
Frontiers in Agronomy

OPEN ACCESS

EDITED BY

Benjamin Richard,
Institut Supérieur d’Agriculture Rhône-
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Modeling the early phases of
epidemics by Phakospora
pachyrhizi in Brazilian soybean

Belay T. Kassie1, David W. Onstad1, Lucimara Koga2, Tim Hart1,
Randy Clark1 and Gerie van der Heijden1*

1Research and Development, Corteva Agriscience, Johnston, IA, United States, 2Research and
Development, Corteva Agriscience, Mogi-Mirim, SP, Brazil
Asian soybean rust, caused by the biotrophic basidiomycete Phakospora

pachyrhizi, is a foliar disease that often causes considerable damage to

soybean crops. The purpose of our work was to create a mechanistic model

that can reliably represent epidemics of ASR in commercial soybean fields in

Brazil. The most important inputs for the model are weather data (observations

and forecast) and the initial observation of disease (or uredospore arrival). Our

focus is on the first two or three cycles of infection after immigration into a

soybean field. The model includes state variables for latent, infectious and

senesced lesions, disease severity, uredospores, and soybean leaf area.

Processes modeled include maturation through the latent and infectious

periods, germination, sporulation, and processes affecting uredospores in the

canopy. The model results were tested against field observations from trials at

four locations in Brazil for the 2019/2020 growing season. The predictions

generally matched the daily dynamics of disease progress in the field trials. The

predictions reproduced the observed severity well with R2 value of 0.84. This

high correlation indicates that our model is accurate enough to be used as a tool

to predict the dynamics of ASR epidemics during the first few cycles after

uredospore invasion into a soybean field. A sensitivity analysis was performed

that showed that the model is sensitive to time and duration of the initial spore

arrival. This indicates that spore traps or other observations should measure not

only the first day of arrival but also subsequent days.
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1 Introduction

Asian Soybean Rust (ASR), caused by the biotrophic basidiomycete Phakospora

pachyrhizi, is a foliar disease that often causes considerable damage to soybean crops

(Glycine max). When environmental conditions are optimal for rust development, ASR

causes 70 to 100% yield losses (EMBRAPA, 2004). Since the first outbreak in 2001 in Brazil,
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ASR has caused more than US$10 billion in crop losses (Yorinori

et al., 2005; Langenbach et al., 2016). Farmers attempt to manage

the pathogen with fallow period, early planting, early maturing

varieties, fungicides and host-plant resistance (Koga et al., 2008;

Koga et al., 2011).

Application of fungicides during soybean growing season is the

most widely used strategy to control ASR. Scherm et al. (2009)

presented a meta-analysis of the results of fungicide trials conducted

in Brazil from 2003/2004 to 2006/2007. Timing is done mostly by

phenological stage of the crop, with Vx representing vegetative

growth stages and R1 (beginning of flowering) till R8 (full

maturity) the reproductive growth stages (see for example https://

crops.extension.iastate.edu/soybean/production_growthstages.html).

Single applications most often occurred in soybean reproductive

growth stages R2/R3 with a smaller proportion at R5. When

multiple applications were used, they occurred at R1-R2 plus R5.

Depending on the regional climate, the current practice for farmers is

to use 3-5 fungicide applications during the growing season to control

ASR and other soybean diseases. Scherm et al. (2009) determined that

response ratios were dependent on ASR disease pressure (expressed

as disease severity of the untreated check), with fungicide treatments

showing the best reduction in rust severity when ASR pressure was

low and the best yield response to fungicide treatments occurring

with high disease pressure. In 65% of entries across all trials, disease

was present at the time of the first application withmedian value circa

0.20% severity.

Mathematical models of specific plant diseases can be used to

explain the past, predict the future, improve tactical (weekly,

monthly) decision making, and develop strategies for long-term

management (Zadoks and Schein, 1979; Onstad and Rabbinge,

1985; Del Ponte et al., 2006a). Del Ponte et al. (2006b) used a

statistical (linear regression) model to predict final disease severity

in soybean crops in Brazil. They found that the cumulative rainfall

for the one month following disease detection (R1-R5, early January

to early April) was highly correlated with final severity (r=0.95) and

had high predictive value, and that (max/min) temperature was less

correlated (r=0.43-0.47) and had minimal predictive value for the

final disease severity (Del Ponte et al., 2006b). Kim et al. (2005) and

Dias et al. (2014) used a simple logistic model with a time step of

one day to simulate disease progress. Kim et al. (2005) started their

simulations 14 days after planting and assigned a consistent initial

severity for all simulations, depending on varietal differences in

susceptibility. This value was later heuristically adjusted to

minimize error in predicting disease severity. Dias et al. (2014)

simulated from first detection of the disease, which was difficult to

determine in some cases. The only parameter in these two models

was the apparent infection rate, which was a function of fuzzy logic

rules applied to climate variables (Kim et al., 2005) or a function of

cloudiness on a given day (Dias et al., 2014). After fitting their

model to data collected in one season, Kim et al. (2005) tested their

results against observations of ASR epidemics made in the next

year. Dias et al. (2014) tested their model results against qualitative

levels of final disease severity and quantitative observations over 5-9

weeks at four sites in Brazil. The model performed well against the
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observations of disease progress in Brazil (Dias et al., 2014). The

major limitation of statistical models is that, once they are fit to past

situations in trials carried out without fungicides applications, the

models cannot subsequently account for effects of fungicide

treatments on disease dynamics.

Several authors have focused on models that help make decisions

about the timing of fungicides against ASR. Kelly et al. (2015)

developed simple, fungicide-decision models based on first

detection of ASR in either soybean or Pueraria montana and leaf

wetness duration or rain events. They initialized their models at R1

and stopped calculating them at R6 when the final treatment

normally occurs. The most widely adopted interval between

applications for ASR control is 14 days. Kelly et al. (2015)

compared different spray treatments and an untreated control over

three years in southeastern USA. The treatments were based on crop

stage or driven by different models. Their results indicate two

fungicide applications during early reproductive stage can reduce

yield loss due to ASR, but subsequent applications need to be

determined based on disease pressure, weather conditions, and

crop growth stage. In Brazil, Igarashi et al. (2016) used the rainfall

model of Del Ponte et al. (2006b) and the model of Reis et al. (2004)

that combined leaf wetness duration and air temperature during this

period to determine when to apply fungicides. Igarashi et al. (2016)

also used spore traps to observe uredospore immigration to initiate

the models. The models were tested against data from two years in

Brazil. Igarashi et al. (2016) concluded that the rainfall model of Del

Ponte et al. (2006a) overestimated the final disease severity. Beruski

(2018) developed similar models for Brazil but did not include a first

detection criterion. Beruski (2018) compared a regime of applications

every 14-days after R1 to the model-based treatments over multiple

locations in Brazil over two years. Both the Kelly et al. (2015) and

Beruski (2018) leaf-wetness models over-estimated disease and

recommended more fungicide treatments than necessary.

Statistical models are only valid for the domain on which they

are trained with data. Mechanistic models use mathematical

expressions that describe the most relevant physical or biological

processes. The purpose of our work was to create a mechanistic

model that can reliably represent ASR epidemics in commercial

soybean fields when the weather and initial observation of disease

(or uredospore arrival) are known. Del Ponte and Esker (2008)

provided a nice framework that can be used to identify the most

important meteorological related factors for epidemic

characteristics such as spore release, spore dispersal, spore

deposition, infection efficiency, latent period, and spore

production of ASR. We chose to create a mechanistic model since

they offer the ability to be extended with additional processes. More

specifically, we would like to extend the model later to incorporate

effects of specific fungicides on spore germination, latent period,

and sporulation, as well as their loss of efficacy over time, driven by

environmental factors such as temperature, humidity, precipitation,

and light intensity. Our focus is on the first two or three cycles of P.

packyrhizi infection after its uredospores invade a soybean field.

During these periods, the seasonal effectiveness of management

tactics will be determined (Scherm et al., 2009).
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2 Materials and methods

The following sections describe the mathematical model, the

approach to its analysis, and the field trials used to test the model

results. The first part includes a literature search to find empirical

values for the quantitative processes (functions and parameters)

that we used to parametrize the model. This is a model of the

temporal dynamics of a disease within a soybean field. Because we

do account for uredospores leaving the field and others remaining

in the field to land on multiple plants, the size cannot be infinitely

large nor extremely small. Therefore, our model is intended for

simulating ASR progression in a typical soybean field.
2.1 Time step for calculations and annual
period for simulations

The time step for calculating disease progress is one day. Thus, a

pathogen cohort is defined as the number germinating each day and

subsequently maturing together. However, weather variables are

considered on hourly and daily bases. Dew period will be

determined on an hourly basis. We calculate hours of dew (HD)

and mean temperature (THD) for those hours only, every 24 hours.

In other words, first we find which hours have dew or leaf wetness,

then we also find mean temperature for those hours. This is used for

germination each day. For calculation of degree days for maturation

during latent period and daily sporulation, we will just use mean

temperature (T) for all 24 hours. Small t is the index for day

of simulation.

The purpose of the model is to simulate disease dynamics

during early reproductive growth stages of soybean. Depending

on when and where the crop is planted in Brazil, this period likely

occurs during November through March. Table 1 shows the

monthly mean temperatures for these months in Brazil. All

means are in the range 21.3-28.3°C. Except for Rio Grande do Sul

in southern Brazil, where the mean varied by 3°C over the five

months, the mean temperatures at each location varied by<1.5° C
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demonstrating relatively constant temperatures. Daily fluctuating

temperatures will certainly exceed the range 21-28° C, but the

model must perform well over this range.
2.2 Soybean leaf area development

Leaf area development is a function of soybean physiological

days, pd, which is linearly related to temperature on a daily basis

(Wilkerson et al., 1985).

pd =

0,           for Tav < Tmin or Tav > Tmax

Tav − Tmin,      for Tmin≤Tav ≤Topt

Topt − Tminð Þ � Tmax−Tav
Tmax−Topt ,      for Topt < Tav ≤Tmax

8>><
>>: (1)

where Tav is the average daily temperature, and Tmin, Tmax

and Topt are the minimum, maximum and optimum temperatures

for growth of soybean. The values of Tmin, Topt and Tmax were

obtained from Yang et al. (1991) as Tmin = 7° C, Tmax = 45° C and

Topt = 30° C.

Cumulative physiological days, Cpd, equals the sum of pd over

all days after germination of soybean. Leaf area per plant is

calculated from Cpd using one of the following two equations

(Yang et al., 1991).

LA = 332:68 + (20:1� Cpd) + (0:71� Cpd2) − (0:0052� Cpd3) (2a)

LA =   − 353:6 + 34:01� Cpd (2b)

Equation 2a is for medium and long maturing cultivars and

equation 2b is for short maturity cultivars. The leaf area index per

m2 (LAI) is calculated after multiplying the leaf area per plant by the

number of plants in a m2. We used 30 plants per m2, a typical value

for Brazil.

In our model, we assume that the disease does not limit

development of leaf area. This simplification is reasonable for low

levels of disease severity during the early phases of an epidemic

when the management of the disease is either successful or not

(1)

(2a)

(2b)
TABLE 1 Monthly mean temperatures in Brazil from 1982-2012.

State Region City November December January February March

Rio Grande do Sul South Porto Alegre 22.7 21.6 24.8 24 21.8

Paraná South Toledo 21.3 22.5 23.3 23.2 21.9

Mato Grosso do sul Central-West Campo Grande 25.1 24.6 24.8 24.9 24.2

São Paulo Southeast Piracicaba 22.3 23.2 23.6 23.4 23.2

Minas Gerais Southeast Uberlândia 22.8 22.6 23.1 23.1 22.5

Mato Grosso Central-West Cuiabá 26.9 27.1 27.2 27.1 26.6

Goiás Central-West Rio Verde 23.9 23.4 24.3 24.5 23.4

Bahia Northeast Feira de Santana 23.9 24.4 24.9 24.8 24.5

Pará North Paragominas 27.2 26.9 26.3 26.3 26.3

Tocantins North Palmas 26.6 26.5 26.4 27 26.9

Piauı ́ Northeast Luis Correia 28.3 27.9 27.4 27.1 26.9
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(Scherm et al., 2009). This soybean development function along

with the entire model is inadequate for describing epidemics that

overwhelm a soybean crop. If the pathogen invades the crop after all

leaves have formed in determinate growth soybeans, then the

reduction in leaf growth may be less of a concern.
2.3 Calculation of dew period and
associated temperature

Dew period (HD) was calculated using classification and

regression tree well known as CART model (Gleason et al., 1994).

The CART model utilizes dew point depression (DPD), hourly air

temperature, dew point temperature, wind speed (m/s), and relative

humidity (RH) data. The mean temperature during the hours of

dew each 24-hour period, THD, was calculated as expected by

averaging the 24 or fewer hourly temperatures.
2.4 Spore germination

All of the following studies were performed in labs or

greenhouses. In Brazil, Alves et al. (2006) found that uredospores

germinated at all temperatures ranging from 8 to 30°C and that the

optimum temperatures for germination varied from 15 to 25°C.

These results agreed with Tan et al. (1996), who showed that the

optimum temperature range for uredospore germination in China

was 15 to 26°C. Kochman (1979) in Australia found that

germination dropped by half between 24.5 and 28.5°C with a

maximum proportion of 0.54. According to Singh and Thapliyal

(1977) in India, no uredospores germinated at 10 and 35°C. The

maximum proportion was 0.33 at 25°C after 24 hours. In a different

experiment, they found that proportional germination ranged from

0.05 to 0.18 at constant 30°C to 0.30 when temperatures varied from

20-30°C. As long as temperatures were 20-25°C, germination

ranged from 0.45 to 0.61, with germination at higher end as

temperature increased. Marchetti et al. (1976) observed a

maximum 0.40 proportional germination in darkness for a

Taiwanese isolate with the optimal temperatures 20-25°C. They

stated that germination declined rapidly between 25 and 28.5°C and

ceased between 28.5 and 31°C. In a different experiment with

isolates from four countries (not Brazil), Marchetti et al. (1976)

observed much higher proportional germination in darkness (0.60-

0.80) and a lower range of optimal temperatures. Melching and

Bromfield (1975) and Melching et al. (1989) found that

temperatures below 9°C or above 28°C did not favor germination

of uredospores. Melching and Bromfield also determined that the

optimum temperature for germination was from 12 to 21°C, while

Melching et al. (1989) found 18-26.5°C optimal. Melching et al.

(1988) observed a germination range of 0.41-0.64 at 21°C and

discovered that germination rates on agar are much higher than

those on leaves after the same period of incubation. Thus, many of

the results described above are overestimates. However, after 6

hours, the rates on the two substrates tended to converge to 0.55

proportional germination.
Frontiers in Agronomy 04
We derived our function for calculating proportional

germination from two functions of temperature developed by

Bonde et al. (2007) based on observations of a Brazilian isolate.

(They did not observe significant differences across the three

isolates). They observed an optimum temperature of 22-23°C and

their functions have optima at 23-24°C. We simply took the average

of the five parameters from their two functions with the same

structure and created

Y =
4:77� (THD−9:57)0:65�(29:54−THD)0:37

100 , for Tmin < THD < Tmax

0, for all other THD

(
(3)

where Y is proportion of spore germination as a function of

temperature, THD is the mean temperature during the period of

germination each day. Bonde et al. (2007) defined Tmin as 9.57 and

Tmax as 29.54. The maximum proportion calculated with our

version is 0.54.

We considered successful germination would always lead to

infection on leaves of susceptible soybean plants. Bonde et al. (2007)

also measured infection and determined the minimum and

maximum temperatures for infection to be on the average 10.2°C

and 29.8°C, which are essentially the same as those for germination.

For temperatures 20-24°C, rust lesions only develop after a

minimum 6-hour dew period on leaves (Kitani, 1960; Melching

et al., 1989). Marchetti et al. (1976) found the same threshold at

temperatures 15-25°C and much more germination after 10 hours

of dew. Therefore, germination was estimated as a function of both

temperature and dew hours with

G =

0, for HD ≤ 6

Y� (1 − 10−HD
4 ), for 6  <  HD < 10

Y, for HD ≥ 10

8>><
>>: (4)

where G is the proportion of uredospores on leaves that

germinate, and HD is the hours of dew or leaf wetness duration

on soybean leaves each day. This function permits higher

germination rates for temperatures below 20 °C than those

observed by Marchetti et al. (1976) (Figure 1) because of dew

period/temperature interactions. Parameter G is multiplied by the

number of uredospores in the field about to germinate. If

uredospores do not germinate within 24 hours in the model, they

are no longer viable.

(3)

(4)
2.5 Latent period

We define latent period (LP) as the time between host infection

and onset of pathogen sporulation. The latent period determines the

maturation of latent lesions and the interval between successive

generations of pathogens. For our model, we used a temperature-

based function to estimate the latent period. Table 2 shows the

latent period in days observed in a variety of studies. Melching et al.

(1979) studied isolates from around the world. We display the

observations for older plants (37-42-days-old soybean) made by

Melching et al. (1989).
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A temperature of 6°C has been used as a base for calculating

degree days (Danelli and Reis, 2016). We therefore calculated

degree days (DD) by subtracting 6°C from the mean daily

temperature in each study (Table 2). The Danelli and Reis (2016);

Marchetti et al. (1975); Melching et al. (1979) and Melching et al.

(1988) results are in the range 150-185 DD for LP but this may only

be valid for mean daily temperatures of 15-30°C (or shorter range).

The warmest temperatures used in a study (Table 2) were the

22-32°C range of Kochman (1979). The extremely high calculated

DD of 231 suggests that maturation slows above 27-30°C;

subtracting 5°C per day (32-27) gives 176 DD. There is significant

variability no matter how LP is evaluated. Therefore, we chose to

use the most recent and most relevant results (Danelli and Reis,

2016) for Brazil. The calculated mean of the five values is 156.8 DD,

but we simplified this to 155 DD for the model. Once the

cumulative DD exceeds 155 for each daily cohort of pathogen, the

cohort will mature into the infectious period and start sporulating.

2.6 Infectious period

The infectious period (IP) is defined as the period during which

cohorts of lesions produce uredospores under favorable

environmental conditions. Marchetti et al. (1975) observed a 3-

week infectious period. The observations of Melching et al. (1979)

and Yeh et al. (1982) support an average IP of 5 weeks. For our

model, we used a 35-day IP from first sporulation to end of

sporulation. Each day, a cohort of lesions will shift into the next

of 35 age classes during the IP. Maturation is calculated first for

oldest cohort then proceeds in declining order to youngest cohort.

After day 35, the cohort will become senescent (dead).

2.7 Lesion size

Lesion size and number determine the level of disease severity.

Melching et al. (1979) studied four Asian and Australian isolates.
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They inoculated susceptible soybean plants when the fourth

trifoliate was fully expanded. Two weeks after inoculation, the

mean lesion areas were 0.61-0.77 mm2 for three isolates and 0.3-

0.43 mm2 for the Australian isolate. Seven weeks after inoculation,

the mean lesion areas for the four isolates were 1.76-1.81, 1.70-1.89,

1.75-2.01, and 1.43-1.45 mm2. Hernández (2004) described lesions

as 1-2 mm in diameter, which suggests that circular lesions range in

size from 0.79 mm2 to 3.14 mm2. Alves et al. (2006) observed

similar lesion sizes at different combinations of leaf wetness

duration and temperature. We used a lesion size of 2 mm2 in the

model, which is the size also chosen by (Yang et al., 1991).
2.8 Sporulation

Sporulation is mainly determined by air temperature. Bonde

et al. (2012) discovered that after germination, relative humidity

had no effect on number of lesions or uredospores. Under a

greenhouse temperature regime of 20-29°C, Melching et al.

(1979) calculated 2,028, 3,768, 6,600, and 6,268 uredospores per

lesion for isolates from four different countries. Thus, the mean

uredospore production during the lifespan of an infectious lesion on

a soybean leaf was 4,666 uredospores per lesion. Production peaked

about 10 days into infectious period and declined afterwards.

Bonde et al. (2012) made observations over the first 3 weeks of

the IP to determine the number of uredospores produced per lesion

as a function of constant temperature. The following pairs of

temperature and uredospores per lesion represent their data:

(17 °C, 750), (21 °C, 4,050), (25 °C, 5,500), (29 °C, 3,300), and

(33 °C, 1,400). No uredospores were produced at 37°C. The mean

number of uredospores at the middle three temperatures is 4,283,

which is very close to the mean from the Melching et al. (1979)

study. We fit a function to the data of Bonde et al. (2012) with zero

at 37°C (Figure 1). In the model, the total number of uredospores

potentially produced by infectious lesions is calculated as
FIGURE 1

Asian soybean rust sporulation based on temperature (data from Bonde et al., 2012).
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Z = −34542 + 3150:2T − 62:728T2 (5)

where T is mean daily temperature. The R2 = 0.97. The value of

Z is circa 0 at temperatures 16 and 34°C. No sporulation occurs

beyond those limits.

Based on the triangular shape of production over the infectious

age classes seen in figures of Yeh et al. (1982) and Melching et al.

(1979), the proportion of uredospores produced in age class j of the

IP (with peak at age 10 days) is

K(j) =
j� 0:005� 1:15455, for age classes 1 − 10

(36 − j)� 0:0021, for age classes 11 − 35

(
(6)

Essentially, K distributes the total in Z over the entire IP. Then

the number of uredospores produced by each cohort per 24-hour

period per unit ground area, Pt is

Pt =oIP
j=1Ij,t−1� Kj � Z (7)

where j is age class in IP and I is the number of lesions in a

cohort. Pt is calculated before maturing cohorts to next age class.

(6)

(5)

(7)
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2.9 Number of uredospores adhering to
soybean leaves before germination

Uredospores cannot adhere to leaves during the first 30 minutes

after landing on the surface (Dufault et al., 2010) and there is a

chance that some proportion of uredospores may be removed from

the leaf surface (Andrade et al., 2009). Although uredospore

removal from soybean leaves depends on several factors including

canopy location and duration of rainfall, Dufault et al. (2010) found

that, for rain intensities of 45-85 mm, the percentage of uredospores

removed from leaves ranged from 23% to 82% as the duration

increased from 1 to 30 minutes. However, rainfall of 85 mm in 30

minutes seems extremely high, so we focused on 45 mm as a

threshold for designating an hour as contributing to spore removal.

Furthermore, because it is difficult for a model with a time horizon

of a few months and a time step of 1 day to account for these

minutes of rainfall, we chose to model this effect as 1 - exp(-0.1 x

HR), where the proportion of uredospores removed is a function of

the number of hours in a 24 hour period (HR) in which rainfall

exceeds 45 mm in each hour. This implies that an hour with rainfall

exceeding 45 mm results in 10% loss of the uredospores and 12

hours with rainfall exceeding 45 mm in each hour results in 70%

loss of the uredospores.

The number of uredospores adhering to soybean leaves on day

t, Nt is

Nt = ½Ht + Pt � (1 − E)� � CC� (1 − Dt)� exp ( − 0:1�HR) (8)

where H is the number of uredospores immigrating into field, P

is the number produced in the field, and E is the proportion

emigrating from the field due to wind. Zidek (2007) reported that

about 10% of uredospores may escape a closed canopy due to wind

and turbulence. Thus, E=0.1 in the model. CC is the proportion of

uredospores captured by leaf area, which increases as LAI increases

CC = 1 − ( exp ( − 0:42� LAI)) (9)

where 0.75 is light-extinction coefficient for 30 reproductive-

stage plants per m2 (Flénet et al., 1996) and D is disease severity

(proportion of leaf area covered with infectious and

senesced lesions).

The number of lesions in cohort of LP defined by day of

germination t, Lt, is

Lt = Nt � Gt (10)

where N is number of uredospores adhering to soybean leaves

and G is proportion germinating.

(10)

(8)

(9)
2.10 Disease severity

The proportion of leaf area (undersides only) covered by live or

dead lesions is defined as disease severity, D, and calculated per m2

each day as
TABLE 2 Latent periods in days and in cumulative degree days (DD)
calculated with base 6°C.

Temperaturea Latent period

Days DD

Danelli and Reis (2016)

15 17 153

15 19 171

22 9 150

22 10 160

25 7.5 150

Kochman (1979) (Australia)

7-17 13.8 83

12-22 11 121

17-27 9 144

22-32 11 231

Melching et al. (1979)

22-27 10 185

Melching et al. (1988)

22.5-26.5 9 167

Yeh et al. (1982)

15-24 8 108

Marchetti et al. (1975)

20-30 9 171
aTemperatures separated by hyphen are night and day values. The mean was used for DD
calculation.
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Dt =
(I

tot
+ S)� 2

LAI� 106
(11)

where Itot(t) is the sum of I(j,t) in a m2 over all age classes j, S is

the total number of senesced (dead) lesions in a m2, and 2 is the

lesion size in mm2. The factor 106 converts leaf area to number of

mm2 patches. Although, our focus is on early stages of an epidemic

when disease severity is low, the model does include the following

statements to maintain logic as severity gets close to 1. If Dt > 1 in

Equation 11, then Dt = 1 and I1, t = [1-Dt-1] x LAI x 0.5 x 10
6. This

last statement adjusts the incoming age 1 infectious lesions to the

maximum permitted given the amount of leaf area remaining

without lesions.

(11)
2.11 Field experiment and data collection

A field experiment was conducted in the 2019/2020 growing

season at four locations in Brazil (Table 3). BMX-Potência, an ASR

sensitive cultivar, was sowed with spacing of 0.5 m between rows

and 15 plants per m of row. The experiment consisted of an early

and late sowing date (at three locations) to cover low and high ASR

spore inoculum concentration during the growing of soybeans.

Date of disease outbreak, disease progress and final disease severity

were observed. The progress in ASR disease severity was measured

at 7 days interval starting from the beginning of the flowering stage

(R1) of soybeans.

Weather variables such as rainfall, temperature, relative

humidity and wind speed were obtained from weather stations

installed in the field experiment locations. Dew period or leaf

wetness duration was calculated using classification and

regression tree well known as CART model (Gleason et al., 1994;

Kim et al., 2005).
2.12 Validation of the model

The model was simulated to produce the progression of ASR in

a soybean field on a daily basis after arrival of the first uredospores.

Initial outbreak of disease in the fields were observed 77 to 82 days

after planting (DAP) for the early sowed experiments and 52 to 63

days after sowing for the late sowed experiments. We subtracted the

typical 9-day LP from date of first disease observation to initialize
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the model with uredospore arrival. For instance, if the first disease

was detected 77 days after sowing, the first uredospores were

introduced 68 days after sowing. The number of uredospores

initially arriving in the modeled soybean field is 3000 to 4000 per

day per m2 over a 10-day period. Thus, equal numbers of

uredospores arrive in the field on days 68-77. The initial number

was chosen to produce a close fit of modeled severity to the initial

observation of disease severity.

Model performance was evaluated using the disease progress

data obtained from the field experiments. Model simulated severity

curves were compared against the ASR severity observed between

50 and 98 DAP at weekly intervals. The correlation between the

model simulated and observed ASR severity was evaluated by

calculating a coefficient of determination (R2).
2.13 Sensitivity analysis

Model sensitivity analysis was carried out for the following

input parameters: the number of days when uredospores were

detected in the soybean field (days with spores), a factor for

proportion of uredospores captured by leaf area (canopy cover

factor or light-extinction coefficient), wind factor determining

escape of uredospores away from field, and rainfall factor

removing uredospores from leaves (Table 4). The model was

simulated under the conditions observed at each of the four

locations for our field studies (Table 3). We used the model

sensitivity analysis to explore the response of model output to

modest changes in the model input values and to understand the

sensitivity of results to uncertainties in the input values of

the model.
3 Results

3.1 Weather conditions and observations of
disease in the field

Key weather conditions that drive ASR infection and development

are presented in Figure 2. The minimum temperature varies 18 to 19°C

and the maximum temperature varies between 28 to 32°C during the

growing season of soybeans across the four locations in Brazil. The
TABLE 3 Location of ASR field experiments in Brazil in 2019-2020.

State Location Latitude Longitude Sowing date

Mato Grosso Chapadão do Sul -18.6 -52.6 11/18/2019

Mato Grosso Chapadão do Sul -18.6 -52.6 12/12/2019

Minas Gerais Indianópolis -19 -47.83 12/19/2019

Minas Gerais Indianópolis -19 -47.83 11/25/2019

São Paulo Mogi-Mirim -22.5 -47.069 11/13/2019

São Paulo Mogi-Mirim -22.5 -47.069 12/13/2019

Goiás Montividu -17.4 -51.396 11/11/2019
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mean temperature for the locations is in the range of 20.5 to 23.8°C.

Based on the weather for the experimental sites, the LP lasted 9 days

over most of the observed periods with few LP >9. The average daily

leaf wetness duration was 15 to 22 hours. Only 6 days exhibited less

than 6 hours leaf wetness duration at Chapadão do Sul (MS), 4 days at

Indianapólis (MG) and 1 day at Mogi-Mirim (SP). Once uredospores

invaded the soybean plots, the local microclimate was conducive for

ASR germination and development to happen.

First symptom of ASR was observed 77 to 84 DAP in early

planted experiments and 52 to 63 DAP in late planted experiments.

Final ASR severity varied between 31 to 62% in early planted and

37% to 100% in late planted soybeans.
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3.2 Validation of the model

As displayed in Figure 3, the model results generally matched

the daily dynamics of ASR progress in the field trials. The

predictions reproduced the observed ASR severity well with R2

value of 0.84 and root mean square error (RMSE) of 4.71%

(Figure 4). The model tends to underestimate some observed

severities at low severity levels, however the amount of

underestimate varied by trial location and planting period.

Additional sensitivity analysis was performed to further

investigate the influence of input parameters on the disease

severity predictions.
TABLE 4 Model parameter values used in sensitivity analysis.

Model input parameter Standard Values for sensitivity test

Days with initial spores invading soybean field 10 1, 2, 5, 10, 15, 20

Canopy cover factor for catching spores (K) 0.75 0.65, 0.75, 0.85

Wind factor for escape of spores (E) 0.1 0.05, 0.1, 0.2

Rain factor for removing spores (R) 0.1 0.05, 0.1, 0.2
A

B

C

FIGURE 2

Temperature (A), rainfall (B) and leaf wetness duration (C) at Chapadão do Sul, Indianópolis, Mogi-Mirim and Motividiu during 2019/20 soybean
growing season in Brazil.
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D

A B

C

FIGURE 3

Simulated (solid line with closed symbols) and observed (dashed line with open symbols) Asian soybean rust progression at Chapadão do Sul
(A), Indianopólis (B), Mogi-Mirim (C) and Motividiu (D) in Brazil.
FIGURE 4

Observed versus simulated ASR severity in 1 to 1-line space. Observed ASR severity data points were measured at weekly intervals at the field trials
with record dates ranging from 37 to 107 days after planting (DAP).
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3.3 Sensitivity analysis

Changes in simulated ASR severity on day 70 after sowing due

to changes in the values of four model input parameters are

presented in Figure 5. The results were slightly sensitive to

canopy cover factor (light-extinction coefficient). Since ASR tends

to infect soybean during its reproductive stage when the canopy is

dense, assuming a moderate canopy cover factor (0.75) seems

reasonable, but the influence of soybean cultivar should be

considered in future work. The results were insensitive to the

wind factor and the rain factor.
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The results were sensitive to days with initial spores invading the

soybean field. Reducing the duration of the initial spore arrival from

the standard 10 days to 1-2 days caused an important reduction in the

severity, but simulated results for durations of 5-20 days were similar

(Figure 5). For instance, the severity at Chapadão do Sul simulated

with an invasion period of 10 days of spore was 12.3% and the severity

simulated with spore arrival of only 1 day was 6.3% (Figure 5A). These

results indicated that spore traps or other observations shouldmeasure

not only the first day of arrival but the subsequent days. Additional

invasion by uredospores after the first week will be less important to

the epidemic already started by the earliest detected spores.
D

A

B

C

FIGURE 5

Model simulated ASR severity on 70 days after planting (DAP) at four locations in Brazil (Figure 2) based on changes to four model parameters
(Table 4). Days of spores (A) refers to the duration of the initial invasion. Canopy cover factor (B) determines the proportion of uredospores captured
by soybean leaves. Wind factor (C) is the proportion of uredospores escaping the field. Rain factor (D) determines the proportion of uredospores
removed from leaves.
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4 Discussion

The high correlation between the model simulated and

observed disease severity (Figure 4) indicates that our model can

be used as a tool to predict the dynamics of ASR epidemics during

the first few cycles after uredospore invasion into a soybean field.

Sometimes the model did not correctly estimate the exact timing of

the steep rise, causing some larger errors in the lower left part of

Figure 4. As Scherm et al. (2009) concluded, the most important

decisions made by Brazilian growers must occur while the severity is

less than 1%.

Our model is the first validated mechanistic model of ASR that

includes the influence of moisture and temperature on the main

processes in its life cycle. All steps in the modeling and data

collection were clearly described. Yang et al. (1991) developed a

preliminary model that included a reasonable leaf-area growth sub-

model. However, unlike the pathogen sub-model of Yang et al., our

model includes germination and sporulation processes and a fully-

described validation.

Our model is easily extendible once more data are collected. For

example, the effects of fungicide applications and (partial) genetic

resistance of soybean varieties can be added. Fungicidal effects (of

either type of treatment) are most often associated with reduced

germination, prolonged latent period, or reduced sporulation,

depending on their mode of action. Experimental studies in a

greenhouse or field could be used to estimate the proportional

changes of the corresponding parameters relative to the base-line

values observed on untreated susceptible varieties. The proportional

adjustment for the relevant model parameters may differ for each

fungicide and type of resistance.

Scherm et al. (2009) noted that disease severity >0.05% at the

time of the first application negatively affected the response ratio for

disease severity. This may have been caused by the attempted use of

curative applications when there are already visual symptoms of

disease. However, curative applications were likely not efficacious

because the triazoles and strobilurins applied provide better control

when applied preventatively due to their mode of action.

Note that the efficacy of a fungicide will decline over time and

may be influenced by external factors, such as rainfall and

ultraviolet light intensity. Given the dynamic nature of the model

and the use of daily cohorts of ASR, the proportional effects of a

residual fungicide on each cohort would likely change daily as the

residue decays. Growth of new leaves (that are unprotected with

the fungicide) could be incorporated as a further change in the

parameters. This complexity may not be needed for modeling host-

plant resistance.
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Currently, fungicide applications in soybean are based on a

calendar schedule which is determined by days after emergence due

to the increase in the planting of indeterminate-growth soybeans in

Brazil. However, calendar-based decisions to start spraying can lead to

inappropriate timing and increase soybean production costs. Our type

of model could contribute to a fully automated, fungicide-treatment

program for ASR (that could be extended to other soybean diseases),

that would combine all the relevant information and accurate weather

forecast in a single model to provide farmers with a rational field-

specific, series of treatment recommendations.

A further refinement would be to incorporate crop resistance to

ASR with a choice of fungicides with different modes of action to

help with resistance management. This will provide farmers with a

fully automated Integrated Pest Management strategy for durable

and efficient crop protection.
Data availability statement

The datasets presented in this article are not readily available

because Corteva owns the data. Requests to access the datasets

should be directed to gerie.vanderheijden@corteva.com.
Author contributions

BK and DO are primary authors and performed most of the

modeling work. All other authors equally supported the writing and

modeling. LK was responsible for field work. All authors

contributed to the article and approved the submitted version.
Conflict of interest

This work was done by employees of Corteva Agriscience, a

major American agricultural chemical and seed company.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Alves, S., Furtado, G., and Bergamin Filho, A. (2006). Influência das condições
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