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A Commentary on
Editorial: Machine learning in clinical decision-making

By Filiberto AC, Leeds IL, and Loftus TJ. (2023) Front. Digit. Health. 3:784495. doi: 10.3389/
fdgth.2021.784495

Given the success of the Research TopicMachine Learning in Clinical Decision-Making published

in Frontiers in Digital Health, we—the editors of the Research Topic—were pleased to expand the

Topic by adding manuscripts that highlight dynamic prediction of mortality among critically ill

patients, machine learning models for individualized antimicrobial use duration, electronic

health record (EHR) tokenization approaches to patient acuity predictions, and a review of

specific artificial intelligence (AI) applications, limitations, and requisites in the United States.

These are important Research Topic additions because they embody the principles that

clinicians make complex decisions under time constraints and uncertainty using hypothetical-

deductive reasoning and individual judgement, which vary from clinician to clinician. Time

constraints are imposed by acute diseases and high clinical workloads in which uncertainty

results from insufficient knowledge, data, and evidence regarding possible diagnoses and

treatments. Clinical decision-support systems often require time-consuming manual data

acquisition and entry, which limit their ready adoption by physicians working in high acuity

environments with critically ill patients. This General Commentary summarizes key points from

the work by Patel, Giordiano, Bolton, Shickel, and their colleagues.

Patients in an intensive care unit (ICU) require close monitoring with a plethora of data

points collected in an EHR that are updated frequently. Models predicting mortality have

traditionally been used for research purposes rather than individual patient risk assessment

at the bedside, and do not consider dynamic clinical status of individual patients. These

risk scores are often calculated to produce a score at a single timepoint, overlooking subtle

yet important updates in patients’ physiology. Despite the rapidly expanding use of EHR

data for model training purposes in research environments, current monitoring strategies

in clinical use remain limited in their ability to accurately represent changes in patient status.

In volume two of this Research Topic, Patel and colleagues introduce a novel study designed

to assess the performance of a dynamicmethodof updatingmortality risk every three hours using

a criticality index mortality (CI-M) neural network methodology (1). The data were collected

from 2018 to 2020 at the Children’s National Hospital, comprising 72 pediatric ICU beds.

EHR data were extracted and ICU courses were stratified into three-hour intervals, using a

neural network to predict outcomes. The CI-M uses a neural network which incorporates

physiology, therapy, and intensity of care to compute a morality risk for pediatric ICU

patients in a clinically relevant model using updated data every three hours. The area under
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the receiver operating characteristic curves had a minimum value of

0.778 (95% confidence interval 0.689–0.867) at hour three and a

maximum value of 0.885 (0.841,0.862) at hour 81. The ten most

important variables for risk prediction were duration of ICU stay,

ventilator-free days, hours on mechanical ventilation, coma scores,

age, and neutrophil counts. The CI-M has the potential to enhance

prognostic assessments of critically ill pediatric patients, toward

improving clinical decision-making and care. Ideally, this risk model

will be externally validated and applicable to other institutions.

Bacterial antimicrobial resistance is a global threat and is associated

with increased risk of mortality not only for index patients who develop

resistant infections, but also for other patientswho suffer collateral harm

from spread of resistant organisms, often through healthcare worker

vectors. Clinical decision support systems have the potential to

increase antimicrobial stewardship, thus mitigating antimicrobial

resistance. Bolton et al. use a machine learning and synthetic control-

based approach to estimate patients’ length of stay (LOS) and

mortality outcomes for any given day if they were to stop vs. continue

antibiotic treatment (2). Comparisons between decision support

system use and control experiences demonstrated minimal difference

for both stopping and continuing scenarios, indicating that decision

support estimations were reliable (average LOS differences of 0.24 and

0.42 days, respectively). Their approach is novel, can assist with

individualized antibiotic cessation, and establishes the safety of

patient-specific shortening of antibiotic treatment durations.

Shickel et al. describe their use of a transformer-based patient

acuity prediction framework in the critical care setting with a data

embedding scheme that captures both concept and corresponding

measurement values of many disjoint clinical descriptors (3). The

authors introduce a mechanism for combining both absolute and

relative temporality as an improvement over traditional positional

encoding. They highlight the future of this promising approach

while noting that more research is needed to emphasize analyzing

self-attention distributions between input variables and clinical

outcomes to further the clinical understanding and enhance the

trust of clinicians using transformers in healthcare settings.

In a comprehensive review of peer-reviewed literature describing

access to AI for clinical decision making, Giordano et al. highlight

the use of machine learning models for risk stratification, early

warning of acute decompensation, potential bias in machine

learning algorithms, and the paradigm shift in medical training

towards emerging biomedical informatics applications (4). With

the widespread adoption of EHRs there are vast repositories of

data sets that are ideal for AI training and testing, and many

healthcare disciplines have developed and validated promising

solutions for improved risk stratification and optimization of
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patient outcomes. Healthcare workers will be expected to

comfortably work within this new AI frontier and, in turn, relate

it to their patients. This review provides an optimal overview and

introduction to the novel methods that should be considered.

We hope that you have enjoyed and learned from these

important additions to the Machine Learning in Clinical

Decision-Making and Machine Learning in Clinical Decision-

Making—Volume II Research Topics published in Frontiers in

Digital Health.
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