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1. Introduction

Diffusion equations have a wide range of applications, such as radiation hydrodynamics and
reservoir simulation. It is a challenging task to find the true solution of a real problem, while it is easy
and effective to find the numerical solution. In the past decades, there have been many numerical
methods for solving this kind of problem, such as the finite difference method, finite element method
(FEM) and finite volume method (FVM). The FVM is easy to implement, and it can also deal with
domains with complex geometries. More interestingly, it is locally conserved for physical quantities;
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thus, the FVM has now become one of the most widely used numerical methods for solving partial
differential equations.

This paper focuses on a special type of FVM, i.e., the finite volume element method (FVEM), which
is also called the generalized difference method [1], box method [2] or covolume method [3]. The
FVEM has been studied by many researchers [4–7]; also, see the book [8] and the review papers [9,10]
for example references. The linear FVEM (P1-FVEM) is closed to the linear FEM on triangular mesh.
Since its cell stiffness matrix coincides with the linear FEM for Poisson equations, the coercivity result
then follows [2, 4, 11] and also leads to an optimal H1 error estimate. However, the optimal L2 error
analysis depends on the regularity of source term f additionally [12, 13], which is different from the
FEM. That is, we cannot obtain the optimal convergence rate of two if we only assume that the exact
solution u ∈ H2(Ω). Besides, the adaptive linear FVEMs are studied in [14].

Compared with the P1-FVEM, the theoretical analysis of the classical isoparametric bilinear FVEM
(Q1-FVEM) on quadrilateral mesh is not easy, and most existing works need the quasi-parallelogram
mesh assumption. The main reason is that the nodal basis function of Q1-FVEM is not polynomial on
general convex quadrilateral cells, and it has a complicated expression. Moreover, the trial function
space and the test function space are different, which leads to an asymmetric bilinear form that is also
difficult to analyze. In particular, unlike the P1-FVEM, the cell stiffness matrix of the Q1-FVEM is
not a trivial perturbation of the corresponding Q1-FEM. Thus, in order to guarantee the existence and
uniqueness of the Q1-FVEM on quadrilateral mesh, various sufficient conditions have been proposed,
and the following geometric assumptions are seen in the literature.

(G1) h2-parallelogram assumption: mK ≤ Ch2, where C is a constant independent of h and h is small
enough;

(G2) h1+γ-parallelogram assumption: mK ≤ Ch1+γ, where C is a constant independent of h and h is
sufficiently small;

(G3) mK ≤ Ch, where C is a constant small enough but independent of h;

here, mK denotes the distance between the midpoints of the two diagonals of the quadrilateral mesh
cell K. Based on (G1), for the condition that the diffusion tensor is an identity matrix, [15] presented
the coercivity result and optimal H1 error estimate. Regarding (G2), [16] analyzed an arbitrary order
FVEM on quadrilateral mesh and presented a unified proof of the inf-sup condition with a scalar
diffusion coefficient. Regarding (G3), [17] studied the coercivity of the Q1-FVEM for the full diffusion
tensor, and the existence of C was proved. However, for a specific diffusion tensor and a specific
mesh cell, it is not easy to judge whether the assumption (G3) is satisfied. Recently, the authors
of [18] proposed another sufficient condition which covers the traditional quasi-parallelogram mesh
assumption. However, the stiffness matrix of the classical Q1-FVEM cannot be computed exactly by
our computers since the nodal basis function is not polynomial. This yields that the sufficient condition
presented in [18] is not so accurate in practice.

Given the coercivity result and H1 error estimate, the L2, L∞ and superconvergence are studied
in [19–22], which can be referenced for a non-exhaustive list of references. The relevant studies of
the FVEM can be found in [23–26] (triangle), [27, 28] (quadrilateral), [29] (polygon), [30, 31] (three
dimensions) and so on. We mention that by postprocessing a high order FEM solution, the authors
of [32] obtained a new FVEM solution and proved the stability and optimal convergence results for
arbitrary triangular and quadrilateral meshes.
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From another aspect, in order to analyze the Q1-FVEM more easily, and by combining the
characteristics in practical calculation, some researchers have employed the numerical integration
methods to approximate the line integrals of the stiffness matrix in the classical Q1-FVEM. For
example, by approximating the line integrals at the geometric center of the quadrilateral, the authors
of [33] constructed a symmetric scheme, and the error analysis is obtained on uniform rectangular
meshes. Recently, by using the trapezoidal (resp. midpoint) rule to approximate the line integrals, the
authors of [34] (resp. [35]) constructed a modified scheme. The authors proposed a sufficient
condition to guarantee the coercivity result, and this condition covers the traditional
quasi-parallelogram mesh. We mention that for the computation of line integrals, [33] is only for
constant functions, while [34, 35] are for linear functions. This yields that the three numerical
integration methods may not satisfy the practical computation. Therefore, it is necessary to employ
another high precision numerical integration method to approximate the line integrals, and at the same
time study the coercivity and optimal error estimate of the new scheme.

In this work, we employ the Simpson rule (which is explicitly for cubic functions) to approximate
the line integrals in the classical Q1-FVEM to solve anisotropic diffusion problems on general convex
quadrilateral meshes, and the new scheme is called as Q1-FVEM-SR for short. Different from the
previous analysis techniques in [33–35], here for the proposed scheme, we transform the 4 × 4 cell
singular matrix AK of the bilinear form into a 3 × 3 symmetric matrix Bs

K . Then, a necessary and
sufficient condition (3.34) is obtained to ensure the positive definiteness of Bs

K . Based on this result,
in Theorem 3.1 a sufficient condition is suggested to guarantee the coercivity. More interestingly, this
sufficient condition has an analytic expression, which only involves the anisotropic diffusion tensor and
the geometry of the mesh. This implies that for an arbitrary full diffusion tensor and quadrilateral mesh,
we can directly judge whether this sufficient condition is satisfied. In particular, this condition covers
the traditional h1+γ-parallelogram and some trapezoidal meshes with any full anisotropic diffusion
tensor. Finally, by analyzing the difference between the bilinear forms of the Q1-FVEM-SR scheme
and classical Q1-FVEM, we prove an optimal H1 error estimate on h1+γ-parallelogram mesh with γ ≥ 1.

The rest of this paper is organized as follows. In Section 2, we briefly introduce some necessary
notations and assumptions which will be used throughout the paper, and we present the construction of
the Q1-FVEM-SR scheme. In Section 3, we propose a sufficient condition to guarantee the coercivity
result of the new scheme. Moreover, in Section 4 we discuss the sufficient condition on some special
meshes with any full diffusion tensor. An optimal H1 error estimate of the constructed scheme is given
in Section 5. Several numerical examples are presented in Section 6 to validate the theoretical findings,
and some concluding remarks are given in the last section.

2. Preliminary

2.1. Problems, meshes and notations

We consider the following anisotropic diffusion problem

−∇ · (Λ∇u) = f , in Ω, (2.1)
u = 0, on ∂Ω, (2.2)

where Ω ⊂ R2 is an open bounded connected polygonal domain, f ∈ L2(Ω) is the source term and
Λ = Λ(x) is a 2 × 2 symmetric diffusion tensor that is uniformly bounded above and below, i.e., there
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exist two positive constants λ and λ such that

λ∥v∥2 ≤ vTΛv ≤ λ∥v∥2, ∀v ∈ R2, ∀x ∈ Ω, (2.3)

where ∥v∥ is the Euclidean norm of the vector v. For simplicity, here we only consider the homogeneous
Dirichlet boundary condition.

Suppose that Ω is partitioned into a finite number of non-overlapped and strictly convex
quadrilateral cells that form the so-called primary mesh. Each primary cell is further partitioned into
four quadrilateral subcells by connecting the cell center with the four edge midpoints. All subcells
sharing a common vertex of the primary mesh form a polygonal cell of the dual mesh; see Figure 1.
For simplicity of exposition, we introduce the following notations, some of which are depicted in
Figure 1.

x1

x2

x3

x4

y1

y2

y3

y4
xK

K∗
1

K

Figure 1. The primary mesh Th (solid lines) and its associated dual mesh T ∗h (dotted lines).

• K a generic primary cell whose cell center, measure and diameter are respectively denoted as
xK , |K| and hK;
• xi (1 ≤ i ≤ 4) the four vertices of K that are ordered anticlockwise. yi is the midpoint of edge

xixi+1; here and hereafter i denotes, without special mention, a periodic index with period 4;
• S i−1,i,i+1 the area of △xi−1xixi+1;
• Th the set of primary cells in Ω and h = maxK∈Th hK is the mesh size;
• T ∗h the set of dual cells in Ω;

•
◦

Vh the set of all interior vertices;
• K∗i the dual cell associated with xi;
• n∗i the unit outward normal vector along the boundary of K∗i .

In this paper, we assume that Λ is piecewise constant with respect to the primary mesh Th, and ΛK

is the constant restriction of Λ on K, namely ΛK = Λ in each K. Moreover, suppose that xK is the
geometric center of K, i.e.,

xK =
1
4

(x1 + x2 + x3 + x4), (2.4)
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and assume that Th is regular, i.e., there exists a positive constant Cr independent of h such that

hK

ρK
≤ Cr, ∀K ∈ Th, (2.5)

where ρK = min1≤i≤4{diameter of the circle inscribed in ∆xi−1xixi+1}. Sometimes, we use the quasi-
regular assumption of the primary mesh, i.e., there exists a positive constant Cqr independent of h such
that

|K| ≥ Cqrh2
K , ∀K ∈ Th. (2.6)

One can show that (2.5) implies (2.6), but not vice versa (see Theorem 2.1 in [36]).

2.2. The classical Q1-FVEM

Assume that K̂ = x̂1 x̂2 x̂3 x̂4 = [−1, 1]2 is the reference rectangular element on the (ξ, η) plane, where
the coordinates of four vertices are given by

x̂1 = (−1,−1)T , x̂2 = (1,−1)T , x̂3 = (1, 1)T , x̂4 = (−1, 1)T .

Moreover, on K̂, we define the four bilinear nodal basis functions as

ϕ̂1 =
(1 − ξ)(1 − η)

4
, ϕ̂2 =

(1 + ξ)(1 − η)
4

, ϕ̂3 =
(1 + ξ)(1 + η)

4
, ϕ̂4 =

(1 − ξ)(1 + η)
4

. (2.7)

Obviously, we have that ϕ̂i(x̂ j) = δi j, where δi j denotes the Kronecker delta. For each strictly convex
quadrilateral K, there exists a unique invertible bilinear mapping JK which maps K̂ onto K that
JK(x̂i) = xi, i = 1, 2, 3, 4; see Figure 2. Precisely, this mapping can be written as

JK(ξ, η) = xK +
1
2

(m1ξ + m2η + mKξη),

where
m1 =

x2 + x3 − x1 − x4

2
, m2 =

x3 + x4 − x1 − x2

2
, mK =

x1 + x3 − x2 − x4

2
. (2.8)

x̂1 x̂2

x̂3x̂4

−1

1

1

−1 ξ

η

K̂

x1

x2

x3

x4

m1

m2

mK

K

JK

Figure 2. The bilinear mapping JK .
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Then, the Jacobian matrix of the mapping JK is given by

JK(ξ, η) =
1
2

(m1 + mKη, m2 + mKξ)T ,

and by a direct calculation, we obtain the determinant of the Jacobian matrix

detJK(ξ, η) =
1
4

(m1 + mKη) · (Rm2 + RmKξ) =
1
4
|K|

(
1 + βKξ + γKη

)
,

where

R =

(
0 1
−1 0

)
, βK =

m1 · (RmK)
|K|

=
S 123 − S 124

|K|
, γK =

mK · (Rm2)
|K|

=
S 134 − S 124

|K|
, (2.9)

and we have used the fact that m1 · (Rm2) = |K|. This leads to

J−1
K (ξ, η) =

2

|K|
(
1 + βKξ + γKη

)R(m2 + ξmK , −m1 − ηmK). (2.10)

Thanks to the mapping JK , on the primary mesh Th, we define the trial function space Uh as

Uh =
{
uh ∈ C0(Ω) : uh|K = ûh ◦ J

−1
K , ûh|K̂ is bilinear function,∀K ∈ Th, uh|∂Ω = 0

}
,

and on the dual mesh T ∗h , the test function space Vh is defined as

Vh =
{
vh ∈ L2(Ω) : vh|K∗i = constant,∀K∗i ∈ T

∗
h , vh|∂Ω = 0

}
.

For each vh ∈ Vh, we have
vh =

∑
xi∈

◦

Vh

viχi,

where vi = vh(xi) and χi is the characteristic function on K∗i , satisfying χi(x) = 1 if x ∈ K∗i and χi(x) = 0
if x ∈ Ω\K∗i .

The classical Q1-FVEM for solving (2.1) and (2.2) is as follows: find uh ∈ Uh such that

ah (uh, vh) = ( f , vh) , ∀vh ∈ Vh,

where
ah (uh, vh) =

∑
K∗i ∈T

∗
h

vi

∫
∂K∗i

(−Λ∇uh) · n∗i ds, ( f , vh) =
∑

K∗i ∈T
∗
h

vi

∫
K∗i

f dxdy.

By rearranging the summation of ah, we have

ah (uh, vh) =
∑
K∈Th

aK,h (uh, vh) ,

where

aK,h (uh, vh) =
4∑

i=1

vi

(∫
xK yi−1

(−ΛK∇uh) · n∗K,i−1 ds −
∫

xK yi

(−ΛK∇uh) · n∗K,i ds
)
, (2.11)

and
n∗K,i =

1
∥yi − xK∥

R (yi − xK) .
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2.3. The Q1-FVEM-SR scheme

By employing the Simpson rule to approximate the line integrals in (2.11), we get the so-called
Q1-FVEM-SR scheme, given by

ãh (uh, vh) = ( f , vh) , ∀vh ∈ Vh, (2.12)

where
ãh (uh, vh) =

∑
K∈Th

ãK,h (uh, vh) , (2.13)

and

ãK,h (uh, vh) =
1
6

4∑
i=1

vi

[
(xK − yi−1)TRTΛK (∇uh (xK) + 4∇uh (zi−1) + ∇uh (yi−1))

− (xK − yi)TRTΛK (∇uh (xK) + 4∇uh (zi) + ∇uh (yi))
]
,

(2.14)

with zi = (xK + yi)/2.
In Section 3, we will present a proof of the coercivity result, which is based on the study of cell

bilinear form defined by (2.14).

3. The coercivity result of the Q1-FVEM-SR scheme

For convenience of exposition, in each K, we define the following notations

mi j =
1

4|K|
(Rmi)T ΛK

(
Rmj

)
, i, j = 1, 2. (3.1)

υ1 = υ2 + υ3, υ2 =
4m11

4 − β
2
K

, υ3 =
4m22

4 − γ2
K

. (3.2)

µ1 = µ2 + µ3, µ2 =

2
(
4 − 3β

2
K

)
(
1 − β

2
K

) (
4 − β

2
K

)m11, µ3 =
2
(
4 − 3γ2

K

)(
1 − γ2

K

) (
4 − γ2

K

)m22. (3.3)

ζ1 = m11 −
1

4µ1

(
µ3

2
+
υ2

3

)2
β

2
K , ζ2 = m22 −

1
4µ1

(
µ2

2
+
υ3

3

)2
γ2

K ,

ζ3 = m12 +
1

4µ1

(
µ3

2
+
υ2

3

) (
µ2

2
+
υ3

3

)
βKγK .

(3.4)

In addition, we introduce the following assumption.
(A1) There exists a positive constant ϱ, independent of K and h, such that

ζ1ζ2 − ζ
2
3 ≥ ϱ. (3.5)

The main result of this section is given in the following Theorem 3.1.
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Theorem 3.1. Let Π∗h : Uh → Vh be the interpolation operator from Uh to Vh, satisfying Π∗huh(xi) =
uh(xi). Then, under assumptions (2.3), (2.4), (2.5) and (A1), we have

ãh
(
uh,Π

∗
huh

)
≥ κ|uh|

2
1, ∀uh ∈ Uh, (3.6)

where κ is a positive constant, independent of h, and | · |1 denotes the standard H1 semi-norm.

For the proof of the above Theorem 3.1, we need some preliminary results.

Lemma 3.1. Assume that K is a strictly convex quadrilateral; then, we have∣∣∣βK

∣∣∣ + ∣∣∣γK

∣∣∣ < 1, (3.7)

and
mK = γK m1 + βK m2. (3.8)

Proof. It follows from (2.9) that

1 + βK + γK = 1 +
1
|K|

(S 123 + S 134 − 2S 124) =
2S 234

|K|
> 0,

1 − βK + γK = 1 +
1
|K|

(−S 123 + S 134) =
2S 134

|K|
> 0,

1 + βK − γK = 1 +
1
|K|

(S 123 − S 134) =
2S 123

|K|
> 0,

1 − βK − γK = 1 +
1
|K|

(2S 124 − S 134 − S 123) =
2S 124

|K|
> 0,

which leads to (3.7). Suppose that mK = c1m1 + c2m2, where c1 and c2 are two coefficients to be
determined. Then, we have

mK · (Rm2) = c1m1 · (Rm2), mK · (Rm1) = c2m2 · (Rm1).

Noticing (2.9), we obtain that c1 = γK and c2 = βK . The proof is complete. □

Lemma 3.2. For the mi j defined by (3.1), we have

m12 = m21, m11m22 − m2
12 =

1
16

det(ΛK). (3.9)

Moreover, under the assumptions (2.3) and (2.6),

|m12| <
λ

4Cqr
,

Cqrλ

4
< mii <

λ

4Cqr
, i = 1, 2. (3.10)

Proof. Recalling that ΛK is a symmetric and positive definite matrix, we get that m12 = m21, and
by (3.1), we find that

m11m22 − m2
12 =

1
16|K|2

det

 (Rm1)T ΛK (Rm1) (Rm1)T ΛK (Rm2)

(Rm2)T ΛK (Rm1) (Rm2)T ΛK (Rm2)


=

1
16|K|2

det

  (Rm1)T

(Rm2)T

ΛK (Rm1,Rm2)


=

det(ΛK)
16|K|2

[det(m1,m2)]2 =
det(ΛK)

16
,
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which implies (3.9). From (2.3) and (2.6), we have

m11 ≥
λ∥m1∥

2

4|K|
≥
λ∥m1∥

2

4∥m1∥∥m2∥
=
λ∥m1∥∥m2∥

4∥m2∥
2 >

λ|K|
4h2

K

≥
Cqrλ

4
,

m11 ≤
λ∥m1∥

2

4|K|
≤
λ∥m1∥

2

4Cqrh2
K

<
λ

4Cqr
.

By the same arguments, we obtain the estimate of m22. Finally, it follows from (3.9) that

|m12| =
1
4

√
16m11m22 − det(ΛK) ≤ max{m11,m22} <

λ

4Cqr
.

□

Lemma 3.3. For the ζ1 and ζ2 defined in (3.4), we have

ζ1 + ζ2 > 0. (3.11)

Proof. By (3.2) and (3.3), we find that

0 < υi <
2
3
µi, i = 2, 3, (3.12)

and then
µ3

2
+
υ2

3
<
µ3

2
+

2µ2

9
<
µ1

2
. (3.13)

It follows that
ζ1 > m11 −

1
8

(
µ3

2
+
υ2

3

)
β

2
K .

Note that

υ2β
2
K =

4β
2
K

4 − β
2
K

m11 <
4
3

m11

and

µ3β
2
K =

2β
2
K

(
4 − 3γ2

K

)(
1 − γ2

K

) (
4 − γ2

K

)m22 <
2
(
4 − 3γ2

K

)
4 − γ2

K

m22 < 2m22,

which implies that

ζ1 > m11 −
1
8

(m11 + m22).

By the same arguments

ζ2 > m22 −
1
8

(m11 + m22).

That is
ζ1 + ζ2 > m11 + m22 −

1
4

(m11 + m22) =
3
4

(m11 + m22) > 0.

The proof is complete. □

AIMS Mathematics Volume 8, Issue 10, 22507–22537.



22516

Moreover, we introduce the following new basis functions:

ϕ̃1 =
1
2
, ϕ̃2 =

ξη

2
, ϕ̃3 = −

η

2
, ϕ̃4 = −

ξ

2
. (3.14)

By (2.7), we deduce that (
ϕ̂1, ϕ̂2, ϕ̂3, ϕ̂4

)
=

(
ϕ̃1, ϕ̃2, ϕ̃3, ϕ̃4

)
P, (3.15)

where

P =
1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .
Obviously, P is a symmetric and orthogonal matrix, i.e.,

P = PT = P−1. (3.16)

Lemma 3.4. For any uh ∈ Uh, in each K, we denote

uK = (u1, u2, u3, u4)T , ũK = (̃u1, ũ2, ũ3, ũ4)T = PuK , (3.17)

where ui = uh(xi). Then, under the assumption (2.5), there exists a positive constant C̃ independent of
h such that

|uh|1,K ≤ C̃∥w̃K∥, ∀uh ∈ Uh, ∀K ∈ Th, (3.18)

where w̃K = (̃u2, ũ3, ũ4)T .

Proof. A proof of (3.18) can be found in Lemma 6 of [18]. □

Remark 3.1. By Proposition 1 of [15], there exist two positive constants C and C such that

C|uh|1,K,h ≤ |uh|1,K ≤ C|uh|1,K,h, ∀uh ∈ Uh, ∀K ∈ Th, (3.19)

where

|uh|
2
1,K,h =

4∑
i=1

[uh(xi+1) − uh(xi)]2 . (3.20)

Moreover, it is easy to verify that

∥w̃K∥ ≤ |uh|1,K,h, ∀uh ∈ Uh, ∀K ∈ Th. (3.21)

Lemma 3.5. In each K, assume that ϑK = (ϑ1, ϑ2, ϑ3, ϑ4)T with the entry

ϑi =
1
6

(xK − yi−1)TRTΛK
[
ν(x̂K) + 4ν(̂zi−1) + ν(̂yi−1)

]
−

1
6

(xK − yi)TRTΛK
[
ν(x̂K) + 4ν(̂zi) + ν(̂yi)

]
,

where x̂ = J−1
K (x) and

ν(ξ, η) =
R(ηm2 − ξm1)

4detJK(ξ, η)
=

R(ηm2 − ξm1)

|K|
(
1 + βKξ + γKη

) . (3.22)
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Then, under the assumption (2.4), we have

ϑK = Pdiag
(
0, µ1, µ2 −

2
3
υ2, µ3 −

2
3
υ3

)
SK , (3.23)

where SK = (0, 1, βK , γK)T .

Proof. It follows from (2.4) and (2.8) that

xK − y1 = y3 − xK =
1
2

m2, xK − y4 = y2 − xK =
1
2

m1,

and by (3.22), we obtain

ϑ1 =
1
12

(Rm1)TΛK [ν(0, 0) + 4ν (−1/2, 0) + ν(−1, 0)] −
1

12
(Rm2)TΛK [ν(0, 0) + 4ν (0,−1/2) + ν(0,−1)]

=
1
3

 4

2 − βK

+
1

1 − βK

 m11 +
1
3

(
4

2 − γK
+

1
1 − γK

)
m22.

Similarly

ϑ2 = −
1
3

 4

2 + βK

+
1

1 + βK

 m11 −
1
3

(
4

2 − γK
+

1
1 − γK

)
m22,

ϑ3 =
1
3

 4

2 + βK

+
1

1 + βK

 m11 +
1
3

(
4

2 + γK
+

1
1 + γK

)
m22,

ϑ4 = −
1
3

 4

2 − βK

+
1

1 − βK

 m11 −
1
3

(
4

2 + γK
+

1
1 + γK

)
m22.

It follows that

(ϑ1, ϑ2, ϑ3, ϑ4)P =
(
0, µ1,

(
µ2 −

2
3
υ2

)
βK ,

(
µ3 −

2
3
υ3

)
γK

)
= ST

Kdiag
(
0, µ1, µ2 −

2
3
υ2, µ3 −

2
3
υ3

)
,

which implies (3.23) by noticing (3.16). □

Lemma 3.6. Under the assumption (2.4), we have

ãK,h
(
uh,Π

∗
huh

)
= ũT

KAKũK , (3.24)

where

AK =
1
|K|
RT

KΛKRK + diag
(
0, µ1, µ2 −

2
3
υ2, µ3 −

2
3
υ3

)
SKST

K , (3.25)

RK = R(0, 0,m1,−m2) and 0 is a zero vector.

Proof. In each K, we have

∇ϕ̃i = J
−1
K (ξ, η)∇̂ϕ̃i with ∇̂ =

(
∂

∂ξ
,
∂

∂η

)T

, (3.26)
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and by (3.14),

∇̂ϕ̃1 =

 0
0

 , ∇̂ϕ̃2 =
1
2

 η
ξ

 , ∇̂ϕ̃3 =
1
2

 0
−1

 , ∇̂ϕ̃4 =
1
2

 −1
0

 . (3.27)

It follows from (3.8) that

m2 + ξmK =
(
1 + βKξ

)
m2 + ξγK m1 =

(
1 + βKξ + γKη

)
m2 − γK(ηm2 − ξm1)

and
−m1 − ηmK = −

(
1 + γKη

)
m1 − ηβK m2 = −

(
1 + βKξ + γKη

)
m1 − βK(ηm2 − ξm1).

As a consequence, and by (2.10), it holds that

J−1
K (ξ, η) =

2
|K|
R(m2,−m1) − 2ν(ξ, η)

(
γK , βK

)
.

Then, from (3.26) and (3.27),

∇ϕ̃1 = 0, ∇ϕ̃2 =
R(ηm2 − ξm1)

|K|
− ν(ξ, η)

(
βKξ + γKη

)
= ν(ξ, η),

∇ϕ̃3 =
Rm1

|K|
+ ν(ξ, η)βK , ∇ϕ̃4 = −

Rm2

|K|
+ ν(ξ, η)γK .

In other words, we obtain (
∇ϕ̃1,∇ϕ̃2,∇ϕ̃3,∇ϕ̃4

)
=

1
|K|
RK + ν(ξ, η)ST

K . (3.28)

By (3.15) and (3.17), it holds that

uh =
(
ϕ̂1, ϕ̂2, ϕ̂3, ϕ̂4

)
uK =

(
ϕ̃1, ϕ̃2, ϕ̃3, ϕ̃4

)
PP−1ũK =

(
ϕ̃1, ϕ̃2, ϕ̃3, ϕ̃4

)
ũK ,

and it follows from (3.28) that

∇uh =
(
∇ϕ̃1,∇ϕ̃2,∇ϕ̃3,∇ϕ̃4

)
ũK =

1
|K|
RKũK + ν(ξ, η)ST

KũK . (3.29)

Substituting the above equality into (2.14), we have

ãK,h
(
uh,Π

∗
huh

)
= I1 + I2,

where the first part is given by

I1 =
1
|K|

4∑
i=1

ui(yi − yi−1)TRTΛKRKũK ,

and the second part is defined in (3.30). For I1, since

R(yi − yi−1) = RKPi,
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where Pi denotes the i-th column of matrix P, we obtain

I1 =
1
|K|

uT
KP

TRT
KΛKRKũK =

1
|K|

ũT
KR

T
KΛKRKũK .

For I2, from Lemma 3.5, we deduce that

I2 =

 4∑
i=1

uiϑi

 ST
KũK = uT

KϑKST
KũK = ũT

Kdiag
(
0, µ1, µ2 −

2
3
υ2, µ3 −

2
3
υ3

)
SKST

KũK . (3.30)

Combining the above results, we get the desired equality (3.24). □

By a direct calculation, it follows from (3.25) that

AK =



0 0 0 0

0 µ1 µ1βK µ1γK

0
(
µ2 −

2
3
υ2

)
βK 4m11 +

(
µ2 −

2
3
υ2

)
β

2
K −4m12 +

(
µ2 −

2
3
υ2

)
βKγK

0
(
µ3 −

2
3
υ3

)
γK −4m12 +

(
µ3 −

2
3
υ3

)
βKγK 4m22 +

(
µ3 −

2
3
υ3

)
γ2

K


.

Let

As
K =

1
2

(
AK + A

T
K

)
=

(
0 0T

0 Bs
K

)
be the symmetric part of AK , where

Bs
K =



µ1

(
µ1 + µ2

2
−
υ2

3

)
βK

(
µ1 + µ3

2
−
υ3

3

)
γK(

µ1 + µ2

2
−
υ2

3

)
βK 4m11 +

(
µ2 −

2
3
υ2

)
β

2
K −4m12 +

(
µ1

2
−
υ1

3

)
βKγK(

µ1 + µ3

2
−
υ3

3

)
γK −4m12 +

(
µ1

2
−
υ1

3

)
βKγK 4m22 +

(
µ3 −

2
3
υ3

)
γ2

K


. (3.31)

It follows that
ãK,h

(
uh,Π

∗
huh

)
= ũT

KAKũK = ũT
KA

s
KũK = w̃T

KB
s
Kw̃K , (3.32)

where w̃K is defined in Lemma 3.4, i.e.,

ũK =

(
ũ1

w̃K

)
.

Lemma 3.7. Assume that T = T1T2, where

T1 =


1 −

1
µ1

(
µ1 + µ2

2
−
υ2

3

)
βK 0

0 1 0

0 0 1

 , T2 =


1 0 −

1
µ1

(
µ1 + µ3

2
−
υ3

3

)
γK

0 1 0

0 0 1

 .
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Then, for the matrix Bs
K defined by (3.31), it holds that

TTBs
KT =


µ1 0 0
0 4ζ1 −4ζ3
0 −4ζ3 4ζ2

 . (3.33)

Consequently, Bs
K is a positive definite matrix if and only if

ζ1ζ2 − ζ
2
3 > 0. (3.34)

Proof. By a direct calculation, it holds that

TT
1B

s
KT1 =


µ1 0

(
µ1 + µ3

2
−
υ3

3

)
γK

0 4ζ1 −4ζ3(
µ1 + µ3

2
−
υ3

3

)
γK −4ζ3 4m22 +

(
µ3 −

2
3
υ3

)
γ2

K


,

and still through some straightforward calculations with T2, we obtain (3.33). Since µ1 > 0, T1 and
T2 are invertible matrices; we find that Bs

K is a positive definite matrix if and only if the roots of the
characteristic equation

λ2 − (ζ1 + ζ2)λ + ζ1ζ2 − ζ2
3 = 0 (3.35)

are all positive, and we get the desired equivalent condition (3.34) by noticing (3.11). □

Lemma 3.8. For the matrix T defined in Lemma 3.7, we have

∥T∥ < 3, (3.36)

where ∥T∥ denotes the spectral norm of T.

Proof. Let

c1 = −
1
µ1

(
µ1 + µ2

2
−
υ2

3

)
βK , c2 = −

1
µ1

(
µ1 + µ3

2
−
υ3

3

)
γK;

then we deduce that

TT
1T1 =


1 c1 0
c1 c2

1 + 1 0
0 0 1

 , TT
2T2 =


1 0 c2

0 1 0
c2 0 c2

2 + 1

 .
It follows that

∥Ti∥ = λmax

(
TT

i Ti

)
=

c2
i + 2 +

√(
c2

i + 2
)2
− 4

2


1/2

<
√

c2
i + 2, i = 1, 2,

where λmax(TT
i Ti) is the maximum eigenvalue of TT

i Ti. Moreover, by (3.7), (3.12) and (3.3), we have

|c1| <
1
µ1

(
µ1 + µ2

2
−
υ2

3

)
<
µ1 + µ2

2µ1
< 1,
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and we also have |c2| < 1. As a result,

∥Ti∥ <
√

3, i = 1, 2,

which leads to (3.36) by using the fact that ∥T∥ ≤ ∥T1∥∥T2∥. □

Lemma 3.9. Under the assumption (A1), Bs
K is uniformly positive definite, that is

vTBs
Kv ≥

8Cqrϱ

9λ
∥v∥2, ∀v ∈ R3. (3.37)

Proof. It follows from (3.33) that

vTBs
Kv =

(
T−1v

)T (
TTBs

KT
) (
T−1v

)
≥ λK

∥∥∥T−1v
∥∥∥2
,

where λK = min{µ1, 4λ
′

K} and λ
′

K is the minimum root of characteristic equation (3.35), given by

λ
′

K =
ζ1 + ζ2 −

√
(ζ1 + ζ2)2

− 4
(
ζ1ζ2 − ζ

2
3

)
2

.

From (3.7) and (3.3), we have
µ2 ≥ 2m11, µ3 ≥ 2m22,

and by using (3.4),

λ
′

K ≤
ζ1 + ζ2

2
≤

m11 + m22

2
≤
µ1

4
,

which implies that λK = 4λ′K . Moreover, it holds that

λ
′

K =
2
(
ζ1ζ2 − ζ

2
3

)
ζ1 + ζ2 +

√
(ζ1 + ζ2)2

− 4
(
ζ1ζ2 − ζ

2
3

) ≥ ζ1ζ2 − ζ2
3

ζ1 + ζ2
≥
ζ1ζ2 − ζ

2
3

m11 + m22
>

2Cqrϱ

λ
,

where we have used the facts of (3.5) and (3.10) in the last inequality. By (3.36), we find that

∥T−1v∥ ≥
1
∥T∥
∥v∥ ≥

1
3
∥v∥.

Combining the above facts, we get the desired result (3.37). □

The proof of Theorem 3.1. It follows from (2.13), (3.32), (3.37) and (3.18) that

ãh
(
uh,Π

∗
huh

)
=

∑
K∈Th

ãK,h
(
uh,Π

∗
huh

)
=

∑
K∈Th

w̃T
KB

s
Kw̃K ≥

8Cqrϱ

9λ

∑
K∈Th

∥w̃K∥
2 ≥

8Cqrϱ

9λC̃2
|uh|

2
1;

we obtain (3.6) with κ = (8Cqrϱ)/(9λC̃2) and complete the proof of Theorem 3.1. □
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4. Discussions on some special meshes

By Theorem 3.1, one can see that the assumption (A1) plays an important role in our coercivity
result of the Q1-FVEM-SR scheme. However, the meaning of (3.5) is not so straightforward, since
it involves the anisotropic diffusion tensor ΛK and the geometry of the general convex quadrilateral
cell K. In this section, we employ some special meshes to explore the meaning of (A1), including the
parallelogram, h1+γ-parallelogram and trapezoidal meshes.

4.1. Parallelogram mesh

Theorem 4.1. Suppose that Th consists of parallelograms; then, under the assumption (2.3), (A1)
holds with

ϱ = min
K∈Th

[
1

16
det(ΛK)

]
≥

1
16
λ2. (4.1)

Proof. If K ∈ Th is a parallelogram, then by (2.8) and (2.9), we obtain

mK = 0, βK = γK = 0. (4.2)

It follows from (3.4) and (3.9) that

ζ1ζ2 − ζ
2
3 = m11m22 − m2

12 =
1

16
det(ΛK).

Thus, by recalling (2.3), we obtain (4.1) and complete the proof. □

4.2. h1+γ-parallelogram mesh

Theorem 4.2. Suppose that Th consists of h1+γ-parallelograms, namely there exists a positive constant
C1 such that

∥mK∥ ≤ C1h1+γ
K , ∀K ∈ Th, (4.3)

where γ > 0 is a constant. Moreover, we assume that (2.3) and (2.6) hold. Consequently, when h is
sufficiently small, we have ∣∣∣∣∣(ζ1ζ2 − ζ2

3

)
−

1
16

det (ΛK)
∣∣∣∣∣ ≤ C2h2γ

K , ∀K ∈ Th,

where C2 is a positive constant independent of K and h.

Proof. Let

a1 = −
1

4µ1

(
µ3

2
+
υ2

3

)2
β

2
K , a2 = −

1
4µ1

(
µ2

2
+
υ3

3

)2
γ2

K , a3 =
1

4µ1

(
µ3

2
+
υ2

3

) (
µ2

2
+
υ3

3

)
βKγK .

Then, by (3.4) and (3.9), we find that

ζ1ζ2 − ζ
2
3 = (m11 + a1)(m22 + a2) − (m12 + a3)2 =

1
16

det(ΛK) + Res,

where
Res = a2m11 + a1m22 + a1a2 − 2a3m12 − a2

3.
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It follows from (2.9), (4.3) and (2.6) that ∣∣∣βK

∣∣∣ , ∣∣∣γK

∣∣∣ ≤ C1

Cqr
hγK ,

and when h is sufficiently small, we deduce from (3.2) and (3.3) that

υ2 <
4
3

m11, µ3 <
2

1 − γ2
K

m22 < 4m22.

As a result, by (3.13) and (3.10),

|a1| <
C2

1

8C2
qr

(
µ3

2
+
υ2

3

)
h2γ

K <
C2

1

4C2
qr

(
2
9

m11 + m22

)
h2γ

K <
11λC2

1

144C3
qr

h2γ
K .

Similarly, |a2| and |a3| can be bounded by h2γ
K . By using (3.10) again, there exists a constant C2 > 0

such that |Res| ≤ C2h2γ
K , and this completes the proof. □

Remark 4.1. By Theorem 4.2, we find that for the h1+γ-parallelogram mesh, (A1) holds with ϱ = C0λ
2,

where 0 < C0 < 1/16 is a constant.

4.3. Trapezoidal mesh

Theorem 4.3. Suppose that Th consists of trapezoids, and that, for each K ∈ Th, the lengths of the two
bottoms are denoted as Lb and Lt; see Figure 3. Moreover, we define the ratio τ = Lb/Lt or τ = Lt/Lb

and assume that (2.3) and (2.6) hold. Then, for any trapezoidal cell K, if∣∣∣∣∣1 − τ1 + τ

∣∣∣∣∣ < 6
√

26Cqrλ

13λ
, (4.4)

Bs
K is a positive definite matrix.

Lt

Lb
x1 x2

x3x4

Figure 3. A general trapezoidal cell used in Theorem 4.3.

Proof. Without loss of generality, we assume that x1x2//x4x3. Then, by (2.9) and (3.3), we obtain

βK = 0, γK =
Lt − Lb

Lt + Lb
, µ2 = 2m11.
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It follows from (3.4), (3.9), (2.3), (3.12), (3.7) and (3.10) that

ζ1ζ2 − ζ
2
3 =m11

(
m22 −

1
4µ1

(
µ2

2
+
υ3

3

)2
γ2

K

)
− m2

12 =
1

16
det (ΛK) −

m11

4µ1

(
µ2

2
+
υ3

3

)2
γ2

K

≥
1

16
λ2 −

m11

8

(
µ2

2
+
υ3

3

)
γ2

K =
1

16
λ2 −

m11

8

m11 +
4

3
(
4 − γ2

K

)m22

 γ2
K

≥
1

16
λ2 −

m11

8

(
m11 +

4
9

m22

)
γ2

K ≥
1

16

λ2 −
13λ

2

72C2
qr
γ2

K

 .
Therefore, by Lemma 3.7, we deduce that Bs

K is a positive definite matrix provided that (4.4) holds.
The proof is complete. □

Remark 4.2. We mention that in Theorem 4.3, (4.4) is just a sufficient condition to ensure the positive
definiteness of Bs

K . As a special case, if K is a parallelogram, then τ = 1, implies that (4.4) holds. In
other words, the result of Theorem 4.3 covers parallelogram mesh.

5. H1 error estimate

Under the assumption (2.5), there exist two positive constants C3 and C4 such that

|u − Πhu|1 ≤ C3h|u|2, ∀u ∈ H1
0(Ω) ∩ H2(Ω), (5.1)

and
|ah(Πhu − u,Π∗hwh)| ≤ C4h|u|2|wh|1, ∀u ∈ H1

0(Ω) ∩ H2(Ω), wh ∈ H1
0(Ω), (5.2)

where Πhu ∈ Uh is the isoparametric bilinear interpolation of u, satisfying Πhu(xi) = u(xi). A proof
of (5.1) can be found in [37], while that for (5.2) is given in [15]. Moreover, in order to present the
optimal H1 error estimate, we need the following assumption.

(A2) There exists a positive constant C5, independent of h, such that∣∣∣̃ah(uh,Π
∗
hwh) − ah(uh,Π

∗
hwh)

∣∣∣ ≤ C5h|uh|1|wh|1, ∀uh,wh ∈ Uh. (5.3)

Theorem 5.1. Assume that u ∈ H1
0(Ω) ∩ H2(Ω) is the exact solution of (2.1) and (2.2), uh ∈ Uh is the

Q1-FVEM-SR solution of (2.12) and h ≤ 1. Then, under the assumptions (2.3), (2.5), (A1) and (A2),
we have

|u − uh|1 ≤ C6h∥u∥2,

where
C6 = C3 +

1
κ

(C4 +C5 +C3C5).

Proof. It follows from (3.6) that

|Πhu − uh|
2
1 ≤

1
κ

ãh(Πhu − uh,Π
∗
h(Πhu − uh))

and then

|Πhu − uh|1 ≤
1
κ

sup
wh∈Uh

ãh(Πhu − uh,Π
∗
hwh)

|wh|1
. (5.4)

AIMS Mathematics Volume 8, Issue 10, 22507–22537.



22525

By (5.2), (5.3) and (5.1), we obtain∣∣∣̃ah(Πhu − uh,Π
∗
hwh)

∣∣∣ ≤ |ah(Πhu − u,Π∗hwh)| + |̃ah(Πhu − uh,Π
∗
hwh) − ah(Πhu − u,Π∗hwh)|

= |ah(Πhu − u,Π∗hwh)| + |̃ah(Πhu,Π∗hwh) − ah(Πhu,Π∗hwh)|
≤ h|wh|1 (C4|u|2 +C5|Πhu|1) ≤ h|wh|1 [C4|u|2 +C5(|Πhu − u|1 + |u|1)]
≤ h|wh|1 [C4|u|2 +C5(C3h|u|2 + |u|1)]
≤ (C4 +C5 +C3C5)h∥u∥2|wh|1,

where the fact that
ãh(uh,Π

∗
hwh) = ( f ,Π∗hwh) = ah(u,Π∗hwh)

is used in the second equality. Then, we deduce from (5.4) that

|Πhu − uh|1 ≤
1
κ

(C4 +C5 +C3C5)h∥u∥2,

which implies that
|u − uh|1 ≤ |u − Πhu|1 + |Πhu − uh|1 ≤ C6h∥u∥2.

The proof is complete. □

By Theorem 5.1, we observe that the assumption (A2) plays an important role in the optimal H1

error estimate of the Q1-FVEM-SR scheme. In the rest of this section, we explore the meaning of
(A2) for some special meshes, including the parallelogram and h1+γ-parallelogram; see Theorem 5.2
and 5.3, respectively.

Theorem 5.2. Suppose that Th consists of parallelograms; then, (A2) holds with

ãh(uh,Π
∗
hwh) = ah(uh,Π

∗
hwh), ∀uh,wh ∈ Uh. (5.5)

Proof. If K ∈ Th is a parallelogram, then it follows from (4.2) and (2.10) that

J−1
K (ξ, η) =

2
|K|
R(m2,−m1).

Note that
∇uh = J

−1
K (ξ, η)∇̂ûh

and ΛK is a constant matrix, which leads to (ΛK∇uh) · n∗i is a linear function on each edge of K∗i . Since
the Simpson rule is exact for polynomials of degree not greater than 3, then we obtain

ãK,h(uh,Π
∗
hwh) = aK,h(uh,Π

∗
hwh),

which implies (5.5) and completes the proof. □

Theorem 5.3. Suppose that Th consists of h1+γ-parallelograms, namely (4.3) is satisfied. Moreover,
we assume that (2.3) and (2.6) hold. Consequently, when h is sufficiently small, we have

∣∣∣̃ah(uh,Π
∗
hwh) − ah(uh,Π

∗
hwh)

∣∣∣ ≤ (
3 + 2

√
3
) C1λ

C2
qrC

2 hγ|uh|1|wh|1, ∀uh,wh ∈ Uh. (5.6)

AIMS Mathematics Volume 8, Issue 10, 22507–22537.



22526

Proof. For the h1+γ-parallelogram K, assume that its two vectors m1 and m2 form a parallelogram K′,
and that x′i (i = 1, 2, 3, 4) denotes the four vertices of K′; see Figure 4. For simplicity, we denote uK

h
as the restriction of uh on K. Moreover, let uK′

h be the isoparametric bilinear function on K, satisfying
uK′

h (x′i) = uK
h (xi), i = 1, 2, 3, 4, and ΛK′ = ΛK . Then, by using the facts that

|K′| = m1 · (Rm2) = |K|, βK′ = γK′ = 0,

we deduce from (3.29) that

∇uK′
h =

1
|K|

(
RKũK + R(ηm2 − ξm1)ST

K′ũK

)
,

which leads to

∇uK
h − ∇uK′

h =
R(ηm2 − ξm1)

|K|

 ST
KũK

1 + βKξ + γKη
− ST

K′ũK

 .
A direct calculation yields that

J1 :=
∣∣∣aK,h(uh,Π

∗
hwh) − aK′,h(uh,Π

∗
hwh)

∣∣∣ = ∣∣∣∣∣∣∣
4∑

i=1

Ei

∣∣∣∣∣∣∣ ,
where

Ei =
wh(xi+1) − wh(xi)
∥xK − yi∥

∫
xK yi

(xK − yi)TRTΛK

(
∇uK

h − ∇uK′
h

)
ds.

When the mesh size h is sufficiently small, it follows from (3.10), (3.19) and (3.21) that

|E1| =

∣∣∣∣∣∣m22(wh(x2) − wh(x1))
∫ 0

−1
η

(
ST

KũK

1 + γKη
− ST

K′ũK

)
dη

∣∣∣∣∣∣
≤
λ

2Cqr
|wh|1,K,h

∫ 0

−1

∣∣∣ST
KũK −

(
1 + γKη

)
ST

K′ũK

∣∣∣ dη

≤

√
3C1λ

2C2
qrC

2 hγK |uh|1,K |wh|1,K ,

(5.7)

where we have used the fact that∣∣∣ST
KũK − (1 + γKη)S

T
K′ũK

∣∣∣ = ∣∣∣(−γKη, βK , γK)w̃K

∣∣∣ ≤ √3C1

Cqr
hγK∥w̃K∥, ∀η ∈ [−1, 0].

Similarly, the above inequality (5.7) holds for any Ei. This yields that

J1 ≤

4∑
i=1

|Ei| ≤
2
√

3C1λ

C2
qrC

2 hγK |uh|1,K |wh|1,K .

On the other hand, we have

J2 :=
∣∣∣̃aK,h(uh,Π

∗
hwh) − aK′,h(uh,Π

∗
hwh)

∣∣∣ = ∣∣∣∣∣∣∣
4∑

i=1

(wh(xi+1) − wh(xi))(Fi −Gi)

∣∣∣∣∣∣∣ ,
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where

Fi =
1
6

(xK − yi)TRTΛK

(
∇uK

h (xK) + 4∇uK
h (zi) + ∇uK

h (yi)
)

and

Gi =
1

∥xK − yi∥

∫
xK yi

(xK − yi)TRTΛK∇uK′
h ds.

By a direct calculation, we find that

F1 −G1 = m22

(̃
u2 − a4ST

KũK

)
,

where

a4 =
1
3

(
4

2 − γK
+

1
1 − γK

)
.

Note that 0 < a4 < 2 and

|1 − a4| =

∣∣∣∣∣∣ 4 − 3γK

3
(
1 − γK

) (
2 − γK

)γK

∣∣∣∣∣∣ < ∣∣∣γK

∣∣∣ ≤ C1

Cqr
hγK .

As a result

|F1 −G1| ≤
λ

4Cqr

∣∣∣̃u2 − a4ST
KũK

∣∣∣ ≤ 3C1λ

4C2
qrC

hγK |uh|1,K , (5.8)

where we have used the fact that∣∣∣̃u2 − a4ST
KũK

∣∣∣ = ∣∣∣(1 − a4)̃u2 − a4βK ũ3 − a4γK ũ4

∣∣∣ ≤ 3C1

Cqr
hγK∥w̃K∥.

By the same arguments, the estimate (5.8) holds for any Fi −Gi. This yields that

J2 ≤ |wh|1,K,h

4∑
i=1

|Fi −Gi| ≤
3C1λ

C2
qrC

2 hγK |uh|1,K |wh|1,K .

Combining the above results, we obtain

∣∣∣̃aK,h(uh,Π
∗
hwh) − aK,h(uh,Π

∗
hwh)

∣∣∣ ≤ J1 + J2 ≤
(
3 + 2

√
3
) C1λ

C2
qrC

2 hγK |uh|1,K |wh|1,K .

Finally, by using the fact that∣∣∣̃ah(uh,Π
∗
hwh) − ah(uh,Π

∗
hwh)

∣∣∣ ≤ ∑
K∈Th

∣∣∣̃aK,h(uh,Π
∗
hwh) − aK,h(uh,Π

∗
hwh)

∣∣∣
and the Cauchy-Schwarz inequality, we obtain (5.6) and complete the proof. □
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Figure 4. The h1+γ-parallelogram K = □x1x2x3x4 (solid lines) and associated parallelogram
K′ = □x′1x′2x′3x′4 (dotted lines), which is used in Theorem 5.3.

Remark 5.1. In Theorem 5.3, if γ ≥ 1, then (5.6) implies (5.3). That is, the assumption (A2) holds on
h1+γ-parallelogram mesh with γ ≥ 1.

Remark 5.2. We mention that the coercivity results in [34, 35] do not cover arbitrary trapezoidal
meshes, and, based on the coercivity results, [34, 35] proved the optimal H1 error estimate. Thus, the
error analysis in [34, 35] does not hold for arbitrary convex quadrilateral meshes; it also needs some
mesh assumptions.

6. Numerical examples

We present several examples to verify the theoretical findings of an isoparametric bilinear FVEM
based on the Simpson formula, including the H1 error and coercivity result. Examples 6.1, 6.2, 6.3
and 6.4 have been designed for scalar, discontinuous, anisotropic diffusion and variable coefficients,
respectively. However, Example 6.5 has been constructed to show that the assumption (A1) is just a
sufficient condition to guarantee the coercivity result. For simplicity, we denote ei = u(xi) − uh(xi) as
the error of the solution at vertex xi. Then, the discrete H1 error and convergence rate are respectively
defined by

Eu =

∑
K∈Th

4∑
i=1

(ei+1 − ei)2


1/2

, Ru =
log[Eu(h2)/Eu(h1)]

log(h2/h1)
,

where h1, h2 denote the mesh sizes of two successive meshes and Eu(h1), Eu(h2) are the corresponding
errors. Moreover, in order to investigate the coercivity of the scheme numerically, we define

ϱ = min
K∈Th

{
ζ1ζ2 − ζ

2
3

}
, Coer =

ãh(uh,Π
∗
huh)

|uh|
2
1,h

, |uh|
2
1,h =

∑
K∈Th

|uh|
2
1,K,h,

where |uh|1,K,h is defined by (3.20). Then Eu and |uh|1,h are equivalent to |Πhu−uh|1 and |uh|1 respectively.
Four types of meshes were used in our experiments; see Figure 5. The first type is a uniform

trapezoidal mesh (Figure 5(a)), which is obtained by moving some interior vertices of the
corresponding uniform square meshes along the longitudinal direction. The random mesh
(Figure 5(c)) was constructed from the uniform square mesh by applying a random distortion of the
interior vertices as follows

x := x + ωrxh, y := y + ωryh,

AIMS Mathematics Volume 8, Issue 10, 22507–22537.



22529

where ω ∈ (0, 0.5) is the degree of distortion, rx and ry are two random numbers that belong to [−1, 1]
and h is the mesh size of the uniform square mesh. The random trapezoidal mesh (Figure 5(b)) is
distorted only in the x direction. The last is the Kershaw mesh (Figure 5(d)); its description can be
found in [38], and it is a quasi-parallelogram mesh. It can be checked that the meshes in Figure 5(a),
(b) and (c) are not h1+γ-parallelogram. Here we generally choose ω = 0.3 and Ω = [0, 1]2.

(a) Uniform trapezoidal mesh (b) Random trapezoidal mesh (c) Random mesh

(d) Kershaw mesh

Figure 5. Four mesh types used in the numerical tests.

Example 6.1. Solve (2.1), where Λ is the identity matrix. The exact solution is given by

u(x, y) = sin(2πx) sin(πy)ex2+y,

and the source term f is determined by Λ and u.
The values of ϱ are presented in Table 1; one can see that they are all greater than 0 and do not tend

to 0 with the refinement of grids. That is, (A1) is satisfied for the four mesh types. From Table 1, we also
find that the values of Coer have a positive lower bound that is independent of h, i.e., the theoretical
finding in Theorem 3.1 is verified. The numerical results of H1 error are given in Table 2, where a first
order convergence can be explicitly observed, which validates the theoretical result of Theorem 5.1.
Note that for the Kershaw mesh, the H1 error order is 2, and there is a superconvergence phenomenon.
However, for the uniform trapezoidal mesh, the superconvergence cannot always be expected; see the
following examples. The reason is that Kershaw mesh is a quasi-parallelogram mesh, but the uniform
trapezoidal mesh is not. We remark that the scheme constructed in this work is identical to the classical
Q1−FVEM for uniform rectangular mesh, and the corresponding superconvergence has been proved
by some researchers (e.g., [19]).
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Table 1. Numerical coercivity results for Example 6.1.

Mesh 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128

Uniform trapezoidal mesh
Coer 0.443 0.435 0.433 0.433 0.433
ϱ 6.083e-002 6.083e-002 6.083e-002 6.083e-002 6.083e-002

Random trapezoidal mesh
Coer 0.443 0.465 0.457 0.459 0.458
ϱ 6.115e-002 6.093e-002 6.070e-002 6.054e-002 6.051e-002

Random mesh
Coer 0.435 0.457 0.447 0.449 0.448
ϱ 5.930e-002 5.968e-002 5.743e-002 5.599e-002 5.717e-002

Kershaw mesh
Coer 0.486 0.467 0.453 0.448 0.446
ϱ 6.056e-002 6.178e-002 6.227e-002 6.243e-002 6.248e-002

Table 2. H1 errors and convergence rates for Example 6.1.

Mesh 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128

Uniform trapezoidal mesh
Eu 0.590 0.152 3.946e-002 1.057e-002 3.179e-003
Ru - 1.957 1.946 1.900 1.733

Random trapezoidal mesh
Eu 0.549 0.165 7.801e-002 3.967e-002 2.003e-002
Ru - 1.709 1.150 0.975 0.984

Random mesh
Eu 0.677 0.218 0.105 5.599e-002 2.792e-002
Ru - 1.589 1.137 0.946 1.001

Kershaw mesh
Eu 2.188 1.095 0.401 0.120 3.194e-002
Ru - 1.155 1.548 1.802 1.933

Example 6.2. To verify the validity and efficiency of the numerical scheme, many researchers adopted
the discontinuous coefficient for some general quadrilateral meshes [29, 34, 39]. Here we also solve
the problem (2.1) with the following discontinuous coefficient and exact solution

Λ(x, y) =
{

1, x ≤ 0.5,
4, x > 0.5.

, u(x, y) =
{

y4 − 2y2 + 4xy + 2y + 6x + 1, x ≤ 0.5,
y4 − 2y2 + xy + 3.5y + 1.5x + 3.25, x > 0.5.

Note that Λ is discontinuous across the line x = 0.5. Thus, in this example, for the random
trapezoidal and random quadrilateral meshes, all of the vertices on the line x = 0.5 are only allowed
to be distorted in the y direction. The coercivity results, H1 errors and the corresponding convergence
rates are presented in Tables 3 and 4. One can see that although the diffusion coefficient is
discontinuous, the numerical performance of the Q1-FVEM-SR scheme is similar to that of the
previous Example 6.1. Moreover, the superconvergence result can be observed for the Kershaw mesh.
The reason is that the discontinuity of the diffusion coefficient is fitted with the boundary of
quadrilaterals.
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Table 3. Numerical coercivity results for Example 6.2.

Mesh 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128

Uniform trapezoidal mesh
Coer 0.688 0.680 0.676 0.674 0.673
ϱ 6.083e-002 6.083e-002 6.083e-002 6.083e-002 6.083e-002

Random trapezoidal mesh
Coer 0.692 0.700 0.694 0.696 0.696
ϱ 6.123e-002 6.093e-002 6.096e-002 6.054e-002 6.056e-002

Random mesh
Coer 0.676 0.688 0.682 0.684 0.683
ϱ 6.036e-002 5.968e-002 5.912e-002 5.790e-002 5.717e-002

Kershaw mesh
Coer 0.627 0.633 0.635 0.635 0.635
ϱ 6.056e-002 6.178e-002 6.227e-002 6.243e-002 6.248e-002

Table 4. H1 errors and convergence rates for Example 6.2.

Mesh 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128

Uniform trapezoidal mesh
Eu 1.968e-002 6.017e-003 2.180e-003 9.503e-004 4.556e-004
Ru - 1.709 1.467 1.198 1.061

Random trapezoidal mesh
Eu 1.956e-002 9.294e-003 5.434e-003 2.835e-003 1.415e-003
Ru - 1.058 0.824 0.938 1.001

Random mesh
Eu 2.979e-002 1.729e-002 8.919e-003 4.720e-003 2.383e-003
Ru - 0.764 1.003 0.982 0.983

Kershaw mesh
Eu 0.151 8.139e-002 3.368e-002 1.065e-002 2.916e-003
Ru - 1.036 1.360 1.714 1.897

Example 6.3. We still solve the problem (2.1), choosing the anisotropic diffusion tensor and analytic
solution as follows

Λ(x, y) =
(

1.5 0.5
0.5 1.5

)
, u(x, y) =

1
2

[
sin((1 − x)(1 − y))

sin 1
+ (1 − x)3(1 − y)2

]
.

The numerical results are presented in Tables 5 and 6, showing the first order convergence for H1

errors and the satisfaction of (A1). One can see that the numerical performance is similar to the
previous two examples.

Table 5. Numerical coercivity results for Example 6.3.

Mesh 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128

Uniform trapezoidal mesh
Coer 0.672 0.696 0.709 0.715 0.718
ϱ 0.121 0.121 0.121 0.121 0.121

Random trapezoidal mesh
Coer 0.924 0.908 0.900 0.903 0.902
ϱ 0.122 0.121 0.121 0.121 0.121

Random mesh
Coer 0.903 0.872 0.867 0.866 0.862
ϱ 0.119 0.117 0.115 0.110 0.112

Kershaw mesh
Coer 0.543 0.545 0.545 0.544 0.544
ϱ 0.121 0.124 0.125 0.125 0.125
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Table 6. H1 errors and convergence rates for Example 6.3.

Mesh 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128

Uniform trapezoidal mesh
Eu 9.073e-003 4.362e-003 2.163e-003 1.082e-003 5.421e-004
Ru - 1.057 1.012 0.999 0.997

Random trapezoidal mesh
Eu 8.356e-003 5.037e-003 2.797e-003 1.393e-003 7.348e-004
Ru - 0.720 0.903 1.004 0.921

Random mesh
Eu 1.888e-002 6.826e-003 3.350e-003 1.785e-003 9.430e-004
Ru - 0.777 1.106 0.947 0.918

Kershaw mesh
Eu 7.837e-002 3.140e-002 9.812e-003 2.692e-003 7.014e-004
Ru - 1.527 1.792 1.925 1.970

Example 6.4. Consider the problem (2.1) and we choose the following variable coefficient

Λ(x, y) =

 1 + x
1
4

(x + y)
1
4

(x + y) 1 + y

 .
The analytic solution and corresponding right-hand side function are respectively given by

u(x, y) = ex+y, f (x, y) = −
3
2

(3 + x + y)ex+y.

Since in this example, Λ is a variable coefficient, in our numerical experiments, we let ΛK = Λ(xK).
The numerical results are presented in Tables 7 and 8, where we can observe that the numerical
performance is similar to that of the previous examples. For comparison, in Tables 9 and 10 we
present the numerical results by employing the trapezoidal rule, where the definitions of Coer and ϱ
are the same as in [34]. We find that the numerical performance of the Simpson rule is similar to that
of the trapezoidal rule.

Table 7. Numerical coercivity results for Example 6.4 by employing the Simpson rule.

Mesh 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128

Uniform trapezoidal mesh
Coer 0.753 0.738 0.730 0.726 0.724
ϱ 6.861e-002 6.468e-002 6.275e-002 6.179e-002 6.131e-002

Random trapezoidal mesh
Coer 0.930 0.949 0.936 0.939 0.937
ϱ 7.059e-002 6.640e-002 6.446e-002 6.332e-002 6.285e-002

Random mesh
Coer 0.864 0.917 0.895 0.892 0.889
ϱ 7.071e-002 6.650e-002 6.429e-002 6.310e-002 6.285e-002

Kershaw mesh
Coer 0.570 0.576 0.577 0.577 0.577
ϱ 6.886e-002 6.565e-002 6.407e-002 6.328e-002 6.289e-002
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Table 8. H1 errors and convergence rates for Example 6.4 by employing the Simpson rule.

Mesh 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128

Uniform trapezoidal mesh
Eu 3.206e-002 1.313e-002 6.109e-003 2.998e-003 1.494e-003
Ru - 1.288 1.104 1.027 1.005

Random trapezoidal mesh
Eu 2.662e-002 1.548e-002 8.679e-003 4.295e-003 2.205e-003
Ru - 0.771 0.888 1.014 0.960

Random mesh
Eu 3.284e-002 2.203e-002 1.174e-002 6.227e-003 3.182e-003
Ru - 0.560 0.979 0.953 0.966

Kershaw mesh
Eu 0.442 0.189 6.069e-002 1.689e-002 4.440e-003
Ru - 1.421 1.747 1.904 1.958

Table 9. Numerical coercivity results for Example 6.4 by employing the trapezoidal rule.

Mesh 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128

Uniform trapezoidal mesh
Coer 0.753 0.738 0.730 0.726 0.724
ϱ 6.829e-002 6.437e-002 6.245e-002 6.150e-002 6.102e-002

Random trapezoidal mesh
Coer 0.930 0.949 0.936 0.939 0.937
ϱ 7.059e-002 6.640e-002 6.444e-002 6.331e-002 6.283e-002

Random mesh
Coer 0.864 0.917 0.895 0.892 0.889
ϱ 7.071e-002 6.649e-002 6.425e-002 6.295e-002 6.285e-002

Kershaw mesh
Coer 0.570 0.576 0.577 0.577 0.577
ϱ 6.886e-002 6.565e-002 6.407e-002 6.328e-002 6.289e-002

Table 10. H1 errors and convergence rates for Example 6.4 by employing the trapezoidal
rule.

Mesh 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128

Uniform trapezoidal mesh
Eu 3.529e-002 1.564e-002 7.552e-003 3.750e-003 1.874e-003
Ru - 1.174 1.050 1.010 1.001

Random trapezoidal mesh
Eu 2.662e-002 1.548e-002 8.679e-003 4.295e-003 2.205e-003
Ru - 0.771 0.888 1.014 0.960

Random mesh
Eu 2.985e-002 1.954e-002 1.041e-002 5.557e-003 2.836e-003
Ru - 0.595 0.978 0.944 0.968

Kershaw mesh
Eu 0.460 0.198 6.418e-002 1.791e-002 4.712e-003
Ru - 1.402 1.739 1.900 1.956

Example 6.5. From Lemma 3.7, one can see that (3.34) is a necessary and sufficient condition to
ensure the positive definiteness of cell matrix Bs

K . However, we mention that (A1) is just a sufficient
condition for the coercivity result, since in this work we use the cell analysis approach to prove (3.6).
Thus, in the last example, we choose the diffusion tensor and exact solution as below

Λ(x, y) =
(

10 3
3 1

)
, u(x, y) = 4.3 − 0.6x + 3.2y + 1.6xy − 2y2.
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From Table 11, we observe that (A1) is invalid on the uniform trapezoidal, random and Kershaw
meshes, but Coer > 0 indicates that the scheme is still coercive. Moreover, in Table 12 one can find that
the numerical solution still converges to the exact solution with the optimal convergence rate under the
H1 norm. Therefore, (A1) is only a sufficient but unnecessary condition for the coercivity result.

Table 11. Numerical coercivity results for Example 6.5.

Mesh 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128

Uniform trapezoidal mesh
Coer 0.376 0.368 0.366 0.366 0.366
ϱ -0.129 -0.129 -0.129 -0.129 -0.129

Random trapezoidal mesh
Coer 0.629 0.626 0.625 0.625 0.624
ϱ 5.988e-002 5.913e-002 5.897e-002 5.861e-002 5.861e-002

Random mesh
Coer 0.584 0.559 0.567 0.564 0.562
ϱ -0.210 -0.262 -0.256 -0.595 -0.446

Kershaw mesh
Coer 0.362 0.348 0.340 0.337 0.336
ϱ -9.826e-002 4.689e-003 4.407e-002 5.720e-002 6.107e-002

Table 12. H1 errors and convergence rates for Example 6.5.

Mesh 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128

Uniform trapezoidal mesh
Eu 0.124 6.481e-002 3.306e-002 1.669e-002 8.383e-003
Ru - 0.933 0.971 0.986 0.993

Random trapezoidal mesh
Eu 3.391e-002 1.669e-002 8.937e-003 4.487e-003 2.341e-003
Ru - 1.009 0.959 0.993 0.937

Random mesh
Eu 7.659e-002 4.741e-002 2.521e-002 1.198e-002 6.301e-003
Ru - 0.673 0.982 1.119 0.924

Kershaw mesh
Eu 0.417 0.248 0.106 3.647e-002 1.113e-002
Ru - 0.863 1.306 1.594 1.738

7. Conclusions

We have analyzed the coercivity and H1 error estimate of the Q1-FVEM-SR scheme that is
obtained by using the Simpson rule to approximate the line integrals in the classical Q1-FVEM. Based
on assumption (A1), we have obtained the coercivity result for the constructed scheme. More
interestingly, we find that (A1) covers the traditional h1+γ-parallelogram and some trapezoidal meshes
with any full anisotropic diffusion tensor. As a result, under assumption (A2), we proved that the
numerical solution converges to the exact solution with the optimal convergence rate under the H1

norm. In particular, (A2) covers arbitrary parallelogram and h1+γ-parallelogram meshes with any
anisotropic diffusion tensor, where γ ≥ 1.

A counterexample is given in Example 6.5 which implies that, even if the cell matrix Bs
K is not

positive definite, the proposed scheme can still be coercive. That is, there exists one unique numerical
solution even though the assumption (A1) is violated. Furthermore, in Section 6 the numerical results
also indicate that the Q1-FVEM-SR solution preserves the optimal convergence rate under the H1 error
norm even though the meshes consist of trapezoids or general convex quadrilaterals (i.e., (A2) is not
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satisfied). In summary, the relaxation of mesh requirements in assumptions (A1) and (A2) should be
explored in future works.
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