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Abstract: Many studies have been performed in different regions of the world as a result of the
COVID-19 pandemic. In this work, we perform a statistical study related to the number of vaccinated
cases and the number of deaths due to COVID-19 in ten South American countries. Our objective is
to group countries according to the aforementioned variables. Once the groups of countries are built,
they are characterized based on common properties of countries in the same group and differences
between countries that are in different groups. Countries are grouped using principal component
analysis and K-means analysis. These methods are combined in a single procedure that we propose
for the classification of the countries. Regarding both variables, the countries were classified into
three groups. Political decisions, availability of resources, bargaining power with suppliers and health
infrastructure among others are some of the factors that can affect both the vaccination process and the
timely care of infected people to avoid death. In general, the countries acted in a timely manner in
relation to the vaccination of their citizens with the exception of two countries. Regarding the number
of deaths, all countries reached peaks at some point in the study period.
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1. Introduction

The pandemic caused by COVID-19 affected the world in a significant way, not only in terms of
people’s health but also from an economic/financial perspective [1–3]. Aspects related to marketing
and the social responsibility of organizations were also studied [4, 5]. Much research has been carried
out in which behavioral, environmental, psychological, and social issues have been discussed [6–9].
Hospitals have had to change the management of their inventories and models have been proposed in
the literature to avoid shortages and supply medicines to patients on time [10].

From the perspective of the dynamics of the phenomenon generated by SARS-Cov2, compartmental
models are a strategy widely used to analyze the evolution of an epidemic [11]. Individuals in the
population under study are divided into compartments according to their characteristics. This type
of models is utilized to predict the spread of the epidemic under different scenarios as well as the
introduction of large-scale vaccination [12]. The governments and most important pharmaceutical
companies in the world started to work quickly to find a vaccine from the beginning of the pandemic
which was available at the end of 2020. However, in South America the vaccination process began in
the first months of 2021. Many researchers have worked on issues related to COVID-19 vaccination.
Among others, in [13, 14] it was discussed the impact of vaccination in containing the COVID-19
epidemic. In [15], the spread of infections in Italy was analyzed in the midst of vaccination and
appearance of new variants.

In [16], through multivariate regression, the relationship between the different macro-economic
factors of fully vaccinated health and care personnel [17] between February and June 2021 was
investigated. In [18], it were identified post-vaccination risk factors for COVID-19 infection using
univariate and multivariate logistic regression of data collected in the United Kingdom between
March 2020 and July 2021. In [19], it was used logistic regression to analyze individuals at risk who
are reluctant to be vaccinated against COVID-19 utilizing data collected in the last quarter of 2021 in
Germany. In [20], it was studied the most important statistical characteristics of populations in two
regions relative to total COVID-19 immunization using the maximum likelihood estimation of the
parameters of a probability model. In [21], a cluster analysis was carried out using the K-means
algorithm on data of the proportion of daily residents in the home, the trips made daily and the dose of
vaccines per capita in the 50 US states. In that work, a multivariate regression analysis (fixed effects
model) was also performed from panel data on temporally segmented observations.

In [22], it was presented a longitudinal study using multivariate logistic regression on hesitancy to
get vaccinated, social norms and acceptance of the vaccine in the US, a country with a high degree
of access to inoculation against COVID-19. In [23], it was applied a canonical correlation analysis to
data obtained from a cohort of individuals which includes measures of physical and mental wellness of
children and their parents as well as demographic and socioeconomic data. In [24], a cluster analysis
was conducted to identify patterns of behavior in vaccine data in Brazilian states. In [25], probabilistic
vaccine projections about the spread of SARS-CoV-2 infections were established. In [26], the authors
identified the key issues associated with vaccinations in the presence of misinformation in rural areas
of developing countries. In [27], the barriers to vaccination faced by socially vulnerable groups were
analyzed using univariate and multivariate multilevel logistic regression in the Ile-de-France region
and in Marseille with data collected between November and December 2021.
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In [28], the reported benefits of inoculation on the COVID-19 mortality rate were evaluated by
stepwise linear regression isolating the independent effects of treatment and associated comorbidities
separating out bias and uncovering beneficial factors. In [29], a multidimensional approach using
logistic regression and linear regression was used to identify relationships between the demographic
aspects of participants and their knowledge, attitudes and practices. In [30], a multivariate model was
utilized to study the association between the variation of vital parameters with lunar cycles in patients
with COVID-19 hospitalized in Oklahoma, US, between February 2020 and August 2021. In [31, 32],
mathematical models were proposed to optimize the vaccination process. In [33–37], a multivariate
analysis in research related to SARS-COV2 was utilized. In [38], the use of K-means was applied to
complement a component analysis that was carried out to classify countries according to the number
of infected people. Further literature covering related topics can be found in Table 1.

Table 1. Summary of additional literature on the topic for the indicated year and author(s).

Year Author(s) Summary points

2021 Coccia, [39] The study’s findings are important for developing effective strategies to prevent
future pandemics. The study’s recommendations can help governments and
other organizations to better prepare for and respond to future pandemics.

2021 Chan, et al., [40] The Delta variant of COVID-19 became predominant in July 2021, which
rises coincided with surges in new cases. The number of deaths varied based
on regional vaccination status. In countries with high vaccination rates, the
number of deaths was less than in countries with low vaccination rates.

2022 Magazzino, et al., [41] An algorithm based on neural networks is used to evaluate the incidence of
vaccination on the death rate in the COVID-19 pandemic. The results obtained
suggest that there is a breaking point in the growth of the number of deaths and
it corresponds to the beginning of the vaccination of the population.

2022 Coccia, [42] This study analyzes what is the adequate percentage of the population to be
vaccinated to keep the COVID-19 epidemic under control. It is concluded that
on average the percentage should be around 80%. Furthermore, if vaccination
is carried out in the early stages of the epidemic, this percentage can be
much lower.

2022 Benati, et al., [43] A global analysis of the relationship between public policies implemented and
timely vaccination is performed in the first months of 2021. This analysis will
help identify factors and implement better public health strategies.

2022 Coccia, [44] A comparative analysis of the development of the COVID-19 pandemic
in Italy is conducted between two time periods. The first one, at the
beginning of the pandemic (April-September 2020), characterized by strong
control measures, and the second one (April-September 2021) characterized
by massive vaccination campaigns.

2022 Fiori, et al., [45] This study suggests that the combination of vaccination and natural infection
helped to achieve conditional herd immunity in South America and that the
containment of regional variants may be due to several factors.

Continued on next page
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Year Authors Summary points
2022 Coccia, [46] This investigation advises that by prioritizing good governance, new

technology, and health infrastructure investments, countries can better prepare
for and respond to future pandemics. This will help reduce future
pandemics’ impact.

2022 Musa, et al., [47] This research used a SEIR-based model to assess the COVID-19 pandemic in
South America. Twelve countries’ mortality rates and transmission dynamics
were analyzed. The findings highlighted the importance of increasing
vaccination rates and implementing social distancing measures.

2022 Coccia, [48] This analysis found that vaccination campaigns alone are not enough to reduce
the impact of COVID-19. Factors like new variants and socioeconomic
conditions influence its spread. A comprehensive approach involving good
governance, health investments, and new technology is needed for effective
crisis management.

2022 Coccia, [49] Vaccination was essential during pandemics, but only up to 70% of people were
willing to be vaccinated without coercion. Exceeding this percentage can have
negative socioeconomic and democratic impacts. Effective communication
strategies and trust-building are recommended to increase vaccination rates.

2022 Oyewola, et al., [50] This article indicates that vaccines were essential for stopping the pandemic
and saving lives. COVID-19 vaccine acceptability can be predicted using
machine learning. Machine learning can be used to optimize the daily
immunization of citizens across the globe.

2023 Lucero-Prisno, et al., [51] The incidence of vaccination on the achievement of herd immunity in South
America is studied over time. Currently available vaccines do not guarantee
that herd immunity is maintained in the population.

2023 Coccia, [52] The article shows that countries with a higher utilization of assisted ventilation
devices had lower death rates compared to those with limited usage.
Consequently, the author suggests that the availability of an adequate number
of ventilators will play a crucial role in mitigating the impact of future
respiratory epidemics.

2023 Jen, et al., [53] In this article, three hypotheses are presented and validated. The first one is
that the number of vaccinated people is related to the gross domestic product of
each country. Second, vaccines can reduce the death rate, and third, dashboards
present more helpful information than classic statistical graphs.

2023 Torales, et al., [54] It analyzes both the physical and psychological sequelae of the COVID-19
pandemic, also known as long-COVID syndrome. The study found average
levels of fatigue and significant levels of anxiety among those who participated
in the survey.

2023 Coccia, [55] This work has two primary objectives. The first one is to determine the
conditions and factors that trigger a pandemic, and the second one is to show
the advantages and disadvantages of the models used to monitor the evolution
of a pandemic.

Continued on next page
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Year Authors Summary points
2023 Torres, et al., [56] The dynamics of the third and fourth waves of variants of the Omicron strain

of CVID-19 in ARG are studied, based on phylogenetic and phylodynamic
sequencing analyses, concluding that the different propagation dynamics
would be due to various factors such as decreased immunity and increased
population reinforced with vaccination or immunity to previous strains.

2023 Zhao, et al., [57] This article investigates the relationship between the acceptance of the COVID-
19 vaccine by people with chronic diseases and the factors that correlate with
their disagreement with vaccination.

2023 Zambrana, et al., [58] The study’s findings are important for understanding the evolution of SARS-
CoV-2 and its impact on the COVID-19 pandemic. The study highlights
the importance of monitoring virus mutations and implementing effective
containment measures to control the spread of the virus.

The objective in this work is to analyze data on vaccinated people and deaths due to COVID-19
during the years 2021 and 2022 in ten South American countries: Argentina (ARG), Bolivia (BOL),
Brazil (BRA), Chile (CHI), Colombia (COL), Ecuador (ECU), Peru (PER), Paraguay (PRY), Uruguay
(URY) and Venezuela (VEN). As a result of the analysis, the countries were classified into groups and
these groups were characterized. The statistical methods employed are component analysis and the
K-means method. All computational experiments were conducted using the R software [59].

To show the content in a proper way, the remainder of this document has been distributed as
follows. In Section 2, we introduce the materials and methods utilized in this work. The results of our
study are presented in Section 3. In particular, the principal component analysis (PCA) can be seen in
Subsection 3.1; in Subsection 3.2, a sparse technique known as disjoint principal component analysis
(DPCA) is used, which facilitates the grouping and characterization of the countries; and in
Subsection 3.3, we present the K-means analysis, which is employed to complement the component
analysis. In Section 4, we summarize all the results obtained from this statistical study. Possible
future work and some motivations are also discussed in this final section.

2. Materials and methods

To carry out the statistical analysis in this research, we have downloaded the data from the website
https://ourworldindata.org/coronavirus (accessed on 13 June 2023). The period of this study
is two years, from January 2021 to December 2022. The data is divided into two parts: number of
vaccinated cases with full doses and number of deaths due to COVID-19. Table 2 shows the vaccinated
data matrix. In Table 3, we can see the death data matrix. For each matrix, in the columns we have the
countries and in the rows we have the months. In each matrix entry we have the number of inhabitants
per million. We have included plots corresponding to Tables 2 and 3 in logarithmic scale in Figure 1.
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Figure 1. Plots of the number of COVID-19 (a) vaccinated cases and (b) deaths by country
in log scale.

Table 2. Data matrix of the number of vaccinated COVID-19 cases per million inhabitants
for the indicated month and country.

Month ARG BOL BRA CHI COL ECU PER PRY URY VEN
2021-01 2253.6 0.0 0.0 531.3 0.0 0.0 0.0 0.0 0.0 0.0
2021-02 4514.7 8900.0 8917.4 2345.2 0.0 363.5 0.0 0.0 0.0 0.0
2021-03 8818.9 14800.0 14723.0 185388.8 5515.1 3410.4 11400.0 268.6 15108.5 0.0
2021-04 6825.4 49200.0 49277.8 157142.9 25909.6 10261.3 9400.0 1579.6 187062.6 0.0
2021-05 43506.9 30800.0 30839.3 65306.1 32003.1 30111.8 19400.0 10782.4 98998.5 0.0
2021-06 29004.6 20000.0 19971.2 139795.9 69597.1 36408.6 55300.0 11970.2 190058.5 7910.2
2021-07 67018.2 69100.0 67251.9 90816.3 101792.9 56111.1 64300.0 25401.0 163742.7 30959.1
2021-08 178202.6 98400.0 100227.6 56632.7 48968.6 353333.3 91700.0 211060.0 81871.3 79151.9
2021-09 165897.6 133400.0 133435.5 25000.0 42606.5 61111.1 83800.0 14749.3 20467.8 93286.2
2021-10 77785.1 114700.0 114671.9 49489.8 86177.0 22222.2 132400.0 72271.4 14619.9 116254.4
2021-11 87453.3 82600.0 82625.1 52040.8 64391.7 62777.8 93100.0 36873.2 5848.0 14487.6
2021-12 64381.5 44300.0 44261.8 19898.0 69018.7 68888.9 87900.0 50147.5 5848.0 68197.9
2022-01 43506.9 30100.0 30142.6 20918.4 64584.5 34444.4 40300.0 20649.0 5848.0 72791.5
2022-02 25928.4 23800.0 23733.2 14285.7 32774.2 14444.4 40500.0 19174.0 11695.9 21908.1
2022-03 10986.6 26300.0 26334.1 7653.1 28147.3 8888.9 43000.0 16224.2 32163.7 0.0
2022-04 5053.8 14900.0 14908.7 3571.4 11181.8 10555.6 24100.0 10324.5 2924.0 24028.3
2022-05 4174.9 10200.0 10124.9 3571.4 7133.2 3333.3 10200.0 4424.8 5848.0 0.0
2022-06 2197.3 13000.0 13097.4 2551.0 7711.6 2222.2 7400.0 2949.9 2924.0 0.0
2022-07 1538.1 5800.0 5805.6 2551.0 4241.4 2222.2 6900.0 5899.7 0.0 0.0
2022-08 1098.7 7000.0 6966.7 1530.6 1542.3 1666.7 5600.0 0.0 0.0 0.0
2022-09 1098.7 2800.0 2740.2 1020.4 5398.1 0.0 3200.0 2949.9 0.0 0.0
2022-10 659.2 300.0 371.6 510.2 0.0 0.0 1300.0 1474.9 2924.0 0.0
2022-11 659.2 0.0 8360.0 0.0 1735.1 6111.1 1900.0 1474.9 0.0 0.0
2022-12 659.2 0.0 3483.3 510.2 578.4 1111.1 1900.0 0.0 0.0 0.0
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Table 3. Data matrix of the number of COVID-19 deaths per million inhabitants for the
indicated month and country.

Month ARG BOL BRA CHI COL ECU PER PRY URY VEN

2021-01 104.633 103.999 139.043 96.464 211.664 46.757 101.482 63.931 73.409 5.663
2021-02 88.304 108.795 143.198 110.903 113.657 53.959 159.924 64.912 49.515 5.453
2021-03 84.904 49.755 310.989 129.337 70.484 57.556 614.214 151.180 108.480 9.117
2021-04 174.116 56.792 369.379 165.612 198.535 99.111 683.847 309.145 480.117 18.869
2021-05 312.635 128.723 285.983 150.357 290.226 107.833 501.674 425.369 485.380 18.021
2021-06 350.275 183.552 246.993 165.561 342.587 54.889 251.043 547.050 385.088 16.714
2021-07 253.834 86.252 182.541 148.112 267.746 559.500 118.120 307.670 108.480 16.678
2021-08 132.301 51.637 112.192 75.969 85.811 34.889 56.094 115.929 19.883 14.806
2021-09 78.488 23.159 79.648 27.092 27.299 29.167 32.423 63.569 6.725 16.219
2021-10 16.941 15.548 51.321 14.745 18.932 10.889 25.815 7.080 6.725 14.912
2021-11 13.272 20.131 32.061 30.051 24.041 17.556 27.313 33.333 15.497 8.940
2021-12 13.008 41.653 20.199 39.235 27.260 21.389 44.464 22.419 11.404 6.502
2022-01 90.683 101.391 38.340 30.918 84.018 47.333 92.335 102.802 90.351 4.205
2022-02 107.207 41.489 103.795 134.286 86.119 38.333 142.085 153.097 147.953 6.502
2022-03 41.024 38.298 45.664 725.867 15.963 11.000 45.521 44.985 50.000 1.802
2022-04 11.492 1.309 18.425 48.316 3.894 9.833 17.680 30.383 13.743 0.919
2022-05 7.625 3.110 13.655 18.622 1.099 2.167 10.896 3.540 10.234 0.459
2022-06 3.977 0.409 22.015 29.949 2.236 4.889 9.222 10.177 27.193 0.389
2022-07 6.570 8.838 32.966 56.020 16.869 4.222 23.319 37.906 21.053 1.060
2022-08 7.515 11.211 25.317 44.592 12.994 2.333 42.849 38.053 12.281 1.201
2022-09 4.087 2.946 9.619 35.867 5.302 2.833 23.877 16.667 11.696 0.636
2022-10 2.065 0.409 9.851 26.684 0.829 1.444 12.834 1.475 9.649 0.212
2022-11 0.747 0.655 7.004 37.755 0.848 1.111 11.806 2.950 5.556 0.283
2022-12 2.175 4.255 19.451 38.520 0.000 0.000 24.023 9.882 7.310 0.141

2.1. Measures of variables

The two data matrices shown in the previous section are of order 24 × 10 (24 months and 10
countries) whose entries are non-negative real numbers. For the dimensional reduction that was carried
out to classify the countries into groups we have used the PCA and the K-means methods. With both
methods, we have utilized the countries as variables and the months as entities. In the case of PCA,
the components define the groups of countries. In the case of K-means, the clusters define the groups
of countries. In the next section, we present the procedure that was employed both with the vaccinated
matrix and with the death matrix.

2.2. Models and data analysis procedure

Next, we propose a procedure that allows us to classify the countries of South America into groups.
Our procedure is based on the PCA and K-means methods. We can see this procedure in Algorithm 1,
which is used for analyzing COVID-19 data of the number of vaccinated cases and the number of
deaths. We want to highlight step 9 in this 10-step algorithm. In step 9, a comparison of the country
grouping obtained by the PCA method and by the K-means method is performed.

AIMS Mathematics Volume 8, Issue 10, 22693–22713.
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A detailed background of the PCA and the component rotation methods can be seen in [60]. In
particular, the calculation of rotated components with the VARIMAX method may be found in [61].
In [62] we can see how to calculate disjoint components. DPCA is a recent sparse technique that
facilitates the interpretation of the components. During the last years some researchers have proposed
algorithms to calculate disjoint components. In [38, 63], we observe a statistical study where DPCA
was used. For full details of the DPCA method, see [62]. The DPCA method has even extended
for three-way matrices as we can see in [64, 65]. A background of the K-means method is presented
in [66]. In [38, 67] we find applications of the K-means method to study COVID-19 data.

Algorithm 1 Proposed procedure for the statistical study of the number of vaccinated cases and number
of deaths due to COVID-19 in South America.

1: Collect the data in a matrix X of order p× q where p is the number of months and q is the number
of countries.

2: Pre-process X applying centering and scaling to the data.
3: Apply a PCA and determine the number c of components to use for data analysis (c < q).
4: Compute c components from X and fit the model. Go to Step 7 if the components are interpretable.
5: Calculate c rotated components (for example, with the VARIMAX method [61]). Go to Step 7 if

the rotated components are interpretable.
6: Obtain c disjoint components [62] and fit the model.
7: Build the country groups and interpret the latent dimensions.
8: Apply a K-means analysis to the matrix X using c clusters.
9: Carry out a comparative analysis between the groups of countries that were generated using

components and using clusters.
10: Generate tables, plots and conclude.

3. Results and discussion

3.1. Principal component analysis

PCA was used to classify the selected countries. What are the countries that have common
characteristics? What are the countries with different characteristics? These research questions are the
ones we want to answer for vaccinated people and for deaths due to COVID-19. Next, we discuss the
results obtained from the PCA. Figure 2a shows the cumulative proportional variance plot for
vaccinated COVID-19 cases. Figure 2b displays the same type of plot but for COVID-19 deaths.
Regarding the number of components to be computed, we utilized three components to obtain an
explained variability of around 90%. In [38], we can see a similar justification for selecting the
number of components. The three components capture 89.91% of the variability of the data in the
case of the COVID-19 vaccinated cases and 86.16% for COVID-19 deaths.
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Figure 2. Cumulative variance plots of the number of COVID-19 (a) vaccinated cases and
(b) deaths.

Table 4 reports the three principal components calculated (PC1, PC2, and PC3) with the matrix of
vaccinated people and Table 5 for COVID-19 deaths. The corresponding columns show the loadings,
that is, the correlations between countries and components. Note that there are countries that have
similar loadings (in absolute value) for the different components which makes the interpretation
difficult (for example with BOL, COL and PER for vaccinated cases, as well as with BRA, PER and
URY for deaths). To improve the interpretation, a VARIMAX rotation [61] was performed (the fit of
the model remains) but a clear interpretation was not obtained either vaccinated cases or deaths. For
this reason, we decide to use a sparse technique known as DPCA to obtain a better interpretation.

Table 4. Loading matrices for data of the number of COVID-19 vaccinated cases with three
components for the indicated country and method.

PCA DPCA

Country PC1 PC2 PC3 DC1 DC2 DC3

ARG 0.376 -0.116 0.095 0.406 0.000 0.000
BOL 0.376 -0.017 -0.203 0.429 0.000 0.000
BRA 0.376 -0.026 -0.193 0.428 0.000 0.000
CHI 0.118 0.650 0.056 0.000 0.000 0.707
COL 0.320 0.212 -0.303 0.364 0.000 0.000
ECU 0.299 -0.089 0.632 0.000 0.707 0.000
PER 0.370 -0.053 -0.242 0.423 0.000 0.000
PRY 0.314 -0.155 0.526 0.000 0.707 0.000
URY 0.132 0.657 0.154 0.000 0.000 0.707
VEN 0.340 -0.226 -0.240 0.396 0.000 0.000
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Table 5. Loading matrices for data of the number of COVID-19 deaths with three
components for the indicated country and method.

PCA DPCA

Country PC1 PC2 PC3 DC1 DC2 DC3

ARG 0.372 -0.164 0.079 -0.458 0.000 0.000
BOL 0.324 -0.105 0.150 -0.407 0.000 0.000
BRA 0.353 0.229 -0.174 0.000 -0.588 0.000
CHI 0.101 0.456 0.852 0.000 0.000 1.000
COL 0.364 -0.196 0.066 -0.450 0.000 0.000
ECU 0.209 -0.599 0.278 -0.293 0.000 0.000
PER 0.298 0.449 -0.290 0.000 -0.583 0.000
PRY 0.372 -0.039 0.010 -0.441 0.000 0.000
URY 0.347 0.275 -0.139 0.000 -0.560 0.000
VEN 0.312 -0.161 -0.175 -0.376 0.000 0.000

3.2. Disjoint principal component analysis

As we can see in Algorithm 1 that we propose, the disjoint components are used when the classical
components and the rotated components do not allow a clear classification of the countries. Did the
PCA method allow us to group countries? The response is no. This the reason we employ DPCA.
Now, we report the results obtained after applying the DPCA method.

In the last three columns of Table 4, we can see the computed disjoint components (DC1, DC2,
and DC3) for vaccinated COVID-19 cases. The variability captured by the three disjoint components
is 87.25% with the matrix of vaccinated cases, that is, 2.66% of explained variability was lost which
is not significant but we gain in interpretability. The DPCA loading matrix allows us to group the ten
countries as follows: (Group 1) ARG, BOL, BRA, COL, PER and VEN; (Group 2) ECU and PRY; and
(Group 3) CHI and URY.

In the case of deaths, in the last three columns of Table 5 we can see the calculated disjoint
components. The three disjoint components explain 83.27% of the variability of the data, that
is, 2.89% of explained variability has been lost which is not significant and we gain in interpretability.
Thus, due to the DPCA method we can group the countries in this way: (Group 1) ARG, BOL, COL,
ECU, PRY and VEN; (Group 2) BRA, PER and URY; and (Group 3) CHI.

Figure 3a shows the space of the variables (countries) in the case of number of vaccinated cases due
to COVID-19 considering two dimensions. The space of the countries with two dimensions regarding
the number of COVID-19 deaths can be seen in Figure 3b. In both plots, the countries are distributed
in a plane. However, the countries have been grouped considering the results obtained with the DPCA
to facilitate interpretation.

Figure 4a presents the number of vaccinated COVID-19 cases for each month of the analysis period
while Figure 4b displays the number of COVID-19 deaths. Note that again the countries have been
grouped according to the DPCA results. In this way, we can characterize the three groups of countries
for COVID-19 vaccinated cases and deaths.
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Figure 3. Space of countries for data of the number of COVID-19 (a) vaccinated cases and
(b) deaths.
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Figure 4. Plots of the number of COVID-19 (a) vaccinated cases and (b) deaths for the
indicated country and month.

3.3. K-means analysis

Was the country grouping obtained with the components correct? This is the research question that
we want to answer with the K-means method. Next, we carry out a K-means analysis [38, 66, 67] to
compare with the results obtained using components. The computations were made with three clusters
for COVID-19 vaccinated cases and deaths to make the corresponding contrast. Nevertheless, note
that in Figure 5a the silhouette plot suggests three clusters for vaccinated people but in Figure 5b the
silhouette plot suggests only two clusters for COVID-19 deaths.

We now proceed with the analysis of the clusters. On one hand, Figure 6a shows the K-means plot
applied to the vaccinated matrix. On the other hand, we can see in Figure 6b the plot of the K-means
applied to the matrix of deaths.
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Figure 5. Silhouette plots for (a) vaccinated cases and (b) deaths.
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Figure 6. Cluster plots K-means method with three clusters (a) vaccinated cases and (b)
deaths.

The groups obtained with the data set of COVID-19 vaccinated cases are: (Group 1) BOL, BRA,
COL and PER; (Group 2) ARG, ECU, PRY and VEN; and (Group 3) CHI and URY. When comparing
this grouping with the one obtained using components we notice a single difference: ARG and VEN
leave Group 1 and move to Group 2.

Regarding the data set of COVID-19 deaths, the countries are grouped as follows: (Group 1) BOL,
ECU and VEN; (Group 2) ARG, BRA, COL, PER, PRY and URY; and (Group 3) CHI. Note that
BOL, ECU and VEN stayed in Group 1 but the countries ARG, COL and PRY moved from Group 1
to Group 2.

It is important to have two grouping methods to be able to compare the results obtained by both
of them. This is what we considered when designing Algorithm 1. The comparative clustering study
between the component analysis and the K-means method gave very similar results but there were a
couple of differences that were noted above. To conclude, we chose the grouping that was obtained
with the components for two reasons: (i) the components have the advantage of representing latent
variables that can be characterized and that maximize the variability of the data (in this way the greatest
possible amount of information is captured); and (ii) with the K-means method the number of clusters
to be built is known in advance, the variables are grouped solely by their similarity (distances) and
the quality of the clusters depends on the initialization of the algorithm. In such a case, the use of the
K-means method was important because it complemented and helped to confirm the grouping that was
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obtained using components. In addition, in the case of COVID-19 deaths the number of recommended
clusters was two.

3.4. Discussion and summary of results

There are various reasons why countries hastened or delayed the start of the vaccination process
as budgets, availability of vaccines, public/private health infrastructure and decision-making capacity,
among others. The number of deaths is mainly affected by the vaccination process but the transmission
rate of the virus due to people’s carelessness is also an important factor with our data capturing all of
the above. Algorithm 1 that we propose has the ability to group countries according to how the number
of vaccinated cases and the number of deaths change over time. Here, we have a discussion of the
groups formed both in COVID-19 vaccinated cases and deaths. For vaccinated people the following is
observed:
Group 1: ARG, BOL, BRA, COL, PER and VEN. These countries had a prolonged and sustained
vaccination process from May 2021 to April 2022, approximately one year. A significant peak was
observed between September 2021 and October 2021. We have characterized this group as “countries
that had a moderate start in vaccinating their citizens”.
Group 2: ECU and PRY. These countries started the vaccination process late. A first segment is
observed from July 2021 to September 2021 with a very important peak in August 2021. We can see a
second segment from September 2021 to April 2022 with a peak that is not very pronounced in
December 2021. We have characterized this group as “countries that took the longest to start
vaccinating their citizens”.
Group 3: CHI and URY. These countries quickly started the vaccination process which begins in
February 2021 and ends approximately in March 2022. Two peaks of a similar size are observed, the
first of them between March and April 2021 and the second one in June 2021. We have characterized
this group as “countries that react promptly in vaccinating their citizens”.

In the ten countries, the vaccination process was mild in the second semester of 2022. Regarding
the number of deaths due to COVID-19 we have to conclude the following:
Group 1: ARG, BOL, COL, ECU, PRY and VEN. In this group, VEN is a special case. The component
analysis placed VEN in this group but we believe that this country did not report the correct count of
deaths due to COVID-19. Leaving VEN aside, the other countries have a pronounced first peak of
deaths between June 2021 and July 2021 with a slight second peak between January 2022 and February
2022. We have characterized this group as “countries with a significant number of COVID-19 deaths
in the middle of the year 2021”.
Group 2: BRA, PER and URY. These countries presented a considerable peak of deaths between April
2021 and May 2021. There is a second milder peak between February 2022 and March 2022. We have
characterized this group as “countries with a considerable number of COVID-19 deaths in the fourth
month of the year 2021”.
Group 3: CHI. In this group there is only CHI. This country presented an extremely considerable peak
of deaths in March 2022. We have characterized this group as “countries with a considerable number
of COVID-19 deaths in the third month of the year 2022”.

The ten South American countries have in common the fact that approximately, in the second
semester of 2022, the number of deaths due to COVID-19 decreased considerably. Other important
conclusions are the following:
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(i) CHI was the country that best managed the pandemic since it was the first country to start the
vaccination process very early in February 2021 and only had a peak of deaths in March 2022.
Leaving VEN aside, CHI was the country with the smallest number of COVID-19 deaths per
million inhabitants.

(ii) ARG, PER and VEN are the countries that took the longest to start the COVID-19 vaccination
process.

(iii) URY had an intensive COVID-19 vaccination period in the months of April, May and June 2021.
However, in those same months URY had the largest number of deaths due to COVID-19. URY
started the vaccination process quickly. Nonetheless, this did not help to control the significant
number of deaths in the first half of 2021.

(iv) PER was the country with the largest number of deaths per million inhabitants. This occurred in
the months of March, April, and May 2021. In second position is PRY with a very high peak in
June 2021.

(v) ECU had a peak of vaccinated cases between July and August 2021, and in those same months it
also had the largest number of deaths per million inhabitants.

This comparative study allowed us to obtain the results that we summarize in Table 6 for COVID-19
vaccinated people and the results that we summarize in Table 7 for deaths due to COVID-19.

Table 6. Grouping of the ten South American countries in the case of vaccinated people with
the corresponding characterization of each group.

Group Countries Characterization

Group 1 ARG, BOL, BRA, COL, PER, VEN Countries that had a moderate start in vaccinating their
citizens

Group 2 ECU, PRY Countries that took the longest to start vaccinating their
citizens

Group 3 CHI, URY Countries that react promptly in vaccinating their citizens

Table 7. Grouping of the ten South American countries in the case of deaths due to COVID-
19 with the corresponding characterization of each group.

Group Countries Characterization

Group 1 ARG, BOL, COL, ECU, PRY, VEN Countries with a significant number of deaths in the middle
of the year 2021

Group 2 BRA, PER, URY Countries with a considerable number of deaths in the
fourth month of the year 2021

Group 3 CHI Countries with a considerable number of deaths in the third
month of the year 2022
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4. Conclusions

In the present study, we have grouped ten South American countries into three groups. These
groups have also been constructed and characterized using two criteria. The first criterion is the
number of COVID-19 vaccinated people per million inhabitants and the second one is the number of
COVID-19 deaths per million inhabitants. The formed groups permitted us to determine those
countries that had a similar behavior as well as those countries that had a different behavior. To carry
out the statistical analysis of data related to COVID-19 vaccinated cases and deaths we have utilized
two methods: (i) principal component analysis and (ii) K-means analysis. As mentioned, all
calculations were performed with the R software. These two methods were combined in a procedure
that we have proposed and that was summarized in Algorithm 1. We believe that the procedure we
have designed can be used by other researchers to classify entities (countries and companies among
others) in their studies.

Regarding the vaccination process, the governments of Chile and Uruguay were the first ones to
vaccinate their citizens. Obviously, this showed that they were the most responsible countries in the
region. The governments of Ecuador and Paraguay are the ones that took the longest to start
vaccination. Regarding the number of COVID-19 deaths, Brazil, Peru and Uruguay had a large
number of deaths in April 2021.

In the cases of Ecuador and Paraguay, these countries had a considerable peak of deaths in
mid-2021. It should be noted that Chile, despite being the first country in South America to start
vaccination showed a significant number of deaths in March 2022. In addition, Venezuela was the
country that took the longest to start vaccination. However, this country did not present any peak
regarding the number of deaths. Despite the restrictions imposed on citizens by the governments of
the ten South American countries analyzed, the indiscipline of the people was a factor that raised the
number of deaths, even in countries that started the vaccination process early.

Our comparative study where countries were grouped using one or more variables is very
important because it allowed us to evaluate the behavior of governments in the face of certain events.
In particular, the COVID-19 pandemic has been the most important health event for the last 3-4 years.
For this reason, regarding future work we recommend applying the methodology shown in this article
to countries that are in other regions of the planet. For example, a study of the vaccination process and
deaths due to COVID-19 in Central and North American countries can be carried out as well as in
countries from Europe, Asia or Africa. We could also consider incorporating another statistical
methods that complement the use of components and the K-means method. Another important future
work is to build an R package that includes the two methods used in this work so that diverse
practitioners may employ it and make their analyses easier to them when conducting similar studies.

Use of AI tools declaration

The authors declare they have not used artificial intelligence (AI) tools in the creation of this article.

AIMS Mathematics Volume 8, Issue 10, 22693–22713.



22708

Acknowledgments

The authors thank to the Editors and Reviewers for their valuable comments that helped to improve
the quality of this article.

Conflict of interest

The authors declare there are no conflicts of interest.

References
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