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Mendelian randomization analyses
support causal relationship
between gut microbiota and
childhood obesity
Qi Li1,2†, Jiawei Gao1†, Jiashun Luo1, Dihui Lin1 and Xinrui Wu1*
1School of Medicine, Jishou University, Jishou, China, 2Department for Infectious Disease Control and
Prevention, Xiangxi Center for Disease Control and Prevention, Jishou, China

Background: Childhood obesity (CO) is an increasing public health issue.
Mounting evidence has shown that gut microbiota (GM) is closely related to CO.
However, the causal association needs to be treated with caution due to
confounding factors and reverse causation.
Methods: Data were obtained from the Microbiome Genome Consortium for GM
as well as the Early Growth Genetics Consortium for childhood obesity and
childhood body mass index (CBMI). Inverse variance weighted, maximum
likelihood, weighted median, and MR.RAPS methods were applied to examine
the causal association. Then replication dataset was used to validate the results
and reverse Mendelian randomization analysis was performed to confirm the
causal direction. Additionally, sensitivity analyses including Cochran’s Q statistics,
MR-Egger intercept, MR-PRESSO global test, and the leave-one-out analysis
were conducted to detect the potential heterogeneity and horizontal pleiotropy.
Results: Our study found suggestive causal relationships between eight bacterial
genera and the risk of childhood obesity (five for CO and four for CBMI). After
validating the results in the replication dataset, we finally identified three
childhood obesity-related GM including the genera Akkermansia, Intestinibacter,
and Butyricimonas. Amongst these, the genus Akkermansia was both negatively
associated with the risk of CO (OR= 0.574; 95% CI: 0.417, 0.789) and CBMI
(β=−0.172; 95% CI: −0.306, −0.039).
Conclusions: In this study, we employed the MR approach to investigate the causal
relationship between GM and CO, and discovered that the genus Akkermansia has
a protective effect on both childhood obesity and BMI. Our findings may provide a
potential strategy for preventing and intervening in CO, while also offering novel
insights into the pathogenesis of CO from the perspective of GM.
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Introduction

Currently, childhood obesity has become an increasing public health issue throughout

the world (1). The global prevalence of obesity has doubled over the past three decades,

affecting over 340 million children (2, 3). Previous studies have demonstrated that

childhood obesity is associated with the early onset and development of various chronic

diseases, such as cardiovascular disease, asthma, and metabolic syndrome (4, 5).

Additionally, there is a significant increase in the risk of mental disorders and mortality

in adulthood (6). Despite years of investigation and intervention, the underlying
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mechanism of childhood obesity (CO) has not yet been fully

clarified, and its prevalence continues to rise dramatically.

Gut microbiota (GM) plays a vital role in preserving host

physiology and homeostasis. Accumulating evidence has

demonstrated a strong association between gut microbiota

dysbiosis and two forms of obesity: non-disease-induced obesity

and genetic obesity (7–9). However, the majority of human-based

studies were designed as observational in nature, while others

utilized animal models, resulting in diverse findings across

studies. In contrast to previous findings, Schwiertz et al.

demonstrated a lower Firmicutes/Bacteroidetes ratio in

individuals with obesity (10). Andoh et al. identified Coprococcus

as a risk factor for obesity (11), while Escobar et al. reported the

opposite outcome (12). The observational study design posed

challenges in establishing the temporal relationship between

exposure and outcome, potentially resulting in reverse causation.

Moreover, the results were influenced by confounding factors,

including age, dietary patterns, and lifestyle. Lastly, previous

research has primarily focused on adults with obesity, while

studies involving children are relatively limited. Therefore,

caution should be treated when interpreting the association

between gut microbiota and childhood obesity.

Mendelian randomization (MR) analysis, which uses genetic

variants as instrumental variables (IVs), is a powerful approach to

identify and quantify the causal effect of exposure on outcome

(13). MR is regarded as the “most natural” randomized controlled

trial (RCT) because the alleles from parents to offspring are

randomly assigned, freely combined with genotypes remaining

stable after birth (14). Its advantages, such as confounding factor

minimization and exclusion of reverse causality, make it a valuable

tool for causal inference in observational studies. Therefore, our

study performed a two-sample bidirectional MR analysis using the

genome wide association study (GWAS) summary statistics to

explore the causal relationship between GM and CO, which may

offer an effective strategy for CO prevention and intervention as

well as novel insights to understand the pathogenesis of CO from

the perspective of GM.
FIGURE 1

Schematic representation of the MR analysis. The three assumptions of
MR are as follows: (1) Instrumental variables must be associated with gut
microbiota, (2) instrumental variables must not be associated with
confounders; and (3) instrumental variables must influence disease
outcomes only through gut microbiota, not through other pathways.
Materials and methods

Data source

The GM dataset was conducted by the Microbiome Genome

(MiBioGen) Consortium including 18,340 trans-ancestral subjects

(15). After extracting DNA from fecal samples, data were

generated by 16S rRNA gene sequencing in the Illumina

platform, targeting variable regions of V1–V2, V3–V4, and V4.

Setting SILVA as the reference, all the data were annotated to

genus and higher levels to profile the microbial composition (16).

GWAS summary statistics for outcomes were extracted from

the Early Growth Genetics (EGG) Consortium including

childhood obesity and childhood body mass index (BMI).

Specifically, CO cases were defined as children whose BMI-for-

age were ≥95th percentile at any time from 2 to 18 years old,

while controls were individuals whose BMI-for-age were less than
Frontiers in Pediatrics 02
the 50th percentile consistently throughout childhood for all

available measures. The growth chart and the criteria of

childhood obesity was based on the Centers for Disease Control

and Prevention in the United States (17). The discovery dataset

was collected from a pooled dataset of 30 multiple ancestry

cohorts including 28,604 subjects (13,005 cases and 15,599

controls) (18). The replication dataset was obtained from a meta-

analysis of 14 studies consisting of 13,848 subjects (5,530 cases

and 8,318 controls) (19). For childhood BMI, the phenotype

analyzed in both discovery and replication dataset was BMI at

the latest time point during childhood, transformed into sex- and

age-adjusted standard deviation scores. The discovery dataset

consisted of a GWAS meta-analysis of 26 studies, encompassing

39,620 children aged 2–10 years old (20). The replication dataset

comprised another GWAS meta-analysis of 20 studies, involving

35,668 children aged 3–10 years old (21). Detailed information

on exposure and outcome GWAS datasets was summarized in

Supplementary Table S1.
Instrumental variables

To satisfy the three key assumptions of MR analysis (Figure 1),

five steps were applied to select the optimal IVs: (1) SNPs under a

locus-wide significance threshold of P < 1 × 10−05 were obtained as

candidate IVs related to GM (22). (2) PLINK clumping method

(r2 < 0.001, clump window <10,000 kb) was performed to ensure

the IVs were independent (23). (3) SNPs that are palindromic and

those with minor allele frequencies below 0.01 were eliminated. (4)

The proxy SNPs (r2 > 0.8) were selected based on 1,000 Genome

project’s European population after removing the SNPs closely

related to the outcome phenotype (P < 5 × 10−08) (24). (5) SNPs

with F-statistics < 10 were excluded to avoid weak IV bias (25).
Statistical analyses

To detect the causal associations between exposure (GM) and

outcomes (CO and CBMI), the inverse-variance weighted (IVW)

method was used as the primary MR analysis method. The IVW
frontiersin.org
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method, an extension of the Wald estimator for estimating causal

effects, constrains the intercept to zero. It calculates the total

causal effect using a weighted linear regression model with the

weight coefficient (26). IVW results were corrected for multiple

comparisons applying the q-value procedure (q < 0.1), while

P < 0.05 but q > 0.1 was considered to have a suggestive

association (27). The analysis was initially performed in the

discovery set and subsequently validated in the replication set.

To evaluate the robustness of our study, we also performed

several other MR methods including Maximum Likelihood

(MaxLik), Weighted Median (WM), and MR robust adjusted

profile score (MR.RAPS). The MaxLik method estimates the

parameter values by maximizing the likelihood function with

small standard errors (28). The WM method increases the power

of causal effect when more than 50% of IVs are valid (29).

MR.RAPS provides robust estimates to account for systematic

and idiosyncratic pleiotropy, even in the presence of weak IVs
FIGURE 2

Flowchart of this study. GWAS, genome-wide association studies; MiBioG
randomization; IVW, inverse-variance weighted; MaxLik, maximum likelihood;
PRESSO, MR Pleiotropy RESidual Sum and Outlier.
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(30). Reverse MR analysis was employed to confirm the causal

direction. It followed similar methods as forward MR, but with

CO/CBMI as the exposures and GM as the outcome.

Cochran’s IVW Q statistics and leave-one-out analysis were

employed to evaluate potential heterogeneity. MR-Egger intercept

and MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO)

global test were conducted to detect whether directional

horizontal pleiotropy is driving the results of MR analyses (31, 32).

The flowchart of our study was shown in Figure 2. All MR

analyses were conducted using the “TwoSampleMR”,

“MRPRESSO”, and “qvalue” packages in R software.
Results

The selected GM instruments based on the criteria containing a

total of 8,763 SNPs associated with 119 bacterial genera and 20
en, microbiome genome; EGG, early growth genetics; MR, mendelian
WM, weighted median; MR.RAPS, MR robust adjusted profile score; MR-
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bacterial orders. The characters of the selected IVs were presented

in Supplementary Table S2.
Childhood obesity

At the genus level, by using the IVW method, we found a

suggestive causal association of increase in Eubacterium (eligens

group) (OR = 1.710; 95% CI: 1.028, 2.845; P = 0.039) and higher

risk of CO, while genetically increased in Akkermansia

(OR = 0.574; 95% CI: 0.417, 0.789; P < 0.001), Coprococcus1

(OR = 0.689; 95% CI: 0.487, 0.977; P = 0.036), Eubacterium

(oxidoreducens group) (OR = 0.710; 95% CI: 0.511, 0.985;

P = 0.040), and Roseburia (OR = 0.665; 95% CI: 0.484, 0.915;

P = 0.012) were related to protective effects on CO (Figure 3A).

After multiple comparison corrected, we still found a significant

causal effect of increased Akkermansia on the lower risk of CO
FIGURE 3

Gut microbiota (GM) which associated with childhood obesity (CO). (A,B) Asso
using IVW method. (C) Venn diagram of the CO-related GM in discovery and r
and replication dataset. (E) Venn diagram of the causal GM in CO and CBMI dat
interval.
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(q = 0.048), the replication dataset also validates this causal

relationship (OR = 0.743; 95% CI: 0.586, 0.941; P = 0.014;

Figure 3C). Details of all the IVW results in discovery and

replication datasets were shown in Supplementary Table S3, S4.

The F-statistics ranged from 21.46 to 25.48 among all the results

above. Additionally, causal associations between GM and CO risk

were found in more than three MR methods (Table 1,

Supplementary Figure S1), including IVW, MaxLik, WM, and

MR.RAPS methods. However, at the order level, all the P values

(ranging from 0.053 to 0.932) were greater than 0.05, indicating

no significant associations between bacterial orders and CO

(Supplementary Table S5).

Cochran’s Q statistics showed no significant heterogeneity in

selected IVs (P > 0.05 in IVW and MR-Egger methods,

Supplementary Table S6). Both the MR-Egger intercept and the

MR-PRESSO global test confirmed there is no significant

directional horizontal pleiotropy (P > 0.05, Supplementary
ciations of GM with the risk of CO and childhood body mass index (CBMI)
eplication dataset. (D) Venn diagram of the CBMI-related GM in discovery
aset SNP, single nucleotide polymorphisms; OR, odds ratio; Cl, confidence
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Table S6). Additionally, the leave-one-out analysis revealed that

there are no outlier IVs that would have a significant impact on

the result if retained (Supplementary Figure S2).

All methods in reverse MR analysis showed no causal

relationship from CO to GM (P > 0.05, Table 2) except for the

genus Roseburia. The sensitivity analyses including Cochran’s Q

statistics, MR-Egger intercept, MR-PRESSO global test, and the

leave-one-out analysis demonstrated the robustness of the reverse

MR results (Supplementary Table S6, Figure S3).
Childhood BMI

At the genus level, we found four suggestive causal effects of

GM on CBMI (P < 0.05, q > 0.1) in the discovery dataset.

Specifically, Butyricimonas (β =−0.192; 95% CI: −0.334, −0.051;
P = 0.008) and Akkermansia (β =−0.172; 95% CI: −0.306,
−0.039; P = 0.011) were negatively associated with CBMI, while

ErysipelotrichaceaeUCG003 (β = 0.256; 95%CI: 0.030, 0.483;

P = 0.026) and lntestinibacter (β = 0.308; 95% CI: 0.115, 0.502;

P = 0.002) were positively associated with CBMI (Figure 3B).

However, after multiple comparison corrected, the causal

associations didn’t exist but the replication dataset also supported

the causal effect of Butyricimonas (β =−0.101; 95% CI: −0.181,
0.020; P = 0.015) and lntestinibacter (β = 0.191; 95% CI: 0.090,

0.332; P = 0.008) on CBMI (Figure 3D). Details of all the IVW

results in both discovery and replication datasets were shown in

Supplementary Table S7, S8. The F-statistics ranged from 22.53

to 27.75 among all the results above. The causal associations

between GM and CBMI were found in more than three MR

methods (Table 1, Supplementary Figure S4). Furthermore, in

the comparison of GM that have a causal relationship with both

CO and CBMI, we observed that the genus Akkermansia

exhibited the protective effect on both outcomes (Figure 3E).

However, at the order level, all the P values (ranging from 0.074

to 0.996) were above 0.05, indicating no significant associations

between bacterial orders and CBMI (Supplementary Table S9).

All methods in reverse MR analysis showed no causal

relationship from CBMI to GM (P > 0.05, Table 2). The

sensitivity analyses demonstrated the robustness of both the

forward and reverse MR results (Supplementary Table S10,

Figures S5, S6).
Discussion

In this bidirectional two-sample MR study, we detected

suggestive causal associations between eight particular bacterial

genera and the risk of childhood obesity (five for CO and four

for CBMI). We validated these findings in replication datasets

and further identified three gut microbiota (GM) taxa, namely

Akkermansia, Intestinibacter, and Butyricimonas, that were

associated with childhood obesity. Specifically, our MR analysis

revealed a protective effect of Akkermansia on childhood obesity

(CO) in both the discovery and replication datasets. Importantly,

this association remained significant even after correcting for
frontiersin.org
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multiple comparisons. Furthermore, this genus was negatively

associated with CBMI. Akkermansia, a genus in the phylum

Verrucomicrobia, can generate acetate and propionate in the

human intestinal tract (33). Previous studies have demonstrated

an inverse association between the abundance of Akkermansia

and triglyceride levels as well as BMI in genetically obese mice

and mice fed a high-fat diet (34, 35). Karlsson et al. conducted a

case-control study involving forty preschool students and

observed a reduced concentration of Akkermansia in fecal

samples from overweight/obese children (36). These findings

were consistent with two other cross-sectional studies, providing

support for our result (37). Reduced levels of Akkermansia

muciniphila may lead to excessive intestinal permeability,

whereas increased levels of this genus aid in interleukin-36

protection against obesity (38). Akkermansia has the potential to

prevent simple obesity and exhibit hepatoprotective effects

through the inhibition of metabolic pathways involving tyrosine,

phenylalanine, and tryptophan (39). Additionally, Akkermansia

impairs acetyl-CoA oxidation and encourages ketogenesis (40).

Taking into account evidence from animal experiments,

epidemiological studies, and the potential mechanism by which

Akkermansia contributes to body weight regulation, several RCTs

were conducted to confirm its protective effect (41–43). In a

pilot study involving thirty-three overweight/obese subjects,

supplementation with Akkermansia muciniphila for three months

led to reductions in several obesity-related indicators, such as fat

mass, hip circumference, and plasma total cholesterol, compared

to the baseline data (41). It indicated that the genus Akkermansia

might be a promising prevention and treatment probiotic target

for obesity as well as long-term obesity-related disorders,

therefore, further studies could be focused on children to explore

its possible effect on childhood obesity.

Our study found that the bacterial genera Intestinibacter and

Butyricimonas were negatively associated with CBMI both in

discovery and replication datasets. In a meta-analysis examining

GM markers associated with obesity, it was found that twenty-

three genera, including Butyricimonas, were less abundant in the

fecal samples of individuals with simple obesity (44). By

inoculating the stools of obesity donors to mice, Rodriguez et al.

demonstrated that the Butyricimonas contribute to the decrease in

adiposity and hepatic steatosis (45). However, further confirmation

of its protective effect against the risk of obesity in the pediatric

population is necessary. Similar to our findings, Tian et al.

reported that a dietary fiber intervention, known for its weight

control benefits, significantly inhibits the growth of Intestinibacter

(46). Another RCT conducted in metformin-treated weight loss

people also reported the decreased relative abundance of

Intestinibacter both in the short and long-time interventions (47).

Limited previous studies have investigated the association between

Intestinibacter and childhood obesity. However, both observational

studies and animal models consistently emphasize the role of

Intestinibacter in the production of butyrate, a metabolite generated

through microbial fermentation (48, 49). Butyrate increases fatty

acid oxidation in the muscle and decreases lipolysis via the orphan

G protein–coupled receptor 43 pathway in white adipose tissue

(50). In vitro studies demonstrated that butyrate is the primary
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ATP source for intestinal epithelial cells to absorb nutrition (51).

Furthermore, butyrate is metabolized in the liver to produce fatty

acids, cholesterol, and ketone bodies, which serve as essential

building blocks for fat synthesis (52). In a cross-sectional study, it

was observed that the fecal butyrate concentration progressively

increases in children with severe obesity when compared to the

leaner group (37). All the evidence above may suggest the

mechanism that the genus Intestinibacter affects body weight by

butyrate metabolism, however, further human-based studies and

functional experiments are needed to support this association.

Our study has some strengths. Firstly, this is the first MR analysis

to investigate the possible causal associations between GM and

childhood obesity with the advantages of fewer confounding factors

and rare reverse causations. Secondly, we employed two outcomes,

namely obesity and BMI, to provide a comprehensive evaluation of

childhood obesity. Additionally, we conducted analyses using both

discovery and replication datasets to validate our findings. Thirdly,

the data sources of exposure and outcome are the largest GWAS to

date, along with bidirectional MR and several sensitivity analyses

which ensure the robustness of our findings.

There are still several limitations. Firstly, the significance

threshold of exposure IVs was set at 1 × 10−05 because of

insufficient IVs under genome-wide significance. However, we

tested the F-statistics to exclude the weak instrumental bias.

Secondly, the population of the original GWAS is mainly

European, which may restrict the generalizability of our findings

to other ethnic populations. Thirdly, MR analyses were limited to

the order and genus level rather than at a more specific species

level due to the constrained resolution of 16S rRNA sequencing.

Lastly, we were unable to investigate the relationship between

specific measures of general gut microbiota composition and

childhood obesity or childhood BMI due to the unavailability of

the GWAS dataset on GM composition.

In conclusion, by performing bidirectional MR analyses on

GWAS summary data, our study comprehensively explored the

causal effects of gut microbiota on childhood obesity. Our findings

have the potential to offer valuable insights into the prevention

and treatment of childhood obesity, providing a useful strategy, as

well as enhancing our understanding of the underlying mechanism

from the perspective of gut microbiota. However, further

validation of our findings is necessary through additional

functional experiments and randomized controlled trials.
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