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Partially supervised learning (PSL) is urgently necessary to explore to construct an
efficient universal lesion detection (ULD) segmentation model. An annotated
dataset is crucial but hard to acquire because of too many Computed
tomography (CT) images and the lack of professionals in computer-aided
detection/diagnosis (CADe/CADx). To address this problem, we propose a
novel loss function to reduce the proportion of negative anchors which is
extremely likely to classify the lesion area (positive samples) as a negative
bounding box, further leading to an unexpected performance. Before
calculating loss, we generate a mask to intentionally choose fewer negative
anchors which will backward wrongful loss to the network. During the process
of loss calculation, we set a parameter to reduce the proportion of negative
samples, and it significantly reduces the adverse effect of misclassification on the
model. Our experiments are implemented in a 3D framework by feeding a partially
annotated dataset named DeepLesion, a large-scale public dataset for universal
lesion detection from CT. We implement a lot of experiments to choose the most
suitable parameter, and the result shows that the proposed method has greatly
improved the performance of a ULD detector. Our code can be obtained at
https://github.com/PLuld0/PLuldl.
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1 Introduction

Medical image learning (Zhou et al., 2021; Qiao et al., 2022) is developing rapidly based
on the emergence of machine learning (Song et al., 2021a; Song et al., 2021b; Xie et al., 2021;
Song et al., 2022a; Song et al., 2022b; Li et al., 2022; Wang et al., 2022) and neural network
(Meng et al., 2021a; Meng et al., 2021b; Wang et al., 2021; Qiao et al., 2022), thereby
dramatically assists radiologist alleviating workload during reading computed tomography
(CT) (Meng et al., 2022) images in computer-aided detection/diagnosis (CADe/CADx)
(Wang et al., 2022). Meanwhile, universal lesion detection (ULD) (Li et al., 2022) is an
important topic to develop a universal or multicategory CADe/CADx 3D framework, which
needs to feed an annotated dataset on computed tomography (CT) (Yan et al., 2019; Li et al.,
2020; Li et al., 2021). However, an exactly annotated dataset is impossible to get because of
expensive manual labeling costs with the increasing number of CT images as well as the long-
tailed distribution of disease species. (Tang et al., 2019). Therefore, partially supervised
learning (PSL) which allows unannotated areas to exist is urgently necessary to explore to
construct an efficient segmentation model.
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A range ofULDmethods is proposed to address the challenging task.
For example, Zhou et al. (2019) proposed a prior-aware neural network
by introducing explicitly anatomical priors of abdominal organ sizes
during the training process. Dong et al. (2022) classified datasets into the
corresponding type in terms of organs. Further developed multi-head
detector to solve the problem of a partial label, which need a complex
procedure to verify CT images. Fang and Yan. (2020) designed a fresh
new approach by integrating a pyramid structure to extract context
information of features, as well as modifying the last layer of the network
to have multiple branches to segment previous organs and then to detect
lesion by every classified organ. Lyu et al. (2021) used an additional
segmentation branch to find the suspicious lesion anchors thereby
assisting the conventional detection branch to reduce the negative
impacts.

At present, most of the relevant research on object detection
work is based on completely annotated data, that is, fully supervised

learning (FSL) (Wang et al., 2021). However, with the progress of
medical technology and the development of science and technology,
CT imaging is becoming getting higher resolution, and hundreds of
CT scanning images are produced every time. Therefore, partial
supervised learning (PSL) technology is urgently needed.

FSL (See Figure 1) which means all the samples are completely
labeled, has developed rapidly thanks to the emergence of several well-
known neural networks like RPN, Fast RCNN, Mask RCNN, and so on.
Algorithms require feed to a fully labeled training dataset raised
massively. Nair et al. (2020) developed a 3D lesion detection CNN to
calculate lesion-wise uncertainties from voxel-wise uncertainties within
detected lesions on theMS dataset. Cao et al. (2019) studied breast lesion
diagnoses using a CNNnetwork and evaluated theirmodel in completely
manually annotated images by experienced clinicians. Bria et al. (2020)
proposed a two-stage deep learning framework to handle the
extraordinary class imbalance that occurred during the training of
small lesion datasets. The above studies are all conducted on specific
diseases, such as gastric cancer, breast cancer, lymphatic cancer, etc. The
types of diseases are fixed, and the organs with lesions are also certain.

Concretely, the partial label issue is that only a part of the
positive samples is labeled in the dataset of interest (see Figure 2).
Currently, Lyu et al. (2020) proposed an identification algorithm to
roughly minimize a risk estimator for the classification task, rather
than lesion detection. Feng and Bo (2019) assist to maximize the
semantic differences between two classes whose ground-truth are
entirely different, further enlarging the difference of label
confidences of two instances as well for a classification task. In
conclusion, the current PSL algorithm mostly has been developed in
the classification task. There are some detection and segmentation
topics based on a small dataset or a specific lesion dataset. Therefore,
the research of this paper is an innovative attempt in the ULD field.

All these methods proposed to deal with the partial label either
process datasets classify according to the type of organs or lesions or

FIGURE 1
(A) FSL. (B) PSL. (Note that the picture is taken from Deeplesion.
Masks are used only to illustrate concepts).

FIGURE 2
Eight types of lesions. (A) bone, (B) abdomen, (C) mediastinum, (D) liver, (E) lung, (F) kidney, (G) soft tissue, and (H) pelvis. Bookmarks whose size
varies from 0.21 to 342.5 mm of various lesions are shown.
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develop a novel network that adds an extra branch to a conventional
detection model. Compared to the above study, modifying the loss
function is a simple and efficient method to reduce the influence of
negative anchors. For instance, SUZUKI et al. (2022) proposed a loss
function that uses a parameter to control the balance between two
unlabeled positive samples and true negative samples. However, these
methods are employed to models in a small dataset or a dataset that only
contains one specific disease, which is unfriendly to those diseases that
have few samples because rarely seen.

In this paper, we proposed a significant and simple method to
modifying the loss function to solve the problem of misclassify
unlabeled positive samples as negative samples, and our method is
verified with a large dataset, DeepLesion, which concludes a large-scale
public data for universal lesion detection from CT. Besides, our
experiments are implemented in a 3D framework that is more
powerful in capturing 3D context than 2D network although the
latter benefit from large-scale a 2D pretraining. At present, the field
of research using 2D convolution is very extensive. The algorithm
proposed by Cao et al. (2023) improves aDNA storage encoding system
with a graph convolutional network and self-attension. Before that, Cao
et al. (2022) proposed a method to improve the DNA storage encoding
system. Yin et al. (2021) also proposed the Marine Predator algorithm
to solve the error rate in the process of DNA storage. Li et al. (2023)
proposed to use 2D convolution learning information from
Protein–protein interactions (PPIs). Sun et al. (2022) proposed a
DNA triple design approach (TripDesign) based on interaction forces.

Our contribution to this work can be summarized as follows.
Firstly, we generate a mask to intentionally choose fewer negative
anchors which will backward wrongful loss to the network. Secondly,
we set a parameter to reduce the proportion of negative samples, and it
significantly reduces the adverse effect ofmisclassification on themodel.
Moreover, we implement a lot of experiments to choose the most
suitable parameter, and the result shows that the proposed method has
greatly improved the performance of a ULD detector.

2 Materials and methods

Partially supervised learning, or partial label, refers to one image
containing one type of positive sample there may be other types of
positive samples that are not labeled as positive. Nevertheless, these
unlabeled positive samples still are treated as negative samples to feed to a
conventional lesion detector. In our study, we trained the model in
DeepLesion (Yan et al., 2018), which is a large-scale dataset of eight types
of lesions (See Figure 2). Our method is employed to ignore the area
where the unlabeled samples are located to decrease the effect of
unlabeled samples. Our hypothesis is to magnify the ratio of positive
samples and leave out the loss produced by unlabeled anchors, which will
make further efforts to acquire more significant detection performance.

2.1 Negative anchor mask

In the process of generating ROI through the RPN network, the
pixel-by-pixel mechanism is adopted to generate anchors on each pixel of
the feature map according to the preset scale. Here, the scale size of
anchors is usually set to (0.5, 1, 2). The generated anchors are expressed as
(x, y, w, h), where x and y are the coordinates of the upper left corner of

the anchors, w and h are the width and height of the anchors., IOU is
compared with the ground truth according to the coordinates of the
anchors and the size of the width and height. Referring to the threshold
value, the upper limit of the threshold value in this study is 0.7, and the
lower limit is 0.3. Therefore, anchors with IOU values higher than 0.7 are
regarded as positive samples, and anchors with IOU values lower than
0.3 are negative samples. Thus, all anchors are gathered into an anchor
vector, which is expressed as:

y � 0, 0, 0, 1, 1, 1, 0, 1, . . . , 0, 1, 1, 0, 1, 0, 0, 0, 0[ ]T

where 1 represents positive samples, and 0 represents negative samples
In order to reduce the impact of mislabeled samples, we raise a

mask produced based on normal distribution when backward loss of
negative anchors during the region proposal process. Unlike models
that have to classify datasets or design a complex network or execute
models of different tasks in parallel mentioned in Section 2, our
project only generates a mask that will neglect a partial negative
bounding box so that enormously reduces the probability of
misclassification. An outline of the proposed learning algorithm
procedure refers to Algorithm 1. Specifically, the anchor vector
executes a 1-label operation to obtain label_neg when calculating the
negative samples, label_neg defined as:

yneg � 1, 1, 1, 0, 0, 0, 1, 0, . . . , 1, 0, 0, 1, 0, 1, 1, 1, 1[ ]T

After generating a mas, the proposed method successfully
ignores some negative anchors and thus will greatly reduce the
probability of transmission error loss of unlabeled lesions.

Input:

Partially-labeled training dataset DL;

Hyperparameters: λ;

Output:

Detection model Θ

Input the dataset into the backbone network to extract

features

Feed into feature pyramids structure to generate feature

maps of different scales

Input to RPN network:

Generate positive and negative anchors

Compute mask

Take λ and mask applied to negative anchors

Generate region of interest

Train detection head

Return Θ

Algorithm 1: Generating Mask

2.2 Negative proportion reduce factor

Furthermore, we separate the positive and negative anchors in
the process of calculating the loss function of the RPN process,
calculate their losses respectively, then pass them to the network.
Our loss is modified according to the cross-entropy loss function,
where the loss function of the positive samples is defined as:

LPS � −∑yi · logpi
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where yi denotes the ground truth label of the anchor and pi is
predicted label. There followed the loss of positive samples and we
design a parameter to control the proportion of negative samples:

LNS � −λ ·∑ 1 − yi( ) · log 1 − pi( )

There proposed method is essential due to the extreme
imbalance of positive and negative samples that the number of
positive labels in a ULD task is very little, even one CT image only
contains one or two lesion ground-truth bounding boxes.
Accordingly, the loss function added with the mask is defined as:

LM � −∑ yilogpi + λ ·M · 1 − yi( )log 1 − pi( )[ ]

where λdenotes the added parameter, andM() is tomanipulate themask.

2.3 Fuse the proposed method into a 3D
network

The proposed method can be introduced into any network of lesion-
detection tasks. In our study, due to the dramatic performance of

extracting context information from CT images, we decided to
employ our method in a 3D extractor to detect lesions. For the
structure of the 3D model refer see Figure 3. Detection is derived
from instance segmentation framework Mask R-CNN, which
backbone based on DenseNet-121 takes a grey-scale 3D input of D ×
512 × 512, where D is the number of slices. Compared with 2D
convolution, 3D convolution can effectively learn the spatiotemporal
characteristics of continuous CT images. The filter of 2D convolution
slides on the two dimensions of length and width, while the filter of 3D
convolution needs to slide on the three dimensions of length, width and
height. Therefore, when the filter slides across the entire 3D space, the
output feature map is also 3D. In addition, 3D convolution is different
from multi-channel convolution. 3D convolution preserves the spatial
and temporal information of the input image, while 2D convolution can
only output a feature map regardless of single-channel learning or
multi-channel learning, thus losing the spatiotemporal information.
3D convolution is usually used in the research where the input data
is video. In this study, because the training data image comes from
continuous computer tomography, 3D convolution can preserve the
spatiotemporal characteristics of the data and improve the network
accuracy. In addition, fusing feature pyramids that feature from

FIGURE 3
The structure of 3D model [above (A)] fused our method and backbone derived from DenseNet-121 [above (B)] takes a grey-scale 3D input of D ×
512 × 512, where D is the number of slices (D = 7 in this study). Features from backbone are assembled and fused together in a feature pyramid network.
Detection is based on segmentation framework using Mask R-CNN (He et al., 2017).
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different scales are assembled during feature extraction. After input
images pass through the feature pyramid, n feature maps of different
scales are generated, and then they are fed to the RPN network to extract
the region of interest. The feature enters the RPN network to generate a
certain number of props (set to 2,000 in this experiment). Before that, the
RPN network calculates the loss based on the anchor’s label and network
prediction. Send the results back to the network and adjust the network
parameters. Themethod proposed in this paper is integrated here. Finally,
a 2D detection head is employed to detect lesions of key slices using the
2D feature map.

3 Results

3.1 Dataset and setting

The Deeplesion dataset includes 32,120 axial slices from
10,594 CT studies of 4,427 unique patients. There are one to
three bookmarks in each slice, for a total of 32,735 bookmarks
whose size varies from 0.21 to 342.5 mm of various lesions such
as lung nodules, liver tumors, enlarged lymph nodes, and so on
(See Figure 2). Most of the bookmarks that usually express
critical lesion finds are measured in accordance with the
response evaluation criteria in solid tumors (RECIST)
handbooks. RECIST-diameter bookmarks indicate the
concrete location and size of a lesion, is composed of two
lines: one measuring the longest diameter of the lesion and
another measuring its longest perpendicular diameter in the
plane of measurement. Our study scaled the CT values from the
intensity range (−1,024 to 3071HU) to the floating-point
number in [0–255], which intensity covers the lungs, soft
tissues, and bones. In addition, the size of each image slice is
adjusted to 512 × 512. Because this research introduces a 3D
network, we compose seven axial slices into a 7-channel image
and feed it into the 3D network. The slice is a central slice
containing bookmarks, and its adjacent slices are interpolated at
2 mm slice intervals. We only used horizontal flipping as an

enhancement of training data and used random gradient
descent (SGD) training for 200 epochs. The batchsize of the
model is 2, and it takes about 7–8 h to train an epoch. The model
converges at about 20 epoch, so the overall training time needs
4–5 days. The training equipment of the model is NVIDIA
TITAN Xp 12 GB. The basic learning rate was set at 0.002,
which dropped 10 times after the 12th and 14th epochs. The
model using our method uses a lower positive anchor IOU
threshold of 0.5, and other network settings are the same as the
corresponding original model. We follow the official division,
that is, 70% for training, 15% for verification, and 15% for
testing. The number of false positives (FPPI) of each image was
used as the evaluation index.

3.2 Experiments

Our experiment is mainly based on A3D. At the initial stage of the
experiment, we set the learning rate to 0.02, and the problem of gradient
explosion occurred in the network. Later, we conducted a lot of
experiments on the value of the learning rate. When the learning rate
was reduced to 1/10, that is, when the learning rate was 0.002, the model
effect reached the optimum. When we were not sure of the above
conclusions and lowered the learning rate to 1/10, themodel convergence
speed was very slow. Therefore, The learning rate set in the following
experiments is 0.002. Figure 4 shows the influence of the negative sample
proportion reduction factor λWhen the accuracy of magic increases by
0.1 from 0 to 1, the model accuracy shows a trend of first increasing and
then decreasing. When λ equals 0.1, the accuracy of the model is poor,
which is caused by the extremely unbalanced number of positive and
negative samples.When λ= 0.6, the performance of themodel is optimal.
After themask is introduced, themodel performance is shown in Table 1.
We introduce the proposed method to the A3D model for performance
comparison. As shown in the table, when slice = 7, that is, when the input
image is 7D, the average FPPI value of thismethod is better than theA3D
method of 0.82%. In addition, we also introduce the proposed method
into the target detection algorithm Faster R-CNN andAlignShift, and the
average performance is improved by 2.91% and 0.52% respectively, and
93.94% and 96.31% respectively in the best case. The model can achieve
high accuracy because the proposed method can effectively improve the
problem of partial labeling, and the proposed loss function can also
improve the phenomenon of uneven distribution of positive and negative
samples. In addition, in the experimental results, when FPPI = 0.5, the
experimental results are most meaningful, and when FPPI = 16, the
reference value of the results is not very significant, but the improvement
of the model performance is beyond doubt.

3.3 Ablation study

We conducted ablation experiments on two key components of the
proposed method. For example, in the first stage, we only introduced a
negative sample proportion reduction factor without using themask, and
in the second stage, we used the mask without using a negative sample
proportion reduction factor. The two experimental settings were
compared. As shown in Table 2, when FPPI = 0.5 and 1, we
achieved 0.41% and 0.33% improvement over the A3D baseline for
the network that only introduced a negative sample proportion reduction

FIGURE 4
Trend of Model Performancewith the change of parameter lamb.
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factor. After only adding the mask, the performance is improved by
1.54% and 0.50% respectively. The best performance can be achieved by
using the negative sample proportion reduction factor and mask at the
same time. In addition, the convergence time of the model is greatly
shortened.

4 Discussion

In this paper, we proposed a novel loss function that introduces a
negative sample proportion reduction factor andmask strategy exerted to
improve the imbalance issue of anchors. The test dataset officially divided
byDeeplesion is fed into the network for testing, and the results show that
the proposed method can improve detection performance more
strikingly than the existing partially supervised learning methods in
the case of incomplete labeling. Compared with previous methods,
this method effectively reduces the probability of backward error loss
of positive samples. The method mentioned in this study can be applied
to all those situations in that samples are classified by one hot coding that
appears as a class imbalance. From this perspective, our research provides
a new direction for the research of partially supervised learning.

However, the proposed method still exists some problems
affecting detection performance. On the one hand, the same
part has different labels. For example, one tissue is marked as
soft tissue in one case but is marked as an abdomen in another
case Our task does not require refining the types of lesions, but
only finding the location of lesions. Therefore, the dataset may
need to be further improved if a classification task of lesions is
required in the future. On the other hand, the performance
improvement of the model is limited because of the annotation
of datasets, some image annotations are not pathological
regions but only frame a certain organ or tissue. In this case,
the model will backward the wrong loss, thus confusing the
network in the training process. From this perspective, in future

research, we will focus on autonomous power to identify
whether it is a lesion of the network. Some incorrect samples
are automatically discarded in the process of model training. In
addition, this method is based on the cross-entropy loss
function. In future research, we will expand the proposed
method to other loss functions and hope to be applied to
other networks to further improve detection performance.
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TABLE 1 Sensitivity (%) at various FPPI on the testing dataset of Deeplesion.

Methods Sclices 0.5 1 2 4 8 16 Avg. [0.5,1,2,4]

Faster R-CNN 3 56.83 67.66 73.92 82.15 90.23 92.26 70.14

Faster R-CNN (with ours) 3 60.44 70.60 75.83 85.32 91.55 93.94 73.05

AlignShift 7 76.88 83.24 89.15 92.74 93.17 95.68 85.50

AlignShift (with ours) 7 77.18 83.98 89.69 93.21 93.33 96.31 86.02

A3D 7 78.52 83.43 89.39 92.96 94.06 96.72 86.08

A3D (with ours) 7 79.74 84.08 90.46 93.34 94.65 97.13 86.90

TABLE 2 Ablation study of our method at various FPPI.

Mask Factor FPPI = 0.5 FPPI = 1

78.52 83.43

√ 80.06 83.93

√ 78.73 83.76

√ √ 79.74 84.08
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