al. (2023)

FOXO 1/3/4 Mediate antiproliferative TGF-B signaling in early neural 

progenitors

Seoane et al. (2004)

Zinc finger homeodomain ZEB1 Neuronal differentiation, and migration Jiang et al. (2018) and Wang et al. (2019)

Cleavage plane orientation in progenitors Liu et al. (2019)
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proliferation, differentiation, and fate specification by maintaining 
stemness of progenitors and controlling the timing of differentiation 
(Kageyama et al., 2007; Gozlan and Sprinzak, 2023) in neuroepithelial 
and radial glial cells. Of the different Hes genes, Hes1 is the most 
widely studied in the context of corticogenesis. HES1 levels in cortical 
neuronal progenitors experience cyclic oscillations, which are essential 
for the maintenance of neuronal progenitors (Shimojo et al., 2008). 
These oscillations result from the combination of Hes1 expression 
induction by Notch signaling, an autoinhibitory effect of HES1 on its 
own transcription and the great instability of the Hes1 mRNA and 
protein (Takebayashi et al., 1994; Hirata et al., 2002). In its capacity as 
an antineurogenic bHLH repressor (Nakamura et al., 2000), HES1 acts 
in two different ways. First, it represses expression of its target genes 
by directly binding to their promotors in a complex with co-repressors 
like Groucho/TLE-1 (Jiménez et  al., 1997; Dhanesh et  al., 2016). 
Second, HES1 interferes with the transcriptional activity of target TFs 
by binding to and sequestering E proteins such as E47, which are 
required by TFs like ASCL1 to function (Sasai et al., 1992; Dhanesh 
et al., 2016). Downstream targets of HES1 include cell-cycle regulators 
like the CDK inhibitor Cdkn1B (Murata et al., 2005), Gadd45g, cyclins 
D2 and E2, and the Notch ligand Dll1 (Shimojo et  al., 2008). In 
addition, HES1 also inhibits expression of several proneural bHLH 
TFs, including Ascl1 and Neurog2 (Shimojo et  al., 2008). HES1 
fluctuations drive oscillatory expression of these TFs and help 
maintain the progenitor population, especially during early stages of 
corticogenesis (Shimojo et  al., 2011). In turn, expression, or lack 
thereof of the proneural bHLH TFs Ascl1 and Neurog2 define four 
different progenitor states, with expression of both TFs representing 
the least lineage restricted progenitors and those expressing only 
Neurog2 committed to a neuronal lineage (Han et  al., 2021). 

Furthermore, combined expression of Ascl1 and Neurog2 leads to 
cross-repression and to the production of Notch ligands that maintain 
proliferation in neighboring cells (Han et al., 2021).

During adult neurogenesis, sustained levels of HES1 are needed 
to keep aNSCs in the SVZ and SGZ in a quiescent state (Sueda et al., 
2019), as constant, high HES1 indirectly leads to increased CDKN1A 
levels, inhibiting cell cycle progression (Maeda et al., 2023). This is 
accomplished through the interaction of HES1 with ID1, which 
represses HES1 autoinhibition (Bai et al., 2007). As NSCs activate, 
oscillating expression of HES1 drives a concomitant oscillatory 
expression of ASCL1, which is critical for NSC activation (Andersen 
et  al., 2014). In fact, lower levels of ASCL1 are linked to higher 
numbers of resting NSCs (Urbán et al., 2016) and a proliferation vs. 
differentiation bias in progenitors (Imayoshi et al., 2013), while ASCL1 
protein levels drop over time to ensure the maintenance of the aNSC 
pool (Harris et al., 2021).

Homeobox transcription factors in 
neurogenesis

There are 11 different classes of homeobox transcription factors, 
characterized by a helix-turn-helix homeodomain motif that mediates 
their binding to DNA (Holland et al., 2007). We discuss PAX6 and 
SOX2 here, but the roles of 21 homeobox TFs in vertebrate forebrain 
development have been comprehensively reviewed elsewhere (Leung 
et al., 2022).

PAX6 belongs to the paired-box homeodomain transcription 
factor family, harboring a second DNA binding domain, the paired 

TABLE 2 Role of different transcription factors in postnatal/adult neurogenesis.

DNA-binding domain Transcription factor Role References

Basic helix–loop–helix (bHLH) HES1 Promotes/ regulates quiescence and proliferation 

of NSCs

Zhang et al. (2015), Sueda et al. (2019), 

and Kaise and Kageyama (2021)

NGN2 Neuronal differentiation of progenitors Ozen et al. (2007), Roybon et al. (2009), 

and Arai et al. (2017)

ASCL1 Activation of quiescent NSCs, drives 

differentiation of NSPCs to neurogenic fate

Imayoshi et al. (2013), Andersen et al. 

(2014), Urbán et al. (2016), Pilz et al. 

(2018), and Harris et al. (2021)

Defines SGZ and SVZ cells with long-term 

neurogenic potential

Kim et al. (2011)

Homeodomain PAX6 Generation of neuronal progenitors and their 

specification into dopaminergic periglomerular 

phenotype

Hack et al. (2005), Kohwi et al. (2005), 

and Brill et al. (2008)

SOX2 NSC maintenance Ferri et al. (2004) and Favaro et al. (2009)

Zinc finger + leucine zipper + forkhead 

domain

FOXG1 Proliferation of neuronal progenitors in 

neurogenic niches

Shen et al. (2006), Tian et al. (2012), and 

Wang et al. (2022)

FOXJ1 Maintains progenitor proliferation in SVZ 

through cell autonomous and non-autonomous 

mechanisms

Jacquet et al. (2009) and Jacquet et al. 

(2011)

FOXO 1/3/4 Maintains the population of quiescent NSCs Renault et al. (2009), Webb et al. (2013), 

Li et al. (2017), and Schäffner et al. (2018)

Zinc finger homeodomain ZEB1 Self-renewal of active radial glia-like cells to favor 

an astroglial fate, shift in cell division polarity

Gupta et al. (2021)
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box, in addition to the homeodomain (Dahl et al., 1997). PAX6 is one 
of the main regulators of cortical neurogenesis, controlling cell cycle 
length and exit in a dose and context dependent manner [reviewed in 
Manuel et al. (2015)]. As such, loss of Pax6 leads to shorter cell cycle 
length and a premature switch from proliferative to neurogenic 
divisions during early neurogenesis, with more pronounced effects in 
areas of higher Pax6 expression (Estivill-Torrus et al., 2002; Mi et al., 
2013). However, at later stages, Pax6 loss leads to a longer cell cycle 
(Estivill-Torrus et  al., 2002) and its overexpression decreases the 
number of proliferating progenitors in rostral and medial areas at 
E15.5 (Manuel et  al., 2006). These results highlight the context 
dependent actions of this TF, which is needed both for progenitor 
proliferation and for neurogenesis. Interestingly, the effects of PAX6 
during corticogenesis, except for its patterning role, are mediated by 
the paired-box, and not by the homeodomain (Haubst et al., 2004). 
PAX6 regulates progenitor cell proliferation in part by controlling 
expression of several genes involved in the G1/S transition, including 
cyclins and Cdks (Sansom et al., 2009; Mi et al., 2013). PAX6 has been 
shown to directly inhibit Cdk6 expression, thereby reducing Rb 
phosphorylation and slowing down G1 progression (Mi et al., 2013). 
Regarding neurogenesis, PAX6 directly induces expression of Tbr2, 
which confers intermediate progenitor identity (Quinn et al., 2007; 
Sansom et al., 2009). In addition, PAX6 also stimulates expression of 
Neurog2, and participates in a transcriptional network with 
NEUROG2, ASCL1 and HES1 to control the outcome of neural 
progenitor cell division (Sansom et al., 2009).

During adult neurogenesis, PAX6 seems to play a similar role 
controlling proliferation and neuronal differentiation of aNSCs (Hack 
et al., 2005; Maekawa et al., 2005). In the SGZ, PAX6 induces expression 
of Neurog2 and NeuroD1 (Xu et  al., 2021), which are needed to 
maintain NSC progenitors and induce neuronal fate, respectively 
(Roybon et al., 2009). It also acts through FABP7 to maintain NSC and 
progenitor cell proliferation and prevent exhaustion of the stem cell 
pool (Osumi et al., 2008). In the SVZ and the rostral migratory stream 
(RMS), PAX6 is needed to regulate neuronal precursor proliferation 
and for periglomerular neuron fate (Hack et al., 2005).

SOX2 (SRY-box binding transcription factor 2) is a member of the 
Sox family of transcription factors, which consists of 9 subfamilies 
(SoxA, SoxB1, SoxB2, SoxC, SoxD, SoxE, SoxF, SoxG, SoxH). Sox2 is 
part of the SoxB1 subgroup (together with Sox1 and Sox3; Wegner, 
2010) and is a master regulator of stemness in development and adult 
tissues (Sarkar and Hochedlinger, 2013). It is a pioneer factor that can 
initiate transcription in epigenetically silenced chromatin regions 
(Dodonova et al., 2020). SOX transcription factors bind the consensus 
sequence TTGT through their high-mobility-group (HMG) box 
(Wegner, 2010), with specificity of individual SOX factors conveyed 
by DNA regions flanking the consensus motif (Sarkar and 
Hochedlinger, 2013). SOX2 is expressed throughout embryonic and 
adult neurogenesis, as well as in pluripotent embryonic stem cells and 
Sox2 knockout (KO) is lethal during early embryogenesis (Avilion 
et  al., 2003). In the developing brain SOX2 promotes progenitor 
proliferation and prevents cell differentiation, functions that overlap 
with SOX1 and SOX3 (Wegner and Stolt, 2005; Miyagi et al., 2008). 
Interestingly, Sox2 hypomorphism also affects differentiation into 
GABAergic interneurons in the cortex and olfactory bulb at E17.5 
(Cavallaro et al., 2008).

In the adult CNS, SOX2 is expressed in all neurogenic niches, and 
conditional deletion of Sox2 results in impaired NSC proliferation, 

increased apoptosis, and reduced neurogenesis in the SVZ and SGZ 
(Ferri et al., 2004; Favaro et al., 2009). The wide-ranging functions of 
SOX2 in the brain are reviewed in more detail in Pevny and Nicolis 
(2010) and Mercurio et al. (2019).

Forkhead transcription factors in 
neurogenesis

Forkhead transcription factors are characterized by the presence 
of the so-called forkhead domain, which mediates their interaction 
with DNA. This domain consists of three α-helices and three β-sheets 
surrounded by two loops that form the “winged” region (Hannenhalli 
and Kaestner, 2009). Forkhead family members are classified into 19 
subfamilies from FoxA to FoxS (Jackson et al., 2010). Members of the 
FoxG, FoxJ, FoxM, FoxO, and FoxP subfamilies have been implicated 
in embryonic and/or adult neurogenesis and play sometimes opposing 
roles in the regulation of neural stem cell behavior.

Foxg1 KO animals die at birth with severe brain hypoplasia 
(Xuan et  al., 1995; Dou et  al., 1999) and heterozygous animals 
display decreased cortical, hippocampal and striatal size, along with 
reduced numbers of TBR2+ intermediate progenitors (Shen et al., 
2006; Eagleson et al., 2007; Siegenthaler et al., 2008). Those changes 
reflect the role of FOXG1  in maintaining the correct balance 
between proliferation and differentiation in neural progenitors, 
with lack of Foxg1 leading to lengthening of the cell cycle and 
premature cell cycle exit (Xuan et al., 1995; Hanashima et al., 2002). 
At the molecular level, FOXG1 antagonizes TGF-B signaling by 
repressing the expression of TGF-B family members BMP2, 4, 6, 
and 7, which are all ectopically upregulated in Foxg1 KOs. This 
repression requires the DNA binding domain of FOXG1 (Dou et al., 
1999; Hanashima et  al., 2002). FOXG1 also interferes with the 
ability of the TGF-B signaling effectors SMADs to promote 
expression of CDK inhibitors. The SMAD partner FAST-2 is needed 
for the transcriptional activation of Cdkn2b, but binding of FOXG1 
to FAST-2 interferes with TGF-B signaling and antagonizes its 
growth inhibition effects (Dou et al., 2000). To activate Cdkn1a 
expression, SMAD proteins need to form a complex with members 
of the FOXO subfamily (Seoane et al., 2004). FOXG1 can reduce 
Cdkn1a expression levels by repressing expression of Foxo1 (Vezzali 
et  al., 2016). Furthermore, FOXG1 interacts with FOXO at the 
protein level, forming a ternary complex with SMADs that can no 
longer activate Cdkn1a expression (Seoane et al., 2004). In addition, 
FOXG1 inhibition of Cdkn1a expression can also be mediated by its 
interaction with the polycomb protein BMI-1 (Fasano et al., 2009). 
FOXG1 could also potentially interfere with the expression of 
Cdkn1b, as its expression is stimulated by BMP treatment 
(Nakamura et al., 2003; Sharov et al., 2006) and by expression of 
Foxo1, 3 and 4 (Medema et al., 2000).

FOXG1 has also been indirectly linked to Notch signaling, as it 
interacts with TLE1, which enhances the repressive ability of FOXG1 
(Yao et al., 2001). This interaction has been shown in vitro and in the 
E15.5 developing telencephalon. Moreover, TLE1 enables the 
interaction between FOXG1 and HES1, which increases HES1-
mediated transcriptional repression (Yao et al., 2001), suggesting that 
FOXG1 might act to amplify the effect of Notch signaling in early 
neural progenitors, as all three proteins are expressed in cultures 
derived from E12.5 telencephalic progenitors.
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Other forkhead family members are also involved in neurogenesis. 
FOXM1 stimulates expression of genes needed for G1/S transition and 
DNA replication, while simultaneously diminishing protein stability 
of CDK inhibitors (Kalin et al., 2011). These roles could explain why 
cortical progenitors derived from E14 ERT2Cre FoxM1fl/fl animals 
display a reduction in the number of neurospheres formed after 
tamoxifen addition (Wang et  al., 2011). FOXM1 also regulates 
expression of Sox2 and Bmi1, which are necessary for neural 
progenitor self-renewal (Wang et  al., 2011). However, conditional 
deletion of Foxm1 does not lead to major abnormalities in the brain 
(Schüller et  al., 2007), suggesting the presence of compensatory 
mechanisms. From the FOXP family members, FOXP1 works to 
maintain the progenitor pool by promoting progenitor self-renewal, 
at least in part through the induction of vertical division angles and 
symmetric divisions (Pearson et al., 2020). However, FOXP1 has also 
been shown to inhibit Notch signaling in the developing cortex, 
thereby promoting progenitor differentiation (Braccioli et al., 2017). 
FOXP2 might regulate the generation of TBR2+ intermediate 
progenitors (Tsui et  al., 2013) and FOXP4 promotes neuronal 
differentiation of neural progenitors by repressing N-Cadherin 
expression, therefore favoring detachment from the ventricular zone 
(Rousso et al., 2012; Li et al., 2023).

FOXG1 is strongly expressed in the SGZ of the dentate gyrus and 
the lateral ventricle SVZ (Shen et al., 2006; Schäffner et al., 2023). In 
aNSCs of the DG, FOXG1 plays a similar role of balancing 
proliferation and differentiation as it does in embryonic progenitors 
(Wang et al., 2022), with partial or total loss leading to defects in size 
and morphology of this anatomical structure. Progressive loss of 
progenitors, altered neuronal differentiation and reduced neuronal 
survival have been described in these mutant animals, as well as a 
failure to form the secondary radial glia scaffold (Shen et al., 2006; 
Tian et al., 2012). Remarkably, generation of olfactory interneurons in 
the SVZ does not seem to be affected by heterozygous lack of Foxg1 
(Shen et al., 2006), suggesting a region-specific function of FOXG1 in 
adult neurogenesis.

FOXO1 and FOXO3 are also expressed in aNSCs of the SVZ 
and the SGZ (Paik et al., 2009; Renault et al., 2009). In a Foxo1/3/4 
triple mutant, aNSCs get depleted over time due to decreased self-
renewal and increased activation of progenitors early on (Paik 
et  al., 2009; Schäffner et  al., 2018). These effects are due to 
increased expression of cyclins and CDKs and decreased 
expression of CDK inhibitors, as well as derepression of the 
centrosomal gene Aspm, a known regulator of NSCs divisions 
(Paik et al., 2009). Very similar results are obtained in Foxo3 single 
KO animals (Renault et al., 2009). Transcriptional analysis has 
revealed that FOXO3 targets are enriched in cell quiescence-
related genes, oxidative stress response and cell metabolism, 
further supporting the notion that FOXO proteins are necessary 
to maintain the population of quiescent NSCs over the lifespan of 
the animals by preventing excessive cell cycle reentry (Renault 
et  al., 2009; Ro et  al., 2013). This transcriptional control is 
mediated in part by the interaction of FOXO3 with the 
methylcytosine dioxygenase TET2 (Li et  al., 2017). Moreover, 
FOX3 restricts the neurogenic effects of ASCL1 in adult NPCs by 
preventing ASCL1-dependent transcription (Webb et al., 2013) 
Additionally, lack of Foxo3 also impacts the outcome of aNSC 
progeny, with a bias toward astrocytes and reduced production of 
neurons and oligodendrocytes (Renault et al., 2009).

Finally, FOXJ1 has also been linked to adult neurogenesis in the 
SVZ of the lateral ventricle. This TF is required for ependymal cell 
specification during the transition to postnatal stages (Jacquet et al., 
2009), but it also defines a subpopulation of progenitors that rely on 
FOXJ1 expression for its proliferative ability (Jacquet et al., 2011). 
FOXJ1 deficient progenitors produce fewer neurospheres and are 
biased toward a glial fate, with defective neurogenic potential. 
Interestingly, beyond the cell autonomous effect of FOXJ1  in the 
FOXJ1+ lineage, an additional non-autonomous effect on the 
remaining aNSCs in the SEZ has been described (Jacquet et al., 2011).

ZEB1 in neurogenesis

The transcription factor ZEB1 (zinc finger E-box binding 
homeobox 1) is emerging as a new regulator of self-renewal and fate 
choice in the CNS. The ZEB family of TFs consists of two members, 
Zeb1 and Zeb2, which are both core regulators of epithelial-
mesenchymal transition (Vandewalle et  al., 2009). Epithelial-
mesenchymal transition is developmental program that has more 
recently garnered attention for its role in stemness and lineage 
regulation (Goossens et al., 2017). Zeb1-mutant mice show aberrant 
T cell development, underlining its involvement in lineage regulation 
(Higashi et  al., 1997). Structurally, ZEB proteins comprise of two 
C2H2-type zinc finger domains that flank a central homeodomain. The 
zinc finger domains are necessary for DNA binding, with each zinc 
finger independently binding to separate E-box motifs in gene 
promoters with the consensus sequence 5′-CACCT(G)-3; Sekido 
et al., 1996, 1997; Remacle et al., 1999). The homeodomain mediates 
interaction with other proteins (e.g., CTBP, YAP) that are necessary 
for transcriptional regulation (Furusawa et al., 1999; Feldker et al., 
2020). Depending on their interaction partners, ZEB TFs can activate 
or repress transcription, with E-cadherin repression and Vimentin 
activation being the best-known examples (Vandewalle et al., 2009). 
Phosphorylation of Thr-867 is necessary for nuclear import of ZEB1 
(Llorens et al., 2016), otherwise the effects of post-transcriptional 
ZEB1 modifications are poorly understood.

In embryonal neurogenesis, ZEB1 is expressed in the 
subventricular zone and overlaps with proliferating progenitor cells 
between E14 and E18 (Yen et al., 2001). Constitutive deletion of Zeb1 
causes defects in proliferation of embryonic neural progenitors in the 
ventricular zone of the lateral ventricles and the hypothalamus at 
E15.5 (Liu et al., 2008). ZEB1 blocks neuronal lineage progression as 
well as migration of cortical neuroblasts (Wang et  al., 2019). 
Conditional loss of Zeb1 at E14.5 does not affect cell proliferation or 
radial glia cell maintenance but causes premature neuronal 
differentiation (Wang et  al., 2019). Zeb1 overexpression at E14.5 
results in reduced neurogenesis, migration defects and subcortical 
band heterotopia (Wang et al., 2019).

In the adult brain, ZEB1 is important for the self-renewal of adult 
hippocampal radial glia-like (RGL) cells. Zeb1 loss in RGL cells results 
in their precocious differentiation into the neuronal lineage (Gupta 
et al., 2021). This is accompanied by reduced differentiation into the 
astroglial lineage, but it remains to be resolved whether this is due to 
an as-yet unspecified role of ZEB1 in glial fate determination or a 
natural consequence of the increased neurogenesis. Hence, ZEB1 
blocks neuronal lineage progression during embryonal and adult 
neurogenesis. In adult neural stem/progenitor cells, ZEB1 is associated 
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with activation and proliferation, and loss of Zeb1 results in depletion 
of the stem cell pool. Contrastingly, ZEB1 functions in neural 
progenitors during embryonic neurogenesis appear to be separated in 
time, with Zeb1 loss affecting proliferation of progenitors in a 
constitutive knockout model, but not of later radial glia cells when 
deleted at E14.5 (Liu et al., 2008; Wang et al., 2019). In both adult and 
embryonic neurogenesis, Zeb1 loss is associated with a change in cell 
division type (symmetric vs. asymmetric) which promotes 
differentiation of the stem/progenitor cell pool. Interestingly, Zeb1 loss 
during embryogenesis promoted asymmetric divisions that prevented 
expansion of neural progenitors (and therefore caused premature 
differentiation), whereas in the adult hippocampus Zeb1 KO causes 
increased symmetric divisions of neural stem/progenitor cells which 
are necessary for self-renewal, thus promoting their differentiation 
(Liu et al., 2019; Gupta et al., 2021).

Conclusion

Although neurogenic transcription factors are expressed during 
embryonic and adult neurogenesis their functions often show differences 
during both processes. These differences include increased spatial 
confinement and spatial heterogeneity in adult neurogenic niches, 
different activities in neural progenitor cells at various developmental 
stages, and/or different effects on downstream progenitor cells. It is 
important to consider epigenetic modifications, post-translational 
modifications, and differential expression of interacting partners at 
different developmental stages to unravel the functions of each 
neurogenic transcription factor at specific points in time and space. For 
example, changes in ASCL1 post-translational degradation result in 
different behavior of adult neural stem cells in juvenile and adult 
hippocampal neurogenesis (Harris et al., 2021). Integrated analysis of 
neurogenic transcription factors across development and aging is 
needed to reveal the specific co-factors contributing to the differential 
functions in embryonic and adult neurogenesis.
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