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An acoustic tracking model
based on deep learning using
two hydrophones and its
reverberation transfer
hypothesis, applied to
whale tracking

Kangkang Jin, Jian Xu*, Xuefeng Zhang, Can Lu,
Luochuan Xu and Yi Liu

School of Marine Science and Technology, Tianjin University, Tianjin, China
Acoustic tracking of whales’ underwater cruises is essential for protecting marine

ecosystems. For cetacean conservationists, fewer hydrophones will provide

more convenience in capturing high-mobility whale positions. Currently, it has

been possible to use two hydrophones individually to accomplish direction

finding or ranging. However, traditional methods only aim at estimating one of

the spatial parameters and are susceptible to the detrimental effects of

reverberation superimposition. To achieve complete whale tracking under

reverberant interference, in this study, an intelligent acoustic tracking model

(CIAT) is proposed, which allows both horizontal direction discrimination and

distance/depth perception by mining unpredictable features of position

information directly from the received signals of two hydrophones. Specifically,

the horizontal direction is discriminated by an enhanced cross-spectral analysis

to make full use of the exact frequency of received signals and eliminate the

interference of non-source signals, and the distance/depth direction combines

convolutional neural network (CNN) with transfer learning to address the adverse

effects caused by unavoidable acoustic reflections and reverberation

superposition. Experiments with real recordings show that 0.13 km/MAE is

achieved within 8 km. Our work not only provides satisfactory prediction

performance, but also effectively avoids the reverberation effect of long-

distance signal propagation, opening up a new avenue for underwater

target tracking.

KEYWORDS

underwater acoustic target tracking, two hydrophones, cross-spectral analysis,
convolutional neural network, transfer learning
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1 Introduction

Whales play an extremely important role in the structure and

dynamics of natural ecosystems (Roman et al., 2014). They can not

only improve primary productivity (Henley et al., 2020), but also

regulate carbon dioxide in the atmosphere and marine environment

(Roman et al., 2016). Since the moratorium on commercial whaling

in 1986, the global whale population has continued grown, with a

concomitant increase in the frequency of the whale stranding

(Parsons and Rose, 2022), which has attracted widespread

attention. In 2020, Klaus pointed out the whale stranding

typically occur during their migrations (Vanselow, 2020). Despite

several attempts by some scholars to use satellite tags for individual

movement behaviors, they still are unable to understand whale

movements below the surface, which leaves the potential patterns or

causes of whale stranding incompletely expressed (Perez et al.,

2022). Therefore, mastering the continuous and high-precision

movement trajectories of whales is of great value for the

protection of whale diversity and stranding management.

Passive acoustic monitoring (PAM) offers a novel, long-term,

large-scale monitoring advantage that can provide species

distribution and activity information for vocal species, making it

an ideal bioacoustic tool for whale tracking (Davis et al., 2017;

Aulich et al., 2019). PAM utilizes a distributed single-receiver

hydrophone system, which enables the estimation of cetacean

population densities without the need for tracking and directly

protecting whales during migration. Currently, there is a growing

expectation for tracking systems designed for high-mobility whales

to have a smaller design, low power consumption, and fewer

hydrophones (Ferreira et al., 2021; Frasier et al., 2021; Cheeseman

et al., 2022; Jones et al., 2022). Previous studies have explored the

use of two hydrophones to determine the orientation or distance of

underwater targets using acoustic-based technology. However, due

to the coupling between the azimuth and distance parameters (Ding

et al., 2020), the distance estimates expressed according to the

analytic equations are poor when the azimuth varies with the

interference of reverberation and acoustic reflections, which

significantly reduces the tracking accuracy of the whales.

With the increasing development of artificial intelligence, new

statistical prediction methods based on deep learning have shown

better performance in existing underwater target location

prediction. In recent years, more and more deep neural networks

have been proposed one after another, such as CNNs (Song, 2018;

White et al., 2022), deep neural networks (DNNs) (Yangzhou et al.,

2019), recurrent neural networks (RNNs) (Shankar et al., 2020) and

transformers (Kujawski and Sarradj, 2022). These models have been

successfully applied in many fields of geophysics. Jiang et al. (2020)

proposed a new algorithm fusing deep neural network and CNN for

sound source orientation using the voltage difference and cross-

correlation function extracted from binaural signals. The CNN

architecture developed by (White et al., 2022) uses a custom

image input to exploit the temporal and frequency domain

feature differences between each sound source to achieve multi-

category ocean sound source detection. All these works

demonstrate the potential of deep learning for sound source
Frontiers in Marine Science 02
localization and detection. Notably, ITAI Orr et al. (2021)

successfully published a paper in the journal of Science Robotics,

using the deep neural network to improve the angle resolution by

four times. However, these methods have significant limitations: 1)

Relying on manually selected features to define a signal of interest

requires highly sophisticated knowledge (Jiang et al., 2019) of

signal processing and may not adequately describe the complex

and variable time-frequency properties of sound. 2) The large

number of parameters is a time-consuming step that requires

exploring various neural network hyperparameters to obtain an

optimal model.

While CNNs offer significant advantages such as automatically

extracting relevant features from whale signals. However, their

application necessitates access to large public PAM datasets. To

address these problems, the concept of transfer learning was

suggested (Bursać et al., 2022). Transfer learning is employed as a

modeling strategy wherein a model trained on one data set (source

model) is utilized to make predictions on another data set (target

model). This approach enables the model to undergo update

learning with small samples, thereby enhancing the adaptability

of learning methods (Obara et al., 2022). This can be done in two

ways: (a) fine-tuning the source model on the target dataset; (b)

using the source model as a feature extractor to extract robust

features for the target dataset to build the target model. (Saeed

Khaki 2021) utilized transfer learning between corn and soybean

yields by sharing the weights of the backbone feature extractors

(biological information transfer), which demonstrated the ability of

the model to predict accurately (Khaki et al., 2021).

In this study, given the favorable properties of transfer learning,

we apply this approach to address localization errors due to

different effects of reverberation on different signals. Thus, we

propose CIAT, a composite intelligent acoustic tracking model,

which mines and preserves the signal-spatial unpredictability

features from two hydrophones, to achieve accurate and efficient

whale tracking. This study dramatically opens a new path to

tracking whale cruises without large physical “real” arrays.

Specifically, our key innovations include:
(1) Remove the effects of non-source signals: an unsupervised

algorithm based on enhanced cross-spectral analysis is used

for horizontal azimuth estimation, which ensures the

uniqueness of the solutions of CIAT and eliminate the

interference of non-source signals.

(2) CNN-based distance/depth estimation pre-trained model:

Automatically mine and efficiently establish signal-space

feature transfer mechanism.

(3) Combining transfer learning to improve computational

efficiency: For Munk or SWellEX-96 (SW-96) application

environments, CIAT shares weights of the convolutional

layers of the pre-trained model to reduce model parameters

and subsequently helps the training process despite the

small-field discretized measured data.

(4) Strengthen robustness and scalability: Comparing the

experimental data of the random walk characteristics of
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two hydrophones proves that CIAT has strong robustness

and scalability.
2 Materials and methods

2.1 Dataset

Acquiring labeled underwater acoustic target data is challenging

in practical applications. To overcome this problem, the network is

trained on the synthetic data based on the prior hydrological

environment information and the sound field model, to establish

the pre-training model. Then, the knowledge learned by the model

on the synthetic data is transferred to the small-domain discretized

actual data to enhance the model’s performance across different

domains. Especially in the ocean waveguide environment, there are

factors such as noise, reverberation, and interference, which will

cause differences between the synthetic training data and the

measured data. Transfer learning offers significant advantages

when applied to new tasks, as it does not necessitate an identical

data structure. This flexibility is particularly beneficial in dealing

with deviations between synthetic and actual data. In this study, we

use the measured dataset as the validation set of CIAT. As shown in

Figure 1 and Table 1, the actual experimental dataset is briefly

described, together with its deployment and environmental

parameters (Fu et al., 2020; Kwon et al., 2020; Gupta et al., 2021;

Ajala et al., 2022; Zhang et al., 2022).

From Figure 2, it is evident that there are many similarities

between the acoustic signals of the sound source ship and bowhead

whales. Specifically, there is a clear comb-like structure at the

vocalization of the bowhead whale, which corresponds to the

sound source ship. What’s more, both the radiated signal from

the sound source ship and the calls of whales share common

characteristics such as uniform background noise and being

considered quasi-steady-state processes in the short term. To
tiers in Marine Science 03
fulfill the validation requirements of this study, the SW-96

experimental data is well-suited. Hence, this study employs

acoustic data resembling whale signals to assess the feasibility of

CIAT. As the availability of measured data is limited, synthetic data

will be used to complement the CIAT data preparation. Detailed

data information can be found in Table 2.

Synthetic data are generated through broadband modeling

based on normal wave theory. Normal wave model is a classic

sound field model, which mainly studies the amplitude and phase

changes of sound signal in the sound field. It is suitable for far fields

such as low frequency, shallow sea, constant level and other far

fields. The solution is expressed as an integral solution in the wave

equation. KRAKEN (Byun et al., 2019) uses the finite difference

method to discretize the continuous problem in the wave equation,

and the resulting solution is as follows:

p(r, z) =
i

r(zs)
ffiffiffiffiffiffiffiffi
8pr

p · exp   −
ip
4

� �
·o∞

l=1
y (zs, rl)ffiffiffi

rl
p exp (irlr) (1)

where, r is the horizontal distance, is the depth, represents the

density of seawater, zs represents the depth of the sound source, and

y(zs,rl) is a constant and is the lth order normal wave.

The waveguide environment is simulated by the KRAKEN

simulation program, and the parameters refer to the SW-96 or

Munk experiment. And set the placement depth of the simulated

sound source to 9m and the distance between the two hydrophones

to be 150m. After calculating the sound pressure values of the

broadband receiving space points, the solution of the time-varying

wave equation is obtained by the Fourier synthesis method of the

frequency domain solution. By doing so, uninterrupted time

domain reception signals for both hydrophones are generated.

p(r, z, tj) =
1
No

N
k=1S(wk) p(r, z,wk)e

−jwktj (2)

where, S(wk) is the sound source spectrum; is the number of

FFT points, and the transmission frequency (wk) is {109, 127, 145,

163, 198, 232, 280, 335, 385}.
FIGURE 1

The study area near San Diego, California. The red dot marks the recording position VLA (32°40.254’ N, 117°21.620’ W) with a slight skew a, the
yellow line is the track of the source ship from south to north, and the filled rectangle is defined as hydrophone signals selected as the data source
for this CIAT.
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2.2 Model architecture

According to Risoud et al. (2018), azimuth, distance and depth

are the three key parameters for sound source localization.

However, it is important to note that azimuth estimation and

distance/depth estimation are different types of tasks that may

require different model architectures and feature representations.

Traditional algorithms, such as cross-spectral analysis, are
Frontiers in Marine Science 04
commonly used for azimuth estimation by analyzing the

phase information of the sound signals (Li et al., 2019). In

contrast, deep learning models have powerful feature learning and

expressive capabilities, which can effectively capture distance- and

depth-related patterns and features in sound signals. To simplify

the training and inference process of the model and improve the

accuracy of parameter estimation, we will estimate these parameters

separately using their respective features and information. Doing so
FIGURE 2

Power spectrum and time-frequency plots of the received signal from No. 1st hydrophone and the bowhead whale signal. (A1) The power spectrum of
the signal received by No. 1st hydrophone, and (B1) the time-frequency diagram. (A2) The power spectrum of the bowhead whale, and (B2) the time-
frequency plot. Data source NOAA Ocean Passive Acoustics Data Recorded by instrument NRS01 (72.443N, 156.602W) under the mooring platform.
TABLE 1 Overview of analytical acoustic data recorded by two acoustic recorders.

Name Position Deployed
years Start time End time Duration time

(min) Sampling Rate (Hz) Depth (m) Bandwidth
(Hz)

1
32°40.254’ N
117°21.620’ W

10/5/96 23:15 0:30 75 1500 94.125 100~400

2
32°40.254’ N
117°21.620’ W

11/5/96 23:15 0:30 75 1500 99.755 100~400
The sensor calibration of all acoustic recorders is 185.3dB, and the water depth is 216.5m.
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avoids introducing data association problems and redundant

information. Our proposed model combines three key

technologies: unsupervised learning algorithm based on enhanced

cross spectral analysis, CNN and transfer learning (Ramıŕez-Macıás

et al., 2017; Fortune et al., 2020; Kovacs et al., 2020), and Figure 3

shows the CIAT flowchart.

It can be seen from Figure 3 that CIAT begins by using the

improved cross-spectrum analysis method to determine the

direction of the sound source and can effectively focus on the

position of the sound source, which helps to improve the accuracy

and robustness of the sound source localization. Subsequently,

employ a combination of CNN and transfer learning to estimate

the distance/depth of the sound source. By using the CNN model,

we can extract features about the depth and distance of sound

sources from the input signal. Transfer learning allows us to

leverage models pre-trained on other related tasks, thereby

accelerating the convergence of the network and improving

performance. Finally, the azimuth estimation and the distance/

depth estimation results are integrated to realize the trajectory

prediction. Figure 4 shows a detailed overview of the steps

involved in the process.
Fron
Step 1: Enhanced cross-spectral analysis is used to get the

horizontal azimuth. We calculate the cross-spectral values

of the time-domain data within the frames, and then filter

the spectral peaks of the frequency points to get the target

angle information. Compared with traditional algorithms,

this unsupervised learning algorithm eliminates the

interference of non-source signals and the multiple

solutions of CIAT.

Step 2: A pre-trained model is built based on the CNN

algorithm to mine signal-spatial features. The source data
tiers in Marine Science 05
of ambient-field spatial features are reconstructed using

broadband modeling, and more unpredictable features

between the received signals and the target positions are

mined by establishing a signal-spatial transfer mechanism.

Compared with the traditional beamforming technology,

the pre-trained model could directly perceive the signal-

spatial features instead of indirectly extracted phase and

frequency features.

Step 3: Use transfer learning to increase the generalization

ability of the CIAT model. The convolutional layers of the

pre-trained model are frozen by transfer learning to

preserve the effect of signal-spatial feature perception in a

specific application environment (Xu and Vaziri-Pashkam,

2021; Bedriñana-Romano et al., 2022; Dumortier et al.,

2022). Small-domain discrete actual data is added to the

target environment to strengthen the non-mapping

connection between the fully connected layer features and

the actual target locations. The CIAT model could adapt to

dynamic perturbations in the marine environment,

significantly improving tracking accuracy.
Based on the received signals from the two hydrophones, the

azimuth of the sound source is first calculated using an enhanced

cross-spectrum analysis. Then a pre-trained model is built using

CNN algorithm to infect signal-spatial features. Finally, transfer

learning is combined to enhance the generalization ability of the

CIAT model.

2.2.1 Enhanced cross-spectral algorithm
The cross-spectrum method utilizes the principle of signal

correlation (Virovlyansky, 2020; Lo, 2021) and can effectively

suppress noise. Let s1(t) and s2(t) be the broadband signals
FIGURE 3

Schematic diagram of the overall architecture of CIAT.
TABLE 2 Data description.

Data Name Data Composition Data Description Data size

Synthetic data
Source data Based on SW-96 environmental parameters using broadband modeling 6999

Munk data Based on Munk environmental parameters using broadband modeling _

Actual data SW-96 data SWellEX-96 experiment _
fr
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received by the two hydrophones, then the cross energy spectral

density is expressed as:

E12(f ) = F1(f )F*2 (f ) = F1(f )j j2ei2p fDt (3)

where, F1(f) and F2(f) are the spectral density functions of s1(t)

and s2(t), respectively. According to the time delay characteristics of

the Fourier transform, the time delay information is included in the

phase information of the cross spectrum, then the phase of the

cross-spectrum density at the frequency f is:

j(f ) = arctan½I(f )=Q(f )� (4)

For a wideband signal with a bandwidth of B, in order to

improve the accuracy of the phase difference measurement, we

divide the time-domain received signals of the two hydrophones

into frames, and calculate the cross-spectrum value of each frame

separately. Then calculate the phase difference of each frequency

sampling point in the signal bandwidth according to the above

formula, and take the maximum value as the accurate phase

difference of the center frequency sampling point to calculate the

azimuth angle of the incident signal. Without considering the phase

ambiguity, the maximum phase difference is:

Dj(f ) = max(arctan½I(fm)=Q(fm)�) (5)

where, (f0 − B
2 ) ≤ fm ≤ (f0 + B

2 ). The improved cross-spectral

analysis method estimates the azimuth of the target by taking the

frequency point corresponding to the maximum spectral value.

Compared with the traditional cross-spectrum method, the method

effectively eliminates the interference of non-source signals, thereby

significantly improving the direction-finding accuracy.
Frontiers in Marine Science 06
2.2.2 Training process
CNN is one of the most powerful deep learning architectures

that can automatically extract necessary features from raw data

without any hand-crafted features. It has gained popularity in

various fields such as image recognition, speech recognition, and

natural language processing. In addition, the main reasons for using

dual-channel end-to-end training are as follows. (1) the input is

provided by raw audio data recorded by two hydrophones, which

allows it to perform joint feature learning with passive whales,

avoiding manual feature selection. Meanwhile, (2) an end-to-end

data-driven approach brings us the possibility to capture more

complex spatiotemporally correlated latent features of the two

hydrophones through the main convolution operation (Chen and

Schmidt, 2021; Dayal et al., 2022).

Table 3 shows the size and number of convolutional filters in

the proposed topological network. Adding a batch normalization

layer after the input layer enhances the training process by reducing

the drift of the input data distribution. This normalization

technique accelerates network training by ensuring more stable

gradients and mitigating the impact of varying input distributions.

By normalizing the activations within each mini-batch, batch

normalization promotes faster convergence and improves the

overall efficiency of the network, and then concatenates two

identical convolutional blocks. From an audio signal processing

perspective, a convolutional unit can be viewed as a set of finite

impulse response (FIR) filters with learnable coefficients, allowing

more complex and comprehensive sample latent features to be

extracted from large-scale data. The max pooling operation

preserves more important features. The same is true for the
FIGURE 4

A detailed overview of the three steps performed by CIAT.
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remaining two convolution blocks. The “distributed features” are

flattened and fed into a fully connected hidden layer of 100 units,

designed to integrate and arrange the content in the filtered acoustic

signal to obtain the final function as a solution.

q = (R,D) = Fout HL(HL−1(⋯Hl(⋯H1(s))))
� �

(6)

where H() is the calculation process of a complete hidden layer.

s is the time domain acoustic data of two hydrophones. Fout(x)= Act

(wx + b) represents the fully connected layer, where w and b are the

parameters of the fully connected layer. ReLU activation function is

used in all layers except the output layer to ensure that all outputs

are positive and reduce the risk of gradient explosion and gradient

disappearance during network training. In each training round, the

model is optimized for accuracy using the Adam algorithm.

2.2.3 Model fine-tuning
In CIAT, we build the target models using exactly the same

architecture as the pre-trained (Zhong et al., 2021) models and use

the parameters of these pre-trained models (except for the

parameters of the output layer) as initial parameters. These

transferred models are then retrained using small samples of

actual data, a process called fine-tuning. Different transfer

learning experiments are also performed to test the robustness of

the transfer learning scheme by passing only some parameters of

the hidden layers or fine-tuning the parameters of the selected

layers, and the model performance was evaluated using the same

approach. Here, we demonstrate that even using a small

experimental training set, it is possible to extract significant

signal-spatial features by expanding the dataset with computer-

generated raw acoustic data.
2.3 Prediction performance evaluation

Model performance metrics for Mean Absolute Error (MAE),

Root Mean Square Error (RMSE) and Correct Positioning Ratio
Frontiers in Marine Science 07
(CPR) are defined as below:

MAE =
1
No

N
i=1( ri − rî

�� �� + di − dî
�� ��) (7)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
i=1 (ri − rî )

2 + (di − dî )
2� 	r

(8)

CPR = o
N
i=1(h(i))
N

∗ 100% (9)

h(i) = 1, r−r̂j j
r < 0:1    and   

d−d̂j j
d < 0:1

0,    else

8<
: (10)

where N is the number of test sets, r is the real distance, and r̂ is

the predicted distance; d is the real depth, and d̂ is the predicted

depth. The smaller theMAE and RMSE, the better the performance,

and the larger the CPR value, the better the model performance.

These three indicators can intuitively reflect the closeness of the

predicted result to the true value (Masmitja et al., 2020; Fonseca

et al., 2022; Guzman et al., 2022; Skarsoulis et al., 2022).
3 Results

3.1 Horizontal azimuth estimation

The azimuth estimation process refers to Step 1 of the Model

Architecture. We use enhanced cross-spectral analysis to obtain the

target horizontal azimuth information. The local northeast

coordinate system is established with the 1st hydrophone of the

HLA as the origin, and the relative coordinates of other positions

are recalculated by Universal Transverse Mercator Grid System

(UTM) transformation to obtain the actual azimuth (blue line in

Figure 5A). To determine the mutual spectral values of the two

signals, two hydrophones of VLA (Chambault et al., 2022; Yang

et al., 2022) are chosen to record time-domain data in frames.

Assuming the normal direction of the line connecting the 1st

hydrophone and the sound source ship at the 60th minute is 0°,

the azimuth angle less than 60min is q, and the azimuth angle more

than 60min is 180°-q.
Due to the similarity in average spectral values of the signals

captured by the two hydrophones, the traditional cross-spectrum

analysis method faces challenges in distinguishing them. As a result,

the calculated angle tends to be either 0 or NaN (not a number),

indicating that it cannot be reliably determined due to the similarity

in average spectral values. Compared to conventional spectral

analysis algorithms, our enhanced cross-spectral analysis ensures

the accuracy of azimuth estimation by finding the spectral peaks

corresponding to the main frequency points. This unsupervised

learning algorithm maintains the intrinsic connection between the

two received signals, eliminates the influence of non-source signals,

and ensures the unique solution and objectivity of CIAT.

In Figure 5A, the boxplot visually represents the distribution and

dispersion of the azimuth data. It effectively summarizes key statistics

such as medians, quartiles, etc., providing insight into the central
TABLE 3 CIAT parameters.

Type/stride CIAT parameters

BN

conv (1×5)(16)

max pool (1×3)

conv (1×5)(16)

max pool (1×3)

conv (1×5)(32)

max pool (1×3)

conv (1×5)(32)

max pool (1×3)

FC-
Dropout(-)

Output (range and depth)
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tendency and variability of azimuth values. Additionally, the

scatterplot in the same figure shows azimuth data obtained from a

fifth-order polynomial fit, which reveals patterns and trends exhibited

throughout the specified time period. As seen in detail (Table 4),

particularly, the Absolute Error (AE) in the angle exceeds 10° at about

59 minutes. This phenomenon that the azimuth error is the largest

when the target is closest to the hydrophone is consistent with the

results of Watkins and Schevill et al., which confirms the effectiveness

of our horizontal azimuth estimation algorithm and further boosts

the credibility of our intelligent acoustic tracking model.
3.2 Distance/depth estimation

Distance/depth estimation includes CNN pre-trained model

and transfer learning. First, the pre-trained model of CNN is built

for processing received signals. The input of the model is N * 2 * S

dimension, where N represents the signal sample length, 2 denotes

the number of channels, and S represents the signal frame length.

To ensure compatibility and optimize performance, we implement

the entire framework using the Python programming language and

the TensorFlow library on a Windows 10 x64 system. Compared to

large networks like U-Net, CNN has a shallow network structure

that does not require many parameters to train its performance.

This characteristic has led our model to outperformmost previously

used models in this research area.

The frame lengths 1001, 2001, and 3001 all demonstrate

conformity to the normal distribution as predicted by the theory,

thus verifying the validity of the model and its prediction accuracy.

Notably, the frame length of 1001 exhibits the highest accuracy in

predictions (Figure 5B). Since the underwater depth of the whales is

almost constant during migration, this paper does not place a high

value on depth changes. For the frame length of 1001, the distance

estimation errors within 6 km are 0.0322 km/MAE, 0.0805 km/

RMSE, and 94.57%/CPR. The above fully illustrates that our CNN

pre-trained model could directly perceive the signal-spatial features.

We visualize the trend changes of weights acting on 16

convolutional kernel units in the first layer of the dual-channel
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system. Figure 6 illustrates this, where (a) represents the weight

values of 16-1; (b) 16-2; (c) 16-3; and (d) 16-4. The shaded regions

indicate perfect recordings when both sound waves arrive

simultaneously, otherwise, they indicate a delay. From Figure 6,

we can infer the following:
1) The trend changes between different weights reflect the time

difference or phase difference of the sound waves reaching

the two hydrophones. The weights show significant changes

or overlaps at specific positions. For example, at the

upward-pointing Perfect shaded arrow, we can infer that

the time or phase difference of the sound waves’ arrival is

small.

2) The differences between different weights can reflect the

variations in the signals received by the two hydrophones. If

the weights exhibit noticeable differences at certain

positions, such as the right-pointing Delayed shaded

arrow, it suggests significant discrepancies in the signals

received by the hydrophones at that position.
By considering the combined trend changes and differences in

weights, we can deduce that the signals received by the two

hydrophones have different arrival times and phase differences,

and there are significant discrepancies at certain positions. This

aligns with the actual scenario of sound propagation reaching the

two hydrophones, thereby enhancing the model’s interpretability

and reliability.

Further, Figure 7 provides insights into the intermediate layer

feature representations of CIAT. When examining the signal

features of different time frames (signals 1, 2, 3), the features

extracted from the last 100 frames are slightly better than those

extracted from the first and tenth frames. The reason behind this

observation is that the initial time period predominantly captures

the direct path sound signal, which does not exhibit a distinct

multipath reflection signal pattern. As the network layers deepen,

the extracted features become more specific and sparser, indicating

the presence of spatial selective gradients within CIAT. Comparing

(a) and (b) in Figure 7, without transfer learning (marked by
BA

FIGURE 5

Estimation results. (A) SW-96 experimental data azimuth estimation. (B) Comparison of distance estimation results for pre-trained model frame
lengths of 1001 and 2001.
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ellipses), the obtained features are blurry, and even with increasing

network layers, the features extracted from two similar time frames

remain indistinguishable. However, through transfer learning

(marked by rectangles), the learned features are not only

representative but also avoid the issue of feature blurriness.

The observations strongly suggest that CIAT is capable of

extracting signal features from various time frames through a

nonlinear feature extractor. Additionally, the model exhibits good

generalization capabilities when applied to real-world data. These

findings lay a solid foundation for the potential success of using

CIAT in tracking whales during migration.
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Next, the signal-spatial feature parameters of our pre-trained

model obtained in the ideal environment are applied to the target

environment by transfer learning to evaluate the effect of the target

model on the perception of the actual received signal features

(Gemba et al., 2017; Worthmann et al., 2017; Agrelo et al., 2021;

Coli et al., 2022). The target model’s input is Munk-based synthetic

data to determine the effective transfer of signal-spatial feature

mechanism, thus ensuring the feasibility of the proposed model.

After that, the CNN pre-trained model’s convolutional layer is

frozen. However, this frozen CNN pre-trained model does not serve

as the final model for the effect of dynamic ocean perturbations,
B

C D

A

FIGURE 6

Respectively act on the weights of the dual-channel convolution kernels. (A) represents the weight value of 16-1; (B) 16-2; (C) 16-3; (D) 16-4. The
shaded areas represent: two sound waves arriving at the same time are recorded as Perfect, otherwise, Delayed.
TABLE 4 Azimuth estimation results.

Time/min Actual azimuth Conventional Spectral Analysis AE Enhanced cross Spectral Analysis AE

10 174.424° 0 174.424° 173.935° 0.489°

20 176.873° NaN _ 171.728° 5.145°

30 179.805° NaN _ 174.083° 5.722°

40 173.227° NaN _ 171.121° 2.106°

50 151.641° NaN _ 146.687° 4.954°

59 90.659° NaN _ 100.807° 10.148°
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which would result in an environmental mismatch between the

source and target model datasets. Therefore, we use transfer

learning to share the weight parameters of the CNN pre-trained

model and put small sample data to the target model for achieving

accurate prediction positions by fine-tuning the fully connected

layer and setting Dropout 0.5 to build the Munk target model.

The estimation errors of the Munk target model are 0.015km/

MAE and 97%/CPR (Figure 8A). It can be seen that the predicted

distance of the target in the Munk environment is consistent with

the actual distance, indicating that our transfer learning algorithm

could make the model’s generalization performance enhanced and

adapt to different environments with guaranteed accuracy. In

addition, we test the reproducibility of the transfer algorithm by

changing the signal pattern of the source from comb to FM

emission and also set Dropout 0.3. Figure 8B shows that the

distance estimation errors are 0.031km/MAE and 93%/CPR,

which also has high accuracy and proves the robustness of

the CIAT.

Next, we apply this transfer algorithm to the actual

experimental data with ambient noise and reverberation. Based

on our frozen CNN pre-trained model, the first 9 minutes of raw

acoustic data from two hydrophones are used as the input to the

SW-96 target model, and two Dropout layers (0.5 and 0.1) are

added to complete the sound source ship distance/depth prediction.

As shown in the distance results, the estimation error of distance

obtained within 8 km without transfer learning is 0.15 km/MAE
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(Figure 8C), while with transfer learning the distance estimation

errors are 0.13 km/MAE, 0.164 km/RMSE, and 100% CPR,

respectively (Figure 8D), demonstrating that the distance

prediction accuracy using transfer learning at sparse data is

higher than that without transfer learning. And Figure 9A shows

that the predicted depth of the target in the SW-96 environment is

consistent with the actual depth. Besides, in the same experimental

environment, we also compare CIAT and traditional matching field

processing (MFP) techniques (Wang et al., 2020). The results are

shown in Table 5, which shows that the traditional method is

severely limited by multipath propagation and spatial correlation in

the marine environment, and it cannot complete the tracking task

solely by relying on two hydrophones. These further verify that our

proposed model only based on two hydrophones can adapt to the

effects of dynamic marine environmental perturbations brought

about by scene switching and can be extended to applications in

actual marine environments.
3.3 Transferability and sensitivity

Our model enables to perform high-precision tracking in both

Munk and SW-96 actual environments, and it is a key advantage of

our CIAT to achieve high-precision tracking at 8 km 0.13 km/MAE

in actual marine environments using two hydrophones. At the same

time, CIAT can also adapt to switching between different marine
B

A

FIGURE 7

The middle layer feature representation for CIAT. (A) Without transfer learning; (B) With transfer learning.
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environments like Munk and SW-96, but since both CNN and

transfer learning in CIAT are black-box models, there is currently

no effective physical mechanism to explain this phenomenon.

Therefore, another important direction of our work focuses on

explaining the physical mechanism of CIAT to support switching

between different marine environments.

Theoretically, our CIAT is mainly affected by the ambient noise

and ocean reverberation that exist in different marine environments

when applied. However, since the source dataset is synthetic data

used for broadband modeling, it is determined that the features

shared will not be ambient noise.

From the SW-96 experimental results, the CIAT is directly

applied to sound source distance/depth estimation after the first 9

minutes of transfer training. The statistical errors of the predicted

10-16 min distance are 0.367 km/MAE, 0.429 km/RMSE, and

91.87%/CPR, while the statistical errors of 10-19 min are 0.545

km/MAE, 0.628 km/RMSE, and 61.13%/CPR, and the effective time

of the model tracking time is longer than 7 min (Figure 9B). From

the measured data MAE, RMSE and CPR (Figure 9C), these three

performance indicators can show that the error of CIAT increases

with increasing tracking time, demonstrating that the spatial

characteristics of the transmitted signals belong to the time
Frontiers in Marine Science 11
domain. Additionally, as tracking time increases, various interface

scattered acoustic waves are continuously superimposed in the

hydrophone signals, also exhibiting time-domain characteristics.

Therefore, we believe that the signal-spatial features conveyed by

the transfer learning of CIAT are oceanic reverberations, which are

the physical mechanism of their ability to support switching

between different marine environments.

Transfer learning in CIAT conveys the signal-spatial features

that are ocean reverberations, which support the interpretation of

switching between different marine environments. We then

conducted two sets of experiments to further measure the ability

of CIAT to adapt to such environmental differences.

Group 1: The spacing between the two hydrophones is fixed for

different permutations.

As shown in Figure 10A, the prediction error distribution tends

to be consistent, although the combination categories are not

identical. Setting the distance to 5.63m, the prediction errors for

different combinations are shown in Table 6, which proves that the

signal-spatial features perceived by the pre-trained model are

effectively transferred under a certain spacing. Therefore, the

model can obtain accurate prediction results using 2 hydrophones

under a certain spacing. This experiment illustrates that under a
B

C D

A

FIGURE 8

Positioning and tracking results. (A) Distance estimation results for synthetic data of the Munk environment, and (B) results for the change of signal
form to FM signal. (C) The prediction result of SW-96 experimental sound source distance without transfer learning, and (D) with transfer learning.
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certain spacing, the change in spatial location has little effect on the

adaptive ability of CIAT.

Group 2. One hydrophone is settled, and the spacing between

the two hydrophones is adjusted.

Figure 10B shows that the prediction error distribution still

tends to be similar when the spacing between two hydrophones is

changed. As shown in Table 7, the prediction errors fluctuate

slightly without significant differences. This experiment illustrates
Frontiers in Marine Science 12
that CIAT is still highly adaptable to the environment when the

spacing and spatial location of two hydrophones are both changed.
4 Discussion

In this study, we propose a composite intelligent tracking model

(CIAT) to achieve both azimuth and distance/depth estimation with
B

C

A

FIGURE 9

Tracking results. (A) Depth estimation results. (B) Tracking trajectory of the sound source ship. X-axis the distance of the source ship from the 1st
hydrophone, Y-axis the azimuth of the source ship, and Z-axis the time dimension. Green line the real trajectory and the orange line is the
predicted. (C) The three indicators of MAE, RMSE, and CPR verify the accuracy of the CIAT model, and show the trend of the indicators as time
increase and evaluate the generalization ability of the model.
TABLE 5 Comparison results of CIAT and MFP.

Distance
(m)

CIAT AE MFP AE

MAE: 116.229 MAE: 2451.375

8368 8161.774 206.225 8600 232

8219 8033.095 185.904 6600 1619

8083 7982.247 100.752 100 7983

7932 7846.973 85.026 7600 332

7780 7799.913 19.913 7600 180

7627 7684.014 57.014 5100 2527

7495 7454.631 40.368 5100 2395

7343 7577.628 234.628 3000 4343
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solely two hydrophones, thereby allowing complete and accurate

tracking of whales, especially 0.13 km/MAE within the range of

8km. It addresses that the current spatial-temporal correlation

techniques are limited by the hydrophone quantity accumulation,

arrival time sensitivity and low tracking accuracy. Additionally,

another important direction of our study focuses on explaining the

physical mechanism of CIAT to support switching applications in

different marine environments.

For the horizontal azimuth estimation, we use the enhanced

cross-spectral analysis based on unsupervised algorithm to

overcome the problem that traditional methods are seriously

affected by non-source signals and multiple solutions of CIAT.

We calculate the cross-spectrum values of the time domain sub-

frames of the two hydrophone received signals, and then estimate

the azimuth of the target based on the obtained spectral peaks of the

corresponding frequency points. The results demonstrate that the

minimum error reaches 0.489° and the average error is 4.762°
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within 75 min, which solves the failure of the traditional cross-

spectral orientation methods and obtains the azimuth information

with high precision.

For the distance/depth estimation, the spatial feature source

data is reconstructed by broadband modeling to overcome the

sparsity of the measured data. Then, a CNN pre-trained model is

constructed to mine more obvious and robust features between the

received signals and the target positions by establishing the signal-

spatial transfer mechanism to avoid the dependence on indirectly

extracted features such as phase and frequency.

Transfer learning is used to improve the generalization ability of

CIAT model. For the Munk and SW-96 marine environments, the

perceptual effects of signal-spatial features are preserved by freezing

the convolutional layers of the CNN pre-trained model. Then small

domain discretization of actual data is introduced to the target

model to enhance the non-mapping relationship between fully

connected layer features and actual target locations. The results
BA

FIGURE 10

Prediction error distribution for repeated experiments. (A): (a) Error histogram, probability density function and cumulative distribution function of
error points at 5.63m. (b) 19-11.26m. (c) 14-38.41m. (d) 7-67.56m. (e) and (f) Error distribution plots and the mean PDF. (B): (a) Error histogram,
probability density function and error point cumulative distribution function for different hydrophone spacing, respectively. (b) 3-8 (c) 8-12 (d) 13-7
(e) and (f) Error distribution plots and the mean PDF.
TABLE 6 Numerical statistical properties of errors.

Max/m Min/m Mean/m Variance/m Median/m Skewness/m Kurtosis/m

1-2 665.88 -631.85 10.63 237.12 10.94 0.021 2.15

2-3 658.59 -606.03 0.39 223.89 -8.62 0.11 2.24

3-4 546.37 -505.06 -2.88 245.52 27.43 -0.029 1.84

18-19 565.90 -484.46 -5.60 248.80 -6.21 -0.041 1.85

19-20 547.84 -500.84 -6.29 248.10 -2.05 -0.035 1.84

20-21 626.94 -641.60 6.28 239.46 14.93 -0.064 2.09
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demonstrate that our model exhibits generalization capabilities that

enable it to adapt to changes in scene switching, hydrophone

spacing, and signal reception form, and accurately predict

target location information even with less data and unknown

environmental conditions. Furthermore, from the perspective of

theoretical analysis and repeatable experiments, it is demonstrated

that the signal-spatial features transmitted by transfer learning

are ocean reverberation. This is crucial to explain the physical

mechanism by which CIAT enables to support switching between

different marine environments.

Our proposed whale tracking model breaks the paradigm of

improving tracking accuracy by accumulating physically “real”

arrays, but fully senses and mines the unpredictable signal-spatial

features of the two hydrophones for precise tracking. Especially, the

transmitted signal-spatial features are found to be oceanic

reverberations during the prediction process. This provides an

explanation for the physical mechanism by which CIAT would be

able to support switching applications in different marine

environments. However, one of the most important limitations of

this study is the small size of the training/validation set used. It is

foreseeable that in the future, more acoustic received signal could be

collected as an extension to provide more precise information for

whale diversity conservation and stranding management.
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TABLE 7 Numerical statistical properties of errors.

Max/m Min/m Mean/m Variance/m Median/m Skewness/m Kurtosis/m

1-2 665.88 -631.85 10.63 237.12 10.94 0.021 2.15

1-3 551.20 -477.41 -3.27 244.41 46.10 -0.04 1.82

1-4 559.69 -497.78 5.03 243.63 42.88 -0.026 1.83

1-19 570.02 -503.21 6.33 245.12 18.54 -0.025 1.83
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