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Abstract: We present some closed-form formulas for the general solution to the family of difference
equations

xn+1 = Φ
−1

(
Φ(xn−1)

αΦ(xn−2) + βΦ(xn−4)
γΦ(xn−2) + δΦ(xn−4)

)
,

for n ∈ N0 where the initial values x− j, j = 0, 4 and the parameters α, β, γ and δ are real numbers
satisfying the conditions α2+β2 , 0, γ2+ δ2 , 0 and Φ is a function which is a homeomorphism of the
real line such that Φ(0) = 0, generalizing in a natural way some closed-form formulas to the general
solutions to some very special cases of the family of difference equations which have been presented
recently in the literature. Besides this, we consider in detail some of the recently formulated statements
in the literature on the local and global stability of the equilibria as well as on the boundedness character
of positive solutions to the special cases of the difference equation and give some comments and results
related to the statements.
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1. Introduction

Let N, Z, R and C be the sets of all natural, whole, real and complex numbers respectively and let
Nl := {m ∈ Z : m ≥ l} where l ∈ Z. We use the notation i = m, n where m, n ∈ Z are such that m ≤ n
which is the same as the expression: m ≤ i ≤ n, i ∈ Z. It is also understood that

∏m−1
i=m ci = 1 for any

m ∈ Z where ci are some numbers.
Solvability of difference equations, systems of difference equations and partial difference equations

and systems has been investigated for a long time. For some of the oldest sources in the topic, consult
e.g., [5, 7, 15–18] where many closed-form formulas for the general solutions to the equations and
systems can be found. Here, we mention a few of them which are employed in the proofs of our
results.

The difference equation

vn+2 − a1vn+1 − a0vn = 0, (1.1)

for n ∈ N0 where a1 ∈ R and a0 ∈ R \ {0} was solved in [5, 7] where it was shown that if a2
1 + 4a0 , 0

the general solution to Eq (1.1) is

vn =
(v1 − s2v0)sn

1 − (v1 − s1v0)sn
2

s1 − s2
, n ∈ N0, (1.2)

where s j, j = 1, 2 are the roots of the polynomial

Q(s) := s2 − a1s − a0

and if a2
1 + 4a0 = 0 the general solution to Eq (1.1) is

vn = ((v1 − s1v0)n + s1v0)sn−1
1 , n ∈ N0, (1.3)

where s1 =
a1
2 .

Some methods for solving the bilinear difference equation

xn+1 =
αxn + β

γxn + δ
, n ∈ N0, (1.4)

have been also known for a long time (see, e.g., [14–16,19–21,36]). For some results on the behaviour
of the solutions to Eq (1.4) and related equations and topics see, e.g., [1, 6, 21, 35, 36, 42].

There has been also some recent interest in solvability and invariants of difference equations,
systems of difference equations and their applications; see, e.g., [10, 23, 24, 26–29, 32, 34–42] and
the related references therein.

The difference equation of the fifth order

xn+1 = axn−1 +
bxn−1xn−4

cxn−4 + dxn−2
, n ∈ N0, (1.5)

where the parameters a, b, c, d and the initial values x− j, j = 0, 4 are real numbers has been recently
investigated in [8] where some closed-form formulas for its solutions in the following four special
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cases: 1) a = b = c = d = 1; 2) a = b = c = 1, d = −1; 3) a = c = 1, b = d = −1; 4) a = c = d = 1,
b = −1, are given, and where some statements on local and global stability of the solutions to Eq (1.5)
as well as on their boundedness are formulated.

First, we show that a general family of nonlinear difference equations of the fifth order is solvable
in closed form from which the closed-form formulas for solutions to the equations in above mentioned
four special cases easily follow. To do this we find some closed-form formulas for the general solution
to the family of nonlinear difference equations by applying some of the ideas and tricks in [10,34–39].
Second, we consider in detail some of the formulated statements in [8] on the local and global stability
of the equilibria of Eq (1.5) as well as on the boundedness character of positive solutions to some
special cases of the equation and provide some counterexamples showing that the statements are not
correct.

2. Solvability of a generalization to Eq (1.5)

Equation (1.5) is a special case of the equation

xn+1 = Φ
−1

(
Φ(xn−1)

αΦ(xn−2) + βΦ(xn−4)
γΦ(xn−2) + δΦ(xn−4)

)
, n ∈ N0. (2.1)

Indeed, for

Φ(x) ≡ x, α = ad, β = ac + b, γ = d and δ = c, (2.2)

from Eq (2.1) is obtained Eq (1.5).
The following theorem shows the solvability of Eq (2.1) when Φ be a homeomorphism (for the

notion and some basics see, e.g., [43]).

Theorem 1. Let α, β, γ, δ ∈ R, α2+β2 , 0 , γ2+ δ2, Φ be a homeomorphism of R and Φ(0) = 0. Then,
Eq (2.1) is solvable in closed form.

Proof. First, note that if there is n0 ∈ N−1 such that

xn0 = 0 (2.3)

then if the solution is defined for all n ∈ N−4, we have

xn0+2 = 0. (2.4)

Relations (2.1), (2.3) and (2.4) imply that xn0+5 is not defined which is a contradiction.
Hence, from now on we consider only solutions to Eq (2.1) such that

xn , 0, for n ∈ N−4.

Note that for such solutions we have

Φ(xn) , 0, for n ∈ N−4.
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Hence, the following change of variables can be used

yn =
Φ(xn)
Φ(xn−2)

, n ∈ N−2, (2.5)

from which together with the conditions posed on function Φ we have

yn+1 =
αyn−2 + β

γyn−2 + δ
, n ∈ N0. (2.6)

Let
z( j)

m = y3m− j, m ∈ N0, j = 0, 2.

Then,

z( j)
m+1 =

αz( j)
m + β

γz( j)
m + δ

, m ∈ N0, j = 0, 2.

Furthermore, let

z( j)
m =

u( j)
m+1

u( j)
m

−
δ

γ
, m ∈ N0, j = 0, 2, (2.7)

then after some simple calculations it follows that

γ2u( j)
m+2 − γ(α + δ)u

( j)
m+1 + (αδ − βγ)u( j)

m = 0,

for m ∈ N0, j = 0, 2.
Suppose

αδ , βγ, γ , 0 and (α + δ)2 , 4(αδ − βγ). (2.8)

Then, the de Miovre formula (1.2) implies

u( j)
m =

(u( j)
1 − s2u( j)

0 )sm
1 − (u( j)

1 − s1u( j)
0 )sm

2

s1 − s2
, (2.9)

for m ∈ N0, j = 0, 2 where

s1 =
α + δ +

√
(α + δ)2 − 4(αδ − βγ)

2γ

and

s2 =
α + δ −

√
(α + δ)2 − 4(αδ − βγ)

2γ
.

From (2.7) and (2.9), we have

z( j)
m =

(z( j)
0 − s2 +

δ
γ
)sm+1

1 − (z( j)
0 − s1 +

δ
γ
)sm+1

2

(z( j)
0 − s2 +

δ
γ
)sm

1 − (z( j)
0 − s1 +

δ
γ
)sm

2

−
δ

γ
,

AIMS Mathematics Volume 8, Issue 10, 22662–22674.



22666

for m ∈ N0, j = 0, 2 and consequently

y3m− j =
(y− j − s2 +

δ
γ
)sm+1

1 − (y− j − s1 +
δ
γ
)sm+1

2

(y− j − s2 +
δ
γ
)sm

1 − (y− j − s1 +
δ
γ
)sm

2

−
δ

γ

=

( Φ(x− j)
Φ(x− j−2) − s2 +

δ
γ

)
sm+1

1 −
( Φ(x− j)
Φ(x− j−2) − s1 +

δ
γ

)
sm+1

2( Φ(x− j)
Φ(x− j−2) − s2 +

δ
γ

)
sm

1 −
( Φ(x− j)
Φ(x− j−2) − s1 +

δ
γ

)
sm

2

−
δ

γ
, (2.10)

for m ∈ N0, j = 0, 2.
From (2.5) and (2.10) we obtain

Φ(x6m− j) = y6m− jy6m− j−2y6m− j−4Φ(x6(m−1)− j), (2.11)

for m ∈ N, j = −1, 4, from which we get the general solution to Eq (2.1) under the assumptions in (2.8)

x6m−4 =Φ
−1

Φ(x−4)
m∏

i=1

y6i−4y6i−6y6i−8

 , (2.12)

x6m−3 =Φ
−1

Φ(x−3)
m∏

i=1

y6i−3y6i−5y6i−7

 , (2.13)

x6m−2 =Φ
−1

Φ(x−2)
m∏

i=1

y6i−2y6i−4y6i−6

 , (2.14)

x6m−1 =Φ
−1

Φ(x−1)
m∏

i=1

y6i−1y6i−3y6i−5

 , (2.15)

x6m =Φ
−1

Φ(x0)
m∏

i=1

y6iy6i−2y6i−4

 , (2.16)

x6m+1 =Φ
−1

Φ(x1)
m∏

i=1

y6i+1y6i−1y6i−3

 , (2.17)

for m ∈ N0 where (yn)n≥−2 is given by (2.10).
Suppose

αδ , βγ, γ , 0 and (α + δ)2 = 4(αδ − βγ). (2.18)

Then, (1.3) implies

u( j)
m = ((u( j)

1 − s1u( j)
0 )m + s1u( j)

0 )sm−1
1 , (2.19)

for m ∈ N0, j = 0, 2 where

s1 =
α + δ

2γ
, 0.

Relations (2.7) and (2.19) imply

z( j)
m =

((z( j)
0 − s1 +

δ
γ
)(m + 1) + s1)s1

(z( j)
0 − s1 +

δ
γ
)m + s1

−
δ

γ
,
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and consequently

y3m− j =
((y− j − s1 +

δ
γ
)(m + 1) + s1)s1

(y− j − s1 +
δ
γ
)m + s1

−
δ

γ

=
( Φ(x− j)
Φ(x− j−2) − s1 +

δ
γ
)(m + 1) + s1)s1

( Φ(x− j)
Φ(x− j−2) − s1 +

δ
γ
)m + s1

−
δ

γ
, (2.20)

for m ∈ N0, j = 0, 2.
Hence, the general solution to Eq (2.1), under the assumptions in (2.18), is given by (2.12)–(2.17)

whereas (yn)n≥−2 is given by (2.20).
Suppose γ = 0. Then, Eq (2.6) is

yn+1 =
α

δ
yn−2 +

β

δ
, n ∈ N0, (2.21)

so that

z( j)
m+1 =

α

δ
z( j)

m +
β

δ
, m ∈ N0, j = 0, 2. (2.22)

If α = δ then
z( j)

m =
β

δ
m + z( j)

0 , m ∈ N0, j = 0, 2,

that is

y3m− j =
β

δ
m + y− j =

β

δ
m +

Φ(x− j)
Φ(x− j−2)

, m ∈ N0, j = 0, 2. (2.23)

Hence, the general solution to Eq (2.1) in this case is given by (2.12)–(2.17) whereas (yn)n≥−2 is
given by (2.23).

If α , δ then by a Lagrange’s formula [17], we have

z( j)
m =

β

α − δ

((α
δ

)m
− 1

)
+

(α
δ

)m
z( j)

0 ,

for m ∈ N0, j = 0, 2, that is,

y3m− j =
β

α − δ

((α
δ

)m
− 1

)
+

(α
δ

)m
y− j

=
β

α − δ

((α
δ

)m
− 1

)
+

(α
δ

)m Φ(x− j)
Φ(x− j−2)

, (2.24)

for m ∈ N0, j = 0, 2.
Hence, the general solution in this case is given by (2.12)–(2.17), where (yn)n≥−2 is given by (2.24).
Suppose αδ = βγ. If α = 0 then β , 0, γ = 0 and δ , 0. Thus,

xn+1 = Φ
−1

(
β

δ
Φ(xn−1)

)
, n ∈ N0, (2.25)
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and consequently

x2m− j = Φ
−1

((
β

δ

)m

Φ(x− j)
)
, m ∈ N0, j = 0, 1. (2.26)

If α , 0 and β = 0 then δ = 0 and γ , 0. So, we have

xn+1 = Φ
−1

(
α

γ
Φ(xn−1)

)
, n ∈ N0, (2.27)

and consequently

x2m− j = Φ
−1

((
α

γ

)m

Φ(x− j)
)
, m ∈ N0, j = 0, 1. (2.28)

If δ = 0 then γ , 0, β = 0 and α , 0. So, (2.27) holds which implies (2.28). If γ = 0 then δ , 0,
α = 0 and β , 0, so (2.25) holds which implies (2.26). Finally, if αβγδ , 0 then α = βγ/δ. So, (2.25),
that is, (2.27) holds and consequently (2.26), that is, (2.28). □

Remark 1. The closed form formulas obtained in Theorem 1 can be employed in investigating the
boundedness character, convergence, asymptotics and other properties of solutions to Eq (2.1). We
will not deal with this standard problem and leave it to the interested reader as some exercises. The
problem can be dealt with by employing some methods, tricks and ideas appearing in [1–4,6,9,11–13,
21, 22, 25, 27, 30–34, 37, 38].

3. On some statements on local and global stability of Eq (1.5)

The local and global stability of solutions to Eq (1.5) as well as their boundedness character have
been recently considered in [8]. In this section we analyse the statements therein in detail and show
that practically none of them is correct.

The equilibria of Eq (1.5) were first investigated therein. If x̄ is an equilibrium then

x̄ = ax̄ +
bx̄2

(c + d)x̄
. (3.1)

From this they got the relation x̄2(1 − a)(c + d) = bx̄2 and under the assumption (c + d)(1 − a) , b,
concluded that x̄ = 0 is a unique equilibrium point.

However, they forgot to note that (3.1) implies x̄ , 0. So, the statement is not true as well as
Theorem 3 which states that the (wrong) equilibrium x̄ = 0 is locally asymptotically stable under a
condition posed to the parameters a, b, c and d.

The next statement (Theorem 4 in [8]) is the following:

Statement 1. If c(1 − a) , b then the unique equilibrium point of Eq (1.5) is globally asymptotically
stable.

As we have shown the relation x̄ , 0 must hold, so x̄ = 0 is not an equilibrium of Eq (1.5) implying
that the statement is not well formulated. It can happen that some solutions converge to something

AIMS Mathematics Volume 8, Issue 10, 22662–22674.



22669

which is not an equilibrium. However, the second problem with the statement is that the conclusion
is not correct. This we show by giving an example of Eq (1.5) possessing solutions which are even
unbounded and consequently cannot converge to any finite real number.

Example 1. Let a = c = 1/2, b = d = 1. Then, Eq (1.5) becomes

xn+1 = xn−1
2xn−2 + 5xn−4

4xn−2 + 2xn−4
, n ∈ N0, (3.2)

and the condition c(1 − a) , b is satisfied.
We can apply Theorem 1 but for the benefit of the reader we repeat some of the steps in the proof

of the theorem.
Using the change of variables

yn =
xn

xn−2
, n ≥ −2, (3.3)

we get

yn+1 =
2yn−2 + 5
4yn−2 + 2

, n ∈ N0, (3.4)

so the sequences y( j)
m = y3m− j, m ∈ N0, j = 0, 2, satisfy the equation

um+1 =
2um + 5
4um + 2

, m ∈ N0. (3.5)

Let

y( j)
m =

z( j)
m+1

z( j)
m

−
1
2
, m ∈ N0, j = 0, 2. (3.6)

Then,

z( j)
m+2 − z( j)

m+1 − z( j)
m = 0, j = 0, 2, (3.7)

and by the de Moivre formula we have

z( j)
m =

(z( j)
1 − s2z( j)

0 )sm
1 − (z( j)

1 − s1z( j)
0 )sm

2

s1 − s2
, (3.8)

for m ∈ N0, j = 0, 2 where s1 =
1+
√

5
2 and s2 =

1−
√

5
2 and consequently

y( j)
m =

(y( j)
0 − s2 +

1
2 )sm+1

1 − (y( j)
0 − s1 +

1
2 )sm+1

2

(y( j)
0 − s2 +

1
2 )sm

1 − (y( j)
0 − s1 +

1
2 )sm

2

−
1
2
, (3.9)

for m ∈ N0, j = 0, 2.
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Assume that the initial values x− j, j = 0, 4 are chosen such that

y( j)
0 , s2 −

1
2
= −

√
5

2
, j = 0, 2,

that is,
x−2

x−4
, −

√
5

2
,

x−1

x−3
,

x0

x−1
, −

√
5

2
.

For instance, this is possible if the initial values are chosen to be some rational numbers different from
zero.

Taking the limit in (3.9) we get

lim
m→+∞

y( j)
m = lim

m→+∞
y3m− j = s1 −

1
2
=

√
5

2
, j = 0, 2. (3.10)

From (3.3) we have

x6m− j =x− j

m∏
i=1

y6i− jy6i− j−2y6i− j−4, (3.11)

for m ∈ N, j = −1, 4.
Relations (3.10), (3.11) and the fact

√
5

2 > 1, imply

lim
n→+∞

|xn| = +∞, (3.12)

which shows the existence of unbounded solutions to Eq (3.2).

Remark 2. If the initial values x− j, j = 0, 4 are chosen to be positive numbers then a simple inductive
argument shows that such solutions of Eq (3.2) are positive. From this and (3.12) for such solutions
we have

lim
n→+∞

xn = +∞,

that is, we have solutions which diverge to +∞.

The last statement in [8] on the long-term behaviour of solutions to Eq (1.5) is the following:

Statement 2. All solutions of Eq (1.5) are bounded when a + b
c < 1.

If a solution to Eq (1.5) as well as the parameters a, b, c and d are positive then the theorem trivially
follows from the obvious estimate

xn+1 ≤ axn−1 +
bxn−1xn−4

cxn−4
= xn−1

(
a +

b
c

)
. (3.13)

Moreover, estimate (3.13) shows that each positive solution to Eq (1.5) in this case converge to zero.
Indeed, from (3.13) we have

0 < x2m− j ≤ x− j

(
a +

b
c

)m

→ 0,
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as m→ +∞ for j = 0, 1, as claimed.

Remark 3. This is one of the simplest ways for proving the boundedness of positive solutions to
difference equations. For some more complex tricks and methods see, e.g., [2, 3, 22, 24, 25, 29–33].

Remark 4. It should be pointed out that the condition on positivity of the parameters a, b, c and d was
not posed in [8]. Moreover, in the introduction they said that the parameters are real numbers so the
proof therein cannot be regarded as complete one.

If the positivity condition is not posed, then the statement is not true which is shown in the example
which follows.

Example 2. Let

d = 0 and c = 1. (3.14)

Then, Eq (1.5) becomes
xn+1 = (a + b)xn−1, n ∈ N0,

from which it follows that

x2m− j = (a + b)mx− j, (3.15)

for m ∈ N0, j = 0, 1.
If the real parameters a and b are chosen such that the following condition also holds

a + b < −1, (3.16)

then from (3.14) and (3.16) we see that the condition a + b
c < 1 obviously holds.

However, from (3.16) we have

|a + b| > 1. (3.17)

From (3.15) and (3.17) it follows that for the initial values such that

x−1 , 0 , x0, (3.18)

we have
lim

m→∞
|x2m− j| = +∞

for j = 0, 1, that is, such solutions are unbounded.

Remark 5. Note that instead of condition (3.18) we can choose the initial values x−1 and x0 such that
one of them is different from zero to obtain unbounded solutions to Eq (3.2).

Remark 6. The closed form formulas obtained in Theorem 1 can be also employed for getting all the
closed form formulas in [8]. We leave the verification of the facts to the reader.
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4. Conclusions

Many recent papers are devoted to concrete nonlinear difference equations and systems. Some of
them study their solvability but a big part of them do not present almost any theory. Here, we show
that a general nonlinear difference equation of the fifth order is solvable in closed form from which
the closed-form formulas for solutions to some very special cases in the literature easily follow. We
also consider in detail some of the recently formulated statements in the literature on the local and
global stability of the equilibria as well as on the boundedness of solutions to some special cases of the
general equation and give several comments. We present some ideas and tricks which can be employed
in studying related difference equations in a proper way to avoid some problems which appear in the
literature from time to time.
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