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Abnormal changes of bone
metabolism markers with age in
children with cerebral palsy
Wen Xing, Lin Liang, Na Dong, Liang Chen and Zhizhong Liu*

Department of Clinical Laboratory, Beijing Bo’ai Hospital, China Rehabilitation Research Center,
Beijing, China

Cerebral palsy (CP) is a broad range of diseases with permanent and nonprogressive
motor impairments, carrying a high cost for both the individual and the society.
The characteristics of low bone mineral density and high risk of fractures suggest
that bone metabolism disorders are present in CP. This study aims to investigate
the association between indicators of bone metabolism and children with CP.
A total of 139 children (75 children with CP and 64 healthy controls) were
included in this cross-sectional study. Participants were divided into three age
groups (0–2 years, 2.1–4 years, and 4.1–7 years). All children with CP were
diagnosed according to clinical criteria and furtherly divided into clinical subtypes.
The levels of total procollagen type I N-terminal propeptide (TPINP), N-MID
osteocalcin (OC), beta-crosslaps (β-CTX), 25-hydroxyvitamin D (25-OHD) and
parathyroid hormone (PTH) in the serum were measured with corresponding
detection kits according to the manufacturer’s instructions. Serum levels of TPINP
and 25-OHD were lower with older age, whereas β-CTX and PTH were higher
with older age. In the CP group, TPINP (age 0–2 years and 2.1–4 years) and OC
(age 2.1–4 years) levels were higher, while β-CTX (age 2.1–4 years and 4.1–7
years) and PTH (age 2.1–4 years) values were lower than the control group.
In addition, there were no statistically significant differences in the levels of these
indicators among the CP subgroups with different clinical characteristics. Our
study shows that bone turnover markers, indicators of bone metabolism, in
children with CP differ significantly from healthy controls. The indicators we
studied changed with age, and they did not correlate with disease severity.
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Introduction

Cerebral palsy (CP) is the most prevalent physical disability in childhood, with a

prevalence around 2 per 1,000 live births (1). CP is a heterogeneous group of disorders of

movement and posture attributed to a defect or lesion in the developing fetal or infant

brain (2). Although the etiology of CP is multifactorial and complex, the exact causative

mechanisms contributing to pathogenesis remain unknown, making progress towards

prevention and treatment strategies difficult (3).

The skeleton is an important component of vertebrates’ body, providing structural

support for locomotion and protection for major organs (4). Meanwhile, bone tissue also

functions as an endocrine organ (5). Bone cells in the human body are continuously

involved in cellular metabolism, a dynamic process of osteoblastic bone formation and

osteoclastic bone resorption (6). Studies on different populations (older adults,

menopausal females, etc.) reports that bone metabolism changes are closely related to
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bone density and fractures (7–10), but this is less studied in

children and especially in children with CP. Importantly, low

bone mineral density is common in children with CP (8).

Therefore, further investigation is required to determine the

attributes of bone metabolism in children with CP.

TPINP, OC, β-CTX, 25-OHD and PTH are commonly used as

important clinical indicators of bone metabolism. Of these, TPINP

and OC are measured as indicators of bone formation, β-CTX can

be used as an indicator of bone resorption. The other two metrics,

25-OHD and PTH, play central roles in regulating calcium-

phosphate metabolism (11–14). These indicators can assist in

disease diagnosis (15), treatment monitoring (16, 17), predicting

changes in bone density (16), and predicting fracture risk (18) in

populations with different physiological or pathological states (19).

The skeletal expansion undergoes dramatic changes as humans

develop from infancy to adulthood, especially in early childhood

and puberty. Previous studies reported that serum levels of bone

metabolism markers reflect skeletal development during puberty

(20). As skeletal development is nonlinear during puberty, results

of bone turnover markers must be interpreted in combination

with the subject’s maturation stage. To date, there is little research

on differences in these indicators of bone metabolism by age in

children with CP as compared to children without CP. As there

are rapid changes in skeletal growth, knowledge of bone

metabolism by age in children with CP may inform on biological

aspects of poor bone health associated with CP.

The objective of this study was to test for differences in serum

indicators of bone metabolism by age between children with and

without CP.
Materials and methods

Subjects

A total of 139 children (75 children with CP and 64 typically

developing children) were included in the present study. All the

children with CP were enrolled from Beijing Bo’ ai Hospital, China

Rehabilitation Research Center. Clinical data were obtained from all

cases, including gestational age, gender, details of pregnancy and

birth, head circumference, birth weight, Apgar scores, neonatal

events, and height and weight at the time of the assessment. All

patients were diagnosed according to the clinical criteria and

classified into spastic (furtherly divided into hemiplegia, diplegia

and quadriplegia), ataxic, dyskinetic subtypes on the basis of the

guidelines proposed by the Surveillance of CP in Europe (SCPE)

(21). Gross motor impairment was assessed by Gross Motor

Function Classification System (GMFCS) (22), which ranges from

level I to level V. Children with CP classified as GMFCS level I–III

have minimal-moderate motor impairment and activity limitation.

Children with CP classified as levels IV and V correspond with

having no independent walking ability. Medical complications

associated with CP were also recorded (e.g., cognitive impairment,

epilepsy, feeding difficulties). Exclusion criteria included children

with myopathy, hypotonia, neural tube defect, ataxia, chromosomal

anomaly, genetic syndrome, or other chronic disease that could
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influence bone metabolism. Healthy children that did not have any

history of neurological disorders and mental disorders were

recruited from Maternal & Child Health Hospital in Fengtai and

Xicheng Districts. The study was approved by the Ethics Committee

of Beijing Bo’ai Hospital, China Rehabilitation Research Center.
Samples

Peripheral whole blood samples were drawn in procoagulant

tubes from the median cubital vein after an eight hour fast and

taken between 8:00 and 10:00 am to avoid diurnal variation. Then,

the blood samples were centrifuged at 4,000 rpm for 10 min and

aliquots of serum were immediately stored at −80°C until analysis.

None of the samples used in the study showed hemolysis.
Analytical determinations

The levels of TPINP, OC, β-CTX, 25-OHD and PTH in the

serum were measured with corresponding detection kits according

to the manufacturer’s instructions (Roche Diagnostics GmbH,

Germany). Analysis was performed using the Roche Cobas e411

Automatic Electrochemiluminescence Immunoassay Instrument.
Statistical analysis

The statistical analyses were performed using GraphPad Prism

(Version 7.00, GraphPad Software Inc., USA). Age was stratified

into three groups: 0–2.0, 2.1–4.0, and 4.1–7 years old. The indicators

of bone metabolism were presented as median [interquartile range

(IQR)]. The differences in the distribution of clinical characteristics

between the CP group and healthy controls were evaluated by Chi-

Square test or Fisher’s exact test for categorical variables (age,

gender). The comparisons between the subgroups in the CP group

were statistically evaluated by Student’s t-test or Mann-Whitney

U-test. The comparisons within groups were analyzed with a

nonparametric Kruskal-Wallis test with a post hoc Dunn’s test.

A p-value <0.05 was considered statistically significant.
Exploratory analysis

The relationship between the primary bone resorption

indicator, β-CTX, with the primary bone formation indicators,

TPINP and OC, for both cohorts including all ages 0–7 years old

was examined using simple linear regression. The regression

equation, Pearson correlation coefficient, and p-value were

reported for each cohort. Regression analyses were performed

before and after excluding outliers, which was determined by

values that were ≥3 standard deviations above the group mean.

To assess for the possibility of de-coupling of bone resorption

and formation between cohorts, the variance analysis of factorial

design examined the main and interaction effects for group (CP

vs. controls) and β-CTX for each bone formation indicator
frontiersin.org
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before and after adjusting for age (as continuous). The interaction

effect was the primary focus of this analysis.
Results

Baseline characteristics

Descriptive characteristics of children with CP (n = 75) and

healthy controls (n = 64) are presented in Table 1. Notably, there

were no significant differences between groups for gender for the

full cohorts (p = 0.386) or for continuous age within each age

category (p > 0.120) (Table 1).
Comparison of different indicators of bone
metabolism

The serum indicators of bone metabolism for children with CP

and healthy controls by age group are presented in Figure 1. In

general, and for both the CP and healthy control groups, TPINP

and 25-OHD levels were lower with older age groups, PTH and

β-CTX were higher with older age groups, and OC showed a

bimodal pattern with age groups.

Among 0–2-year-olds, children with CP had higher serum

levels of TPINP (p = 0.037) compared to healthy controls. Among

2.1–4-year-olds, children with CP had higher serum levels of

TPINP (p = 0.015) and OC (p = 0.003) and lower levels of serum

β-CTX (p = 0.004) and PTH (p = 0.032) compared to healthy

controls. Among 4.1–7-year-olds, children with CP had lower

serum levels β-CTX (p = 0.002) compared to healthy controls.
Association between different markers and
clinical characteristics of CP

Due to a limited sample size, spastic and non-spastic (ataxic,

dyskinetic, non-classified) types of CP were grouped. There were

no statistical differences in the indicators of bone metabolism

after stratifying the CP cohort by spastic (n = 57) or non-spastic

(n = 18) type (Table 2). The descriptive characteristics of the

spastic and non-spastic type CP groups are presented in

Supplementary Table S1. Notably, age was similar (2.53 ± 1.59

vs. 2.27 ± 1.67, p = 0.387) but the spastic type CP group had a

higher proportion of males (71.9% vs. 44.4%, p = 0.047).

Due to a limited sample size, GMFCS was stratified by I-III and

IV/V. There were no statistical differences in the indicators of bone

metabolism after stratifying the CP cohort by GMFCS I-III (n = 50)

or GMFCS IV/V (n = 25) type (Table 3). The descriptive

characteristics of the GMFCS I-III and GMFCS IV/V groups are

presented in Supplementary Table S2. Notably, the GMFCS I-III

group was older on average (2.81 ± 1.65 vs.1.78 ± 1.26, p = 0.040)

but there were no differences in gender (male, 68.0% vs. 60.0%).

The spastic CP was further subdivided into hemiplegia, diplegia

and quadriplegia. The basic clinical information is shown in

Supplementary Table S3. There were no significant differences in
Frontiers in Pediatrics 03
age (2.03 ± 1.37 vs. 2.72 ± 1.57 vs. 2.73 ± 1.98, p = 0.290) and

gender (p = 0.490) between the groups. We did not find any

significant differences in variances among groups (Table 4).
Exploratory analysis

The association between β-CTX and TPINP and between β-

CTX and OC is presented in Figure 2. There was evidence of 2

outliers for the TPINP values in the CP group. There was a

positive, weak relationship between β-CTX and TPINP in the CP

and controls groups, before and after excluding the outliers. The

relationship was also positive and stronger between β-CTX and

OC for both groups, especially in CP. There was no strong

evidence of a group by β-CTX interaction for TPINP after

excluding the 2 outliers before and after adjusting for age (p for

interaction, 0.683 and 0.299, respectively). There was no evidence

of a group by β-CTX interaction for OC before and after

adjusting for age (p for interaction, 0.766 and 0.807).
Discussion

In this study, we found significant differences in certain

indicators of bone metabolism at specific age groups in children

with CP when compared to a cohort of healthy controls. There

was no evidence that the indicators of bone metabolism were

mainly driven by clinical characteristics of CP, including the type

of CP (e.g., spastic vs. non-spastic) or the severity of motor

important via GMFCS.

In this study, we selected two indicators reflecting bone formation,

including TPINP and OC. Type I procollagen, an osteoblast product,

can form Type I collagen via enzymatic cleavage the pro-peptide (23).

During the process, N-terminal propeptide, also referred to as TPINP,

is released into circulation (24). This process corresponds to the

formation of bone matrix (25). Thus, the level of TPINP is

considered a reliable marker of bone formation. It is stable and no

circadian rhythm (26). In this study, we found that TPINP

concentrations gradually decreases with age (in the age band 0–7

years) in the healthy control groups, which is consistent with

previous studies (27, 28). Meanwhile, our results showed that

children with CP had higher serum levels TPINP than healthy

controls at ages 0–4 years old, indicating higher levels of bone

formation. As prior research has reported that children with CP

have low bone density (29) and notable defects in bone size, shape

or structure (30–32), we speculate that the higher bone formation in

0–4 year olds with CP is ineffective and even harmful, such as

heterotopic ossification (33, 34). In addition, children with CP have

increased fracture risk associated with low bone mineral density and

high bone fragility (35). Fracture healing is a process of bone

remodeling that is often accompanied by a significant enhancement

of bone formation (36, 37).

OC is one of the most abundant non-collagenous proteins in

bone tissue, which is secreted by osteoblasts (38). OC is partly

involved in bone matrix formation and partly secreted into the

peripheral blood (39, 40). Therefore, serum OC levels are used as a
frontiersin.org
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TABLE 1 Baseline characteristics of CP patients and healthy controls.

Clinical characteristics CP
(n = 75)

Controls
(n = 64)

p-value

Age in years
0–2 1.10 ± 0.364

27 (36.0%)
1.140 ±
0.232

9 (14.1%)

0.741

2.1–4 2.75 ± 0.558
28 (37.3%)

2.97 ± 0.485
31 (48.4%)

0.124

4.1–7 5.13 ± 0.868
20 (26.7%)

5.05 ± 0.831
24 (37.5%)

0.769

Gender, n (%)
Male, 0–7.0 years 49 (65.3%) 37 (57.8%) 0.386

0–2 years 16 (21.3%) 7 (10.9%)

2.1–4 years 19 (25.3%) 16 (25.0%)

4.1–7 years 14 (18.7%) 14 (21.9%)

Female, 0–7.0 years 26 (34.7%) 27 (42.2%)

0–2 years 11 (14.7%) 2 (3.1%)

2.1–4 years 9 (12.0%) 15 (23.4%)

4.1–7 years 6 (8.0%) 10 (15.6%)

Height
0–2 years 76.50 ± 7.023

2.1–4 years 91.30 ± 6.941

4.1–7 years 108.30 ± 8.509

Weight
0–2 years 9.87 ± 1.644

2.1–4 years 13.61 ± 2.790

4.1–7 years 19.33 ± 4.222

CP Subtypes, n (%)
Spastic hemiplegia, 0–7.0 years 16 (21.3%)

0–2 years 7 (9.3%)

2.1–4 years 8 (10.7%)

4.1–7 years 1 (1.3%)

Spastic diplegia, 0–7.0 years 32 (42.7%)

0–2 years 8 (10.7%)

2.1–4 years 14 (18.7%)

4.1–7 years 10 (13.3%)

Spastic quadriplegia, 0–7.0 years 9 (12.0%)

0–2 years 4 (5.3%)

2.1–4 years 1 (1.3%)

4.1–7 years 4 (5.3%)

Ataxic, 0–7.0 years 2 (2.7%)

0–2 years 0 (0%)

2.1–4 years 0 (0%)

4.1–7 years 2 (2.7%)

Dyskinetic, 0–7.0 years 9 (12.0%)

0–2 years 5 (6.7%)

2.1–4 years 2 (2.7%)

4.1–7 years 2 (2.7%)

Non-Classified, 0–7.0 years 7 (9.3%)

0–2 years 3 (4.0%)

2.1–4 years 3 (4.0%)

4.1–7 years 1 (1.3%)

GMFCS level, n (%)
I, 0–7.0 years 12 (16.0%)

0–2 years 1 (1.3%)

2.1–4 years 7 (9.3%)

4.1–7 years 4 (5.3%)

II, 0–7.0 years 19 (25.3%)

0–2 years 7 (9.3%)

2.1–4 years 8 (10.7%)

(Continued)

TABLE 1 Continued

Clinical characteristics CP
(n = 75)

Controls
(n = 64)

p-value

4.1–7 years 4 (5.3%)

III, 0–7.0 years 19 (25.3%)

0–2 years 5 (6.7%)

2.1–4 years 6 (8.0%)

4.1–7 years 8 (10.7%)

IV, 0–7.0 years 14 (18.7%)

0–2 years 7 (9.3%)

2.1–4 years 6 (8.0%)

4.1–7 years 1 (1.3%)

V, 0–7.0 years 11 (14.7%)

0–2 years 7 (9.3%)

2.1–4 years 1 (1.3%)

4.1–7 years 3 (4.0%)

Complications, n (%)
Cortical visual impairment, 0–7.0
years

12 (16.0%)

0–2 years 2 (2.7%)

2.1–4 years 5 (6.7%)

4.1–7 years 5 (6.7%)

Sensorineural auditory impairment,
0–7.0 years

1 (1.3%)

0–2 years 1 (1.3%)

2.1–4 years 0 (0%)

4.1–7 years 0 (0%)

Communication difficulties, 0–7.0
years

25 (33.3%)

0–2 years 7 (9.3%)

2.1–4 years 10 (13.3%)

4.1–7 years 8 (10.7%)

Cognitive impairment, 0–7.0 years 17 (22.7%)

0–2 years 5 (6.7%)

2.1–4 years 5 (6.7%)

4.1–7 years 7 (9.3%)

Feeding difficulties, 0–7.0 years 1 (1.3%)

0–2 years 0 (0%)

2.1–4 years 1 (1.3%)

4.1–7 years 0(%)

Epilepsy, 0–7.0 years 11 (14.7%)

0–2 4 (5.3%)

2.1–4 3 (4.0%)

4.1–7 4 (5.3%)

Anti-convulsant treatments, 0–7.0
years

15 (20.0%)

0–2 years 5 (6.7%)

2.1–4 years 6 (8.0%)

4.1–7 years 4 (5.3%)

Data are shown as n (%) or mean± SD.

CP, cerebral palsy; GMFCS, Gross Motor Function Classification System.

Xing et al. 10.3389/fped.2023.1214608
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valuable indicator of bone formation (41). Although the circadian

rhythm plays a role in serum concentrations of OC (42), blood

was taken from participants around the same time during the day,

thus mitigating bias in group differences due to the timing of

blood draw. In this study, the bimodal pattern of serum levels of

OC by age group is similar to that of a previous study (28).

Further, among 2.1–4-year-olds, children with CP had higher

levels of OC than healthy controls, which is consistent with the

higher levels of the bone formation indicator, TPINP.
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https://doi.org/10.3389/fped.2023.1214608
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


FIGURE 1

Alterations of bone metabolism in CP group and healthy control group by age ranges. The values of total procollagen type I N-terminal propeptide
(TPINP) (A), N-MID osteocalcin (OC) (B), beta-crosslaps (β-CTX) (C), 25-hydroxyvitamin D (25-OHD) (D) and parathyroid hormone (PTH) (E) in
different groups. Data represent the Median (1st, 3rd quartiles). # and * indicate inter-group and intra-group comparison results, respectively.
*p < 0.05; **p < 0.01; ***p < 0.001; #p < 0.05; ##p < 0.01.

Xing et al. 10.3389/fped.2023.1214608
β-CTX is known as a marker of bone resorption, which reflects

the degree of bone matrix degradation (43). Mature type I collagen

of bone matrix degrades into β-CTX and releases into the

bloodstream in the process of bone metabolism (44, 45).
TABLE 2 Association between indicators and subtypes in CP group.

Spastic (n = 57) Non-Spastic (n = 18) p-value
TPINP 1,062.00 (766.90–1,200.00) 1,015.00 (653.70–1,200.00) 0.384

OC 66.09 (53.75–78.02) 60.54 (48.04–73.78) 0.369

β-CTX 1.27 (1.05–1.44) 1.14 (0.95–1.50) 0.394

25-OHD 39.26 (27.53–56.78) 38.57 (25.54–60.19) 0.980

PTH 18.57 (13.39–28.15) 18.31 (15.9–24.01) 0.997

Data are shown as median (interquartile range, IQR) and n.

TPINP, total procollagen type I N-terminal propeptide; OC, N-MID osteocalcin;

β-CTX, beta-crosslaps; 25-OHD, 25-hydroxyvitamin D; PTH, parathyroid hormone.

Frontiers in Pediatrics 05
Our results showed a gain in bone resorption with age in the

control groups. This may promote new bone formation, as bone

resorption is a source of bone formation-stimulating factors (46).
TABLE 3 Association between indicators and GMFCS level in CP group.

GMFCS(I-III) (n = 50) GMFCS(IV-V) (n = 25) p-value
TPINP 1,031.00 (719.40–1,200.00) 1,113.00 (726.70–1,200.00) 0.568

OC 66.92 (54.64–79.03) 56.72 (48.04–67.49) 0.105

β-CTX 1.28 (1.06–1.44) 1.14 (0.95–01.38) 0.215

25-OHD 38.59 (24.36–54.98) 42.85 (29.04–62.04) 0.261

PTH 18.43 (13.92–27.73) 18.31 (12.90–24.72) 0.483

Data are shown as median (interquartile range, IQR) and n.

GMFCS, Gross Motor Function Classification System; TPINP, total procollagen type

I N-terminal propeptide; OC, N-MID osteocalcin; β-CTX, beta-crosslaps; 25-OHD,

25-hydroxyvitamin D; PTH, parathyroid hormone.

frontiersin.org

https://doi.org/10.3389/fped.2023.1214608
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


TABLE 4 Association between indicators and spastic subtypes in CP
group.

Spastic
subtypes

N Median (25%–75%
percentile)

Adjusted
p-value

TPINP Hemiplegia 16 1,139.00 (828.98–1,200.00)

Diplegia 32 1,048.50 (680.63–1,200.00)

Quadriplegia 9 984.20 (703.05–1,470.60)

Hemiplegia vs.
Diplegia

0.824

Hemiplegia vs.
Quadriplegia

>0.999

Diplegia vs.
Quadriplegia

>0.999

OC Hemiplegia 16 63.54 (56.89–76.81)

Diplegia 32 66.50 (50.94–77.24)

Quadriplegia 9 72.08 (52.44–94.97)

Hemiplegia vs.
Diplegia

>0.999

Hemiplegia vs.
Quadriplegia

>0.999

Diplegia vs.
Quadriplegia

>0.999

β-CTX Hemiplegia 16 1.26 (0.94–1.40)

Diplegia 32 1.20 (1.01–1.44)

Quadriplegia 9 1.39 (1.27–1.64)

Hemiplegia vs.
Diplegia

>0.999

Hemiplegia vs.
Quadriplegia

0.123

Diplegia vs.
Quadriplegia

0.203

25-OHD Hemiplegia 16 42.81 (29.71–62.07)

Diplegia 32 39.48 (25.52–55.15)

Quadriplegia 9 31.00 (21.01–53.45)

Hemiplegia vs.
Diplegia

>0.999

Hemiplegia vs.
Quadriplegia

0.484

Diplegia vs.
Quadriplegia

>0.999

PTH Hemiplegia 16 18.42 (12.46–31.63)

Diplegia 32 17.64 (13.25–28.04)

Quadriplegia 9 21.09 (17.69–27.98)

Hemiplegia vs.
Diplegia

>0.999

Hemiplegia vs.
Quadriplegia

>0.999

Diplegia vs.
Quadriplegia

>0.999

Data are shown as median (interquartile range, IQR) and n.

TPINP, total procollagen type I N-terminal propeptide; OC, N-MID osteocalcin;

β-CTX, beta-crosslaps; 25-OHD, 25-hydroxyvitamin D; PTH, parathyroid hormone.

FIGURE 2

Linear regression analyses of indicators between the CP group and the
control group. β-CTX regressed with TPINP (A), β-CTX regressed with
TPINP (2 significant outliers were removed) (B), β-CTX regressed with
OC (C). β-CTX, beta-crosslaps; TPINP, total procollagen type I N-
terminal propeptide; OC, N-MID osteocalcin; CP, Cerebral palsy.

Xing et al. 10.3389/fped.2023.1214608
We found lower levels of β-CTX in the group with CP among 2.1–

7-year-olds, which is not conducive to bone formation. The reasons

may be due to exercise restriction and decrease in muscle

stimulation (47).

The above data, taken together, suggest that bone formation in

children with CP was higher than that in healthy children in

different age groups. On the contrary, children with CP had

lower bone resorption than healthy children with older age,

particularly after age 2. Skeletal growth is the results of a

dynamic balance between bone formation and bone resorption
Frontiers in Pediatrics 06
(48, 49), and this balance has been demonstrated to be disrupted

in many pediatric diseases (50). In our study, imbalance in bone

metabolism was also found in disease group, potentially causing

growth restriction to some extent. These features deserve the

physicians’ attention in the future. Some cytokines have multiple

effects on RANKL-RANK/osteoprotegerin and WNT-ß-catenin

signaling pathways which control osteoclastogenesis and

osteoblastogenesis, respectively. Alterations in their levels may

influence bone remodeling both in inherited and acquired

pediatric diseases (50–52). In another study, genetic variants

ultimately lead to defects in hormonal signaling, paracrine

signaling and extracellular matrix (48). Therefore, further studies

of the specific mechanisms of altered bone metabolism in

children with CP are needed in the above and other areas.
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25-OHD is necessary for the maintenance of calcium

homeostasis (53). As 25-OHD is the main storage form of vitamin

D, its levels are used clinically to determine vitamin D status (54).

Dietary intake and skin synthesis are two major sources of vitamin

D (55). Our findings showed that the 25-OHD values of patients

with CP were similar to those in the control groups, which is

consistent with previous studies (56, 57). In addition, we observed

the levels of 25-OHD decreased significantly with age. One

possible reason is that exogenous supplementation of vitamin D is

reduced in children older than 2 years (58).

PTH is the most important endocrine regulator of calcium and

phosphorus concentration in extracellular fluid (59). It is secreted by

the parathyroid gland in response to low Ca2+ concentrations of

extracellular (60). The primary role of PTH is to increase tubular

reabsorption of Ca2+ in the kidney and promote renal excretion of

phosphate (61). Previous studies suggested that CP is associated

with phosphorus-calcium metabolic disorders (62). Similarly, our

study demonstrated that the level of PTH was significantly lower in

the CP group at age 2.1–4. Future studies are needed to determine if

appropriate treatment for phosphorus-calcium metabolic disorders

can improve bone metabolism associated with CP.

In our study, concentrations of five indicators revealed no

significant difference between GMFCS (I-III) and GMFCS (IV/

V), spastic CP and non-spastic CP, or hemiplegia, diplegia and

quadriplegia. Further, the exploratory analysis did not find

compelling evidence that the relationship between the primary

bone resorption marker, β-CTX, with the primary bone

formation markers, TPINP and OC, differed between groups.

Thus, given the higher y-intercept, bone formation may slightly

outpace bone resorption in this cohort of children with CP as

compared to healthy controls. However, these analyses were

exploratory and should be interested as hypothesis-generating as

opposed to confirmation of associations.

There were limitations in this present study. First, there was a

limited sample size, especially for healthy group from years 0 to

2. Nevertheless, our findings in healthy groups are consistent with

existing literature (28), suggesting the methods used in this study can

be appropriate to make interpretations for the findings in children

with CP. Second, the indicators of bone metabolism used in this

study are typical and commonly used in clinical practice, but they do

not fully capture the complexity of bone metabolism during

development and for skeletally complex populations, like CP. Third,

the mechanisms of abnormal bone metabolism in CP are not well

understood,whichmay serve as a newdirection for our future research.
Conclusion

In summary, this study demonstrates that certain indicators of

bone metabolism in children with CP differ from healthy controls

at certain pre-pubertal ages. These findings may be helpful for

understanding bone health and development in children with CP

from the context of bone metabolism.
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