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1. Introduction

In mathematics and various sciences, the changes of output and input of nonlinear systems are out
of proportion. Most of the systems involved in life are essentially nonlinear, so solving nonlinear
problems has attracted various scientists. Scholars have proposed more efficient iterative methods for
solving nonlinear systems. One of the most famous iterative methods for solving nonlinear systems is
Newton’s method [1],

X(k+1) — x(k) _ [F'(x(k))]—lF(x(k)), (11)

fork =0,1,2,..., xq is the starting point. The Newton’s method is second order convergent and effective
in solving some nonlinear systems.

With the advancement of computers and numerical algebra, scholars have developed many iterative
methods based on Newton’s method that are more efficient than second-order Newton’s method for
solving nonlinear problems [2—7]. In addition, when the Jacobian matrix cannot be calculated for
nonlinear systems, some effective derivative free methods can also solve nonlinear systems well
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(see [8—12]). We propose an eighth order iterative method with high computational efficiency, which
is suitable for solving large systems of equations [13]. The specific iteration format is as follows

Yy = 30 _ T, F(x®),
w® = y® — [T+ (I + IMOYMPICF (™), (1.2)
D = WO — [T+ (I + 3MO)MPF (W),

where M® = T/(F' (x®) — F'(y®)), and T = [F' (x*)] "

The theoretical results of local convergence and semilocal convergence of the iterative method are
also important in the study. Local convergence requires the existence of the assumed solution and the
initial value is close enough to the solution. Semilocal convergence does not require the existence of an
assumed solution, but the selection of initial values also needs to meet certain conditions (see [14—18]).
Therefore, for some systems that cannot be analyzed and solved, the results of semilocal convergence
cannot only prove the convergence of iterative sequences, but also prove the existence of solutions
of these systems, so as to obtain the existence domain and uniqueness domain of system solutions;
for further study (see [19-22]). Based on this, we perform a semilocal convergence analysis on the
method (1.2).

This paper consists of five sections. In Section 2 of the paper, the recurrence relation is explained.
The semilocal convergence of the iterative method (1.2) is proved in Section 3. In Section 4, the
numerical experiments of two nonlinear systems are completed. Finally, the conclusion of this paper
is made.

2. Recurrence relations

In this section, let X and Y be Banach spaces and let FF : Q C X — Y be a twice differetiable
nonlinear Fréchet operator in an open € [23]. Let us assume that the inverse of the Jacobian matrix of
the system in the iteration (1.2) is Iy € L(Y, X), which is the set of linear operation from Y to X.

Moreover, in order to obtain the semilocal convergence result for this iterative method (1.2),
Kantorovich conditions are assumed:

(M) [Tl < B,

(M) |[ToF(xo)ll <7,

(M3) |IF (x) = F' (0l < Kllx = yll,

where K, B, n are non-negative real numbers. For the sake of simplicity, we denote ay = Kfn and
define the sequence

a1 = apflar)’glay), (2.1)

where we use the following auxiliary functions

1
h(x) = ﬁ(256 + 256x + 384x% + 640x° + 576x* + 576x° + 528x° + 298x7 + 170x® + 75%%), (2.2)

fx) = (2.3)

1
1 - xh(x)’
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and
X

80 = o7
+1351680x° + 1569792x° + 1689600x” + 1752576x" + 1693696 (2.4)

+1490432x"° + 1226752x'"" + 913920x'% + 596928 x"?
+ 354724x" + 180520x" + 73600x'° + 25500x'7 + 5625x'®).

(196608 + 327680x + 589824 x* + 819200x> + 1064960x"

These functions play a key role in the analysis that will be performed next.

Preliminary results. In order to get the difference of the first two elements in the iterative method (1.2),
we have

5 , , , ,
wo—Xo=Yo—Xo— [+ + ZFO(F (x0) = F o))I'o(F (x0) = F (yo) Lo F (yo). (2.5)

The Taylor series expansion of F around x, evaluated in yjy is

Y0
F(yo) = F(xo) + F (x0)(yo — x0) + | (F (x) = F (xo))dx, (2.6)

X0
where the term F(xo) + F (x0)(yo — Xo) is equal to zero, since it comes from a Newton’s step. With the

change x = xo + t(yo — xp), we get

1
F(y) = f (F (xo + t(yo — x0)) — F (x0))(yo — Xo)dt. (2.7)
0
Then,

p , 5 , p p ,
wo —Xo = Yo — Xo — (L + [o(F (x0) — F (yo)) + ZFO(F (x0) = F o)Lo(F (x0) = F (yo))I'oF (yo)
= yo — xo — (ToF (yo) + To(F (x0) = F (0))ToF (o)

+ ZmF’ (x0) = F (o))To(F (x0) = F' (o))T0F (¥0))

= yo — X0 — (T fo 1(F’ (X0 + 1(yo = X0)) = F (x0))(yo — Xo)dlt

+ To(F (x0) = F'(yo))To fo 1(F’ (X0 + 1(yo = X0)) = F (x0)) (o — Xo)dlt
+ ZmF’ (x0) = F Go))To(F (x0) = F' (30))

1
XL [ (F G+ 10 = ) = F G))on = ).
0
(2.8)
Taking norms and applying Lipschitz condition, we get

K K?
o = Xoll < llyo = Xoll + —ITollllyo - xoll* + — [Tolllyo = xol[liTollflyo — ol

+ —g~ [Tolllyo = ol Tl llyo = Xol IolHllyo = xoll

2
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1 2 l 2 02
Sn+§Kﬁn +§K,877+ Kﬁ

1 1 5
=n(1+—a0+—a§+§ag),

2 2

so that,

5
—ag)).

1
[lwo — xoll < n(1 + E(Clo + Cl% + 1

Using a method similar to (2.5), we get wy — yo
5 ’ ’ ’ ’
wo—Yo=Yo—Yo— [+ + ZFO(F (x0) = F o)) o(F (x0) — F (yo)) Lo F (yo).

So,

K K?
o = yoll < lyo = yoll + = ITollllyo = xoll® + — IWoltllyo = xol[ il llyo — xoll

+ = IIToll lyo = Xoll T oll [lyo — Xoll [Toll [[yo = Xoll

<1K,82+1K22 K
< KB+ 5 B’ + KBy

3
_ao).

2

= 77(5610 + 3

Next, the next step analysis

3 , , , /
X = X0 = wo = Xo = [[+ (I + ZLo(F (x0) = F Go))o(F (x0) = F (yo))ILoF (wo)-

Using Taylor’s expansion of F(wy) around x, and applying Lipschitz condition, we obtain

Il = Xoll < flwo = xoll + ol lwo = Xol[” + —==ITollllyo = Xl IToll o = xoll

2
+ — ||Fo|| Ilyo = Xoll IToll llyo = Xoll T oll [[wo — xoll
5
<n(l+ = (ao + ao ﬁ; Z 4 Zag))2
KZﬁZ 3 1 5 5 3K3ﬁ3774

1 5
(1+ (a0 + ag + Zag)) + (1+ 5 (a + @ + Z“S))z

2

1 5 a 1 5
= (1 + 5 (a0 + at + Zag)) + 50(1 + a0+ at + Zag))z

4

a? 1 5 3a} 1 5
+ —0(1 + 5 a + a + Zag))Z + TO(I + 5 a + a + Zag))z)
= n(—(256 +256ay + 384ay + 640a; + 5764, + 576a;

256
+ 5284 + 298a] + 170ag + 75ay)).

By applying Banach’s lemma, one has

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)
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Il = ToF (x| = IToF (x0) — ToF (x))ll
= IToll IIF (xo0) = ToF (x|
< KBllx1 — xol|
1
< KBin(55£(256 + 2564, + 384aj + 640a; + 576ay + 576a;

+ 528a§ + 2984} + 17045 + 75ay))
= ap(h(ap)) < 1, (2.15)

where

1
h(x) = ﬁ(256 +256x + 384x° + 640x> + 576x* + 576x° + 528x° + 298x7 + 170 + 75x7).

Then, as far as ag(h(ap)) < 1 (by taking ay < 0.45807), Banach’s lemma guarantees that
(CoF (x1)™" =TIy

exists and

I IColl = f(ao)llToll, (2.16)

1
i< ———l
1 = ao(h(ap))
SO

1
Fx) = ——

— 55(256 + 256x + 384x% + 640x3 + 576x* + 576x% + 528x° + 298x7 + 170x% + 75x%)

Based on the above analysis, we can obtain the following theorem.

Theorem 1. For k > 1, the following conditions are valid:
(Ol Il < flar-DITh-1l,

(02)  Nlyk = xill = ITe F eIl < fak-1)g(ar-Dllyr-1 — Xe1ll,
(031)  K|Tellllyx = xll < ar,

O40)  NlIxk = xp1ll < Mar=D)Ilyr-1 — Xe—1ll-

Proof. The above theorem is proven through induction. Starting with k& = 1, (2.16) proved the (O1,).
(02,): The Taylor’s expansion of F(x;) around y,, we can get

F(x1) = FOo) + F o)(xi —yo) + | (F'(x) = F (y9))dx
Yo

= F(yo) + (F (y0) = F (x0))(x1 — yo) + F (x0)(x1 = Yo) (2.17)

1
+ f (F' (o + t(x1 — Y0)) = F (30))(x1 — Yo)dt.
0

So, we must to have x; — yg
3 , , , ,
X1 —Yo=wo—yo—[[+UI+ §FO(F (x0) = F (yo))To(F (x0) — F (yo)) Lo F (wp). (2.18)
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And bounding its norm, the following inequality is obtained

K K?
11 = yoll < llwo — yoll + 5||Fo|| lIwo — xoll* + 7||1"0|| o = Xoll 1Tl lwo — XolI*

3K .
+ e IToll [lyo = Xoll [Toll [lyo = xoll Tl [Iwo — Xoll
1 1 5 KBn? 1 5
< a0+ 5 + 20 + ‘;’7 (1 + a0 +a + 2a))) (2.19)

K22 1 5 3IK3G 5
+ ﬁn(1+§(ao+a(2)+—a(3)))2+ ﬁn(1+§(ao+a(2)+—a(3)))2

2 4 4 4

1
< (55(256 + 384a0 + 640a; + 576a; + 576ay + 528ay + 29845 + 170a], + 75a3)).

Then, using (2.17)—(2.19), the ||F(x;)|| is bounded
1
256
+ 5764, + 528ay + 2984l + 170a;, + 75a8))

1
IF(x)Il < 51{772 + K17 (=—(256 + 384ay + 640a; + 576a;,

1 1
+ —n(——(256 + 384agy + 6404 + 5764 + 5764}
3" 256" 0 0 0 0 (2.20)

+ 52843 + 298a$ + 170a] + 75a}))

1 1
+ 51{772(%(256 + 384ay + 640ay + 576a; + 5764

+528a; + 298a§ + 170a] + 75ap))>.

Therefore, by applying (O1,), we get
llyr = xall = [T F(xpll = fao)loll [1F el

1
<

< J@l 3107
+ 1351680a; + 156979245 + 1689600a; + 17525764} + 16936964,
+ 14904324, + 12267524, + 913920a,” + 5969284,

+354724a)* + 180520a,’ + 73600a,” + 25500a, + 5625a,°)1n.

ap(196608 + 327680a, + 5898244 + 819200a; + 10649604,

(2.21)

That is,
llyr — x1ll = f(ao)g(ao)n < f(ao)g(ao)llyo — xoll,

where,
X

8 = 37072
+ 1351680x° + 1569792x° + 1689600x” + 1752576x° + 1693696x°

+1490432x" + 1226752x'" + 913920x'% + 596928x"3
+354724x" + 180520x" + 73600x'® + 25500x'7 + 5625x'®).

(034): Using (O1,) and (02,),

(196608 + 327680x + 589824 x* + 819200x> + 1064960x"

KT llyr = xill < K f(ao)Cof(@o)g(ao)llyo = xoll = aof(ao)*g(ao) = ar.
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(O4,): For k = 1 it has been proven in (2.16).
The proof of (O1;41), (02441), (O3;+1) and (O4,,1) is based on the same method of proving that the
inductive assumption with (O1y), (02;), (O3;) and (O4;) as k > 1 holds true.

3. Semilocal convergence analysis

According to the convergence property of x; sequence in Banach space, we need to prove that this
sequence is a Cauchy sequence. Based on the auxiliary function, we can obtain the following results.

Lemma 1. According A(x), f(x) and g(x), we have:

i. f(x)1isinceasing and f(x) > 1 for x € (0,0.45807),

ii. h(x) and g(x) are increasing for x € (0, 0.45807).

The above lemma can be calculated from the Section 2, and the process is omitted.
Lemma 2. The f(x) and g(x) defined by (2.3) and (2.4). Then

i. fap)g(ag) < 1 foray < 0.252232,

ii. f(ao)*g(ag) < 1 for ay < 0.21715,

iii. the sequence gy is decreasing and a; < 0.21715 for k > 0.

Proof. 1t is straightforword that i, ii are satisfied. As f(ag)*g(ag) < 1, then by construction of ay, it is a
dereasing sequence. So a; < ap < 0.21715, forall k > 1.

Theorem 2. Let X, Y be Banach spaces and F' : Q € X — Y be a nonlinear twice differentiable Fréchet
operator in an open set domain . Assume that 'y = [F "(x0)]7" exists in x, € Q and meet the conditions
of (M) — (M3). Let be ay = KBn, and assume that ay < 0.21. The sequence {x;} defined in (2.1) and
starting in x converges to the solution x* of F(x) = 0, if B,(xo, Rn) = x € X : ||x — xo|| < Ry € Q where

R = %. In the case, the iterates {x;} and {y,} are contained in B.(xy, Rn) and x* € B.(xy, Rn). In
addition, the x* is the only solution of equation F(x) = 0 in B,(xo, é — Rn) N Q.

Proof. By recursively applying (O4;), we can write

11 = xiell < Al@llyre — xll
< hap) f(ar-1)g(ar-)lyr-1 — X1l

k-1

< h@l| | fe@angt@iyo = xoll.
i=0

Then,

IXsm = Xell < NXkem = Xkrm—tll + [ Xeeme1 = Xem—all + -+ + X1 — Xl
k+m=2

< hagen-0n | | flanga
i=0

k+m-3

+ hagma)n | | fladgta
i=0
+...

AIMS Mathematics Volume 8, Issue 9, 22371-22384.
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k—1
+haon | | fadean. (32)
i=0
As h(x) 1s increasing and a; dreasing, it can be stated that
m—1 k+i-1 m—1
e — xell < aom Y 1| | Fladg@@n] < htam D (F(ao)g(an)™. (3.3)
=0 =0 1=0

Moreover, according Lemmas 1 and 2, by using the expression for the partial sum of a geometrical
series,

L= (flan)g(a))” k
. 4
T ey @@y (3.4)

So, the Cauchy sequence if and only if f(ap)g(ap) < 1 (Lemma 2).

X s — Xl < h(ay)

For k =0,
1 = Xoll < 11X = X1 | + [1Xm-1 = X2l + - - - + [lx1 = X0l
m—1
< h(ao)llyo = xl Z(;(f(ao)gmo))’. (3.5)

1 = (f(ao)g(ao))™

R,
- flag(ap) "~

h(ao)
= F@g@) ' ,
Let’s prove that x* is the solution of F(x) = O starting from the boundary of ||F" (x,)I|,

= h(ao)

when m — oo, we get the radius od convergence Ry =

IF ool < I (o)l + 1F'(x) = F' (xo)ll
< |IF" (xo)ll + Kllxi = xoll (3.6)
< |IF'(xo)ll + KRn.
Then, acorrding M, and (3.1)

IF el < 11F o)l i = il

: s (3.7)
< IF Clintaol| | flangtanin,
i=0
as h(x), f(x) and g(x) are increasing and qy, is the decreasing sequence,
IFxoll < IF (eoll(an)(f (ao)glao))n. (3.8)

Taking into account that ||F' "(x)|l is bounded and ( f(ag)g(ao))* tends to zero when k — oo, we conclude
that ||F(x)|| = 0. As F is continuous in Q, then F(x*) = 0.
Finally, the uniqueness of x* in B(x, Kiﬁ —Rn) N Q.

1
0=FQO")-F(x") =(Fx")+ f F (x* + 10" = X)) = x)dt) — (F(x")
0 (3.9)

1
=@ —x) fo F' (X" +1(y" = x"))dy).

AIMS Mathematics Volume 8, Issue 9, 22371-22384.
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In order to guarantee that y* — x* = 0 it is necesssary to prove that operator fol F'(x* + t(y* — x*))dt is
invertible. Applying hypothesis (M3),

1
1Tl fo IF'(x" + 1" — x) — F (xo)lldt

1
< K,Bf X" + 1" — x*) — xodt]|
0 (3.10)

1
< K,Bf (1 = Dllx™ = xoll + lly” — xolDdt
0

KB 2
<—(Rn+——R17)—1

KB

By the Banach lemma, the intergal operator is invertible and hence y* = x*.
4. Numerical results

In this section, we provide some numerical examples to illustrate the theoretical results introduced
earlier.

Example 1. Hammerstein equation is a kind of important nonlinear integral equation [24], which is
given as follows:

1
x(s) =1+ (I/S)f N(s, H)x(t)’dt, 4.1)
0

where x € C[0, 1], s,t € [0, 1], with the kernel N is

N B (1-s) t<s,
BD=11-n s<u

To solve (4.1) we transform it into a syste of nonlinear equations through a discretization process. We
approximate the integral appearing in Eq (4.1) by using Gauss-Legendre quadrature,

1 7
f s(ndt ~ Z w;s(t)),
i=1

0

being f; and w; the nodes and the weights of the Gauss-Legendre polynomial. Denoting the
approximation of x(t;) as x;,i = 1, ..., 7, then we estimate (4.1) with the nonlinear system of equations

1 _
N=l=g ) =0i=1,..7 4.2)
where

B witi(l1-1) j<i,
Y wia(l =) i<

AIMS Mathematics Volume 8, Issue 9, 22371-22384.
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So,the system can be rewritten as

1
Fx)y=x-1- gAVx,

Fx)=1I- %AD(x),

3.3 3T
Ve = (X], X5, 000s X3)7,

D(x) = diag(x%, x%, - x%),

where F if a nonlinear operator in the Banach space RF,and F is its Fréchet derivative in £(RL, RE).
According the method (1.2), we will use it to solve the nonlinear systems.
Taking xp = (1.8, 1.8, ..., 1.8)", L = 7 and the infinity norm, we get

ICoF(xo)ll < 1,
IF'(x) = F )ll < Kllx = yll,

IToll < B, B =~ 1.2559,

n = 2.2062,
k ~ 0.0671,

ap = kBn, =~ 0.1860.

4.3)

The above results satisfy the semilocal convergence condition, so this method can be applied to the
system. Thus, we guarantee the existence of the solution in B,(xy,0.5646), and the uniqueness in
B,(x9,22.4874). Table 1 shows the the radius of the existence domain and the radius of the unique

domain under different initial values. For xo; > 1.87,i

satisfied and, therefore, the convergence is not guaranteed.

Table 1. Different initial values related parameters.

1,2,...,7, convergence conditions are not

Xoi B n k do R, R,
0.2 1.0025 2.1204 0.0287 0.0610 0.0754 69.3528
0.4 1.0102 1.6005 0.0337 0.0545 0.0657 58.6428
0.6 1.0232 1.0827 0.0390 0.0433 0.0500 50.0651
0.8 1.0420 0.5637 0.0451 0.0265 0.0288 42.5422
1.0 1.0671 0.0461 0.0682 0.0034 0.0034 27.4813
1.2 1.0996 0.4949 0.0505 0.0275 0.0300 36.0019
1.4 1.1406 1.0420 0.0569 0.0676 0.0859 30.7271
1.6 1.1919 1.6098 0.0622 0.1193 0.1970 26.6603
1.7 1.2222 1.9038 0.0647 0.1505 0.3107 24.7005

Using the iterative method (1.2) to solve (4.2), the exact solution is

x* = (1.003,1.012,1.023, 1.028, 1.023, 1.012, 1.003)".

Example 2. Let X = Y = R? be equipped with the max-norm. Choose: xy = (0.9,0.9)", s € [ 0, 1).
Let s = 0.49, define function F by

AIMS Mathematics

F(x) = (x? -, xg -7,

T
X = (.X1,.X2) .

2

4.4)

Volume 8, Issue 9, 22371-22384.
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The fréchet-derivative of operator F' is given by
, 3x? 0
FW‘“ wJ

Taking xo = (0.9,0.9) and the infinity norm, we get
IToll <8, B = 04115,

IToF(xo)ll <7m, 1 ~0.1391,
IF (x) = F Ol <kllx=yll, k=~ 3.6113,
ag = kBn, =~ 0.2067. 4.5)

The convergence conditions are met and consequently the method can be applied to the system. The
existence domain of the solution is B,(xy, 0.9101), and the uniqueness domain is B,(xg, 1.2192).
Taking xo = (0.73,0.73)" and the infinity norm, then

IToll <B, B =0.6255,

IToF(x0)ll <7m, n=0.0893,
IF (x) = F Il < kllx —yll, k& =~ 3.2329,
ay = kBn, =~ 0.1806. (4.6)

The existence domain of the solution is B,.(xy, 0.5095), and the uniqueness domain is B, (xy, 0.943534).

When the initial value satisfies the Kantorovich condition and the range of a, obtained, the initial
value within that range is taken to solve the system. Iterative method (1.2) for solving nonlinear (4.4)
with roots of x* = (0.7884, 0.7884)".

Similar results can be obtained in Tables 2 and 3, that is, under the Kantorovich condition, by
selecting different initial values, we can converge to a unique solution. When the initial value is closer
to the root, the error estimate is lower. This semilocal convergence that can prove the existence and
uniqueness of solutions under certain assumptions is very valuable.

Table 2. Numberical results of method (1.2) for nonliner equation.

Xoi iter llxk = X1l IF el

0.2 4 7.469¢-336 2.149¢-2021
0.4 4 2.538e-352 4.629e-2120
0.6 4 1.755e-383 8.222e-2307
0.8 4 5.848e-445 2.318e-2675
1.0 4 2.629¢e-701 3.000e-4096
1.2 4 2.221e-467 5.991e-2809
1.4 4 1.935e-353 8.489e-2126
1.6 4 8.010e-286 2.379e-1720
1.7 4 7.450e-259 1.285e-1558

AIMS Mathematics
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Table 3. Numberical results of method (1.2) for nonliner equation.

Xoi iter Il = el IF (el p
0.72 4 4.048e-331 1.878e-2640 8
0.74 4 2.665e-419 6.432e-3346 8
0.76 4 1.046e-548 3.726e-4381 8
0.78 4 2.052e-830 1.000e-6000 8
0.8 4 2.246e-767 1.000e-6000 8
0.82 4 2.005e-554 6.803e-4427 8
0.84 4 1.127e-454 6.768e-3629 8
0.86 4 9.380e-391 1.559e-3117 8
0.88 4 1.414e-344 4.163e-2748 8
0.9 4 5.796e-309 3.313e-2463 8

5. Conclusions

In this paper, the semilocal convergence of the eighth order iterative method (1.2) is studied. By
analyzing the behavior of the iterative method under the Kantorovich condition, the Lipschitz condition
is applied to the first derivative, and the theory of semilocal convergence of the iterative method is
obtained by using the recurrence relation. The existence and uniqueness domain of the solution of
the nonlinear system is obtained. In the experimental part, a classical Hammerstein nonlinear integral
equation and a matrix function are solved. The experimental results are consistent with expectations,
and the high-precision approximation of the system solution also proves the effectiveness of the method
numerically.
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