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A device called the qubit energy tuner (QET), based on single flux quantum (SFQ)
circuits, has been proposed for Z control of superconducting qubits. The QET is
created by improving flux digital-to-analog converters (flux DACs). It can set the
energy levels or frequencies of qubits, particularly flux-tunable transmons, and
perform gate operations requiring Z control. The circuit structure of the QET is
elucidated, consisting of an inductor loop and flux bias units for coarse or fine-
tuning. The key feature of the QET is analyzed to understand how SFQ pulses
change the inductor loop current, which provides external flux for qubits. Three
simulations were performed to verify QET functionality. The first simulation
verified the responses of the inductor loop current to SFQ pulses, showing a
relative deviation of approximately 4.259% between the analytical solutions of the
inductor loop current and the solutions from the WRSpice time-domain
simulation. The second and third simulations, using QuTip, demonstrated how
to perform a Z gate and an iSWAP gate using the QET, respectively, with
corresponding fidelities of 99.99884% and 99.93906% for only one gate
operation to specific initial states. These simulations indicate that the SFQ-
based QET could act as an efficient component of SFQ-based
quantum–classical interfaces for digital Z control of large-scale
superconducting quantum computers.
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1 Introduction

Josephson qubits with gate and measurement fidelities surpassing the threshold of
fault-tolerant quantum computing are attractive candidates for manufacturing scalable
quantum computers. Microwave electronics, as a traditional way for qubit control and
readout, have succeeded in obtaining gate fidelities beyond 99.9% [1] and realizing
quantum supremacy [2]. However, the bottleneck of interconnection becomes
significant when the number of qubits increases beyond a thousand due to
quantitative restrictions on the input and output ports of the quantum processor and
cryogenic transmission lines. It is desirable to introduce single flux quantum (SFQ) digital
logic circuits [3] for control and readout [4]to overcome this bottleneck. Digital coherent
XY control based on SFQ pulses to transmon qubits was proposed [5], and the fidelities of
digital single-qubit gates were measured to be about 95% [6]. Methods of optimization of
SFQ pulse sequences for single- [7–9] and two-qubit gates, such as cross-resonance and
controlled phase (CZ) gates [10–13], have also been studied.
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In order to control qubits with flexibility, SFQ-based devices for
Z control have become a frontier that requires further research.
McDermott et al. [4] proposed an SFQ-based coprocessor that
operates at 3 K for controlling and measuring a quantum
processor. This coprocessor requires SFQ-based flux digital-to-
analog converters (flux DACs) [14] for Z control, which is an
inspiring idea for creating a scalable superconducting quantum
processor. Recently, Mohammad et al. [10] proposed an SFQ-
based digital controller called DigiQ for superconducting qubits.
In DigiQ, the Z control of qubits is performed with bias currents
generated by an array of SFQ/DCs. These SFQ/DCs in DigiQ are
placed at the 4 K plate of the dilution refrigerator, and bias currents
need to be transmitted in superconducting microstrip flex lines to
the 10-mK plate where the quantum processor works, which is
similar to the approach used in [4].

To further advance the integration of qubits, it is crucial to
integrate superconducting SFQ logic circuits for the control and
measurement of qubits with quantum processors using 3D
integration technologies in future developments [15,16].
Consequently, there is a need to research and design SFQ-
based devices for on-chip Z control and ensure that the
devices are as simple as possible for scalable quantum
processors. These lean devices should be capable of converting
SFQ pulse signals into flux signals. The circuits for Z control in
DigiQ may be slightly more complex than flux DACs. Therefore,
it is intuitive to consider flux DACs as the base for developing
SFQ-based devices for Z control. However, the employment of a
single flux DAC, as defined in [14], presents challenges in
providing flux bias and completing a high-precision Z-control
gate simultaneously because of the following reasons: 1) the
resetting of a flux DAC at the end of a Z control operation
will eliminate not only the flux performing the gate but also the
bias flux setting the idle frequency of the controlled qubit and 2)
the resetting is achieved by applying Φ0/2 (half of a flux
quantum) to the two-junction reset superconducting quantum
interference device (SQUID) loop, which may necessitate
another flux DAC, an SFQ/DC, or a coprocessor pin for an
external current source. This ultimately increases the physical
footprint and complexity of the coprocessor or exacerbates the
interconnection bottleneck situation.

Here, we introduce a novel SFQ-based device for Z control,
which stems from the improvement of flux DACs. The primary
function of the qubit energy tuner (QET) is to adjust the energy
levels of qubits. By supplying flux from a QET, the energy levels or
frequency of a flux-tunable transmon qubit can be precisely set to
specific values. Concurrently, QET enables the execution of gate
operations that require flux bias, such as a Z gate or an iSWAP gate.
Following a gate operation, the QET can seamlessly return the qubit
frequency to its idle state.

The circuit structure of QETs is first presented in Section 2.
Then, the key features of a specific QET are analyzed, and a formula
is derived to calculate its inductor loop current responsible for
providing flux. Section 3 describes the ideal Z control method, which
employs square-wave-like currents for flux-tunable transmon.
Subsequently, in Section 4, simulations are performed to
demonstrate the variation in the inductor loop current of a QET
providing flux due to SFQ pulses, as well as the performance of a
QET in executing Z and iSWAP gates. Finally, in Section 5, the work

is concluded, and the challenges and opportunities associated with
QETs in the future are discussed.

2 Structure of the qubit energy tuner

QET comprises an inductor loop and several flux bias units,
which can be either positive or negative, as illustrated in Figure 1.
The inductor loop is weakly coupled to the SQUID of a flux-
tunable transmon, supplying flux for tuning its energy levels.
Each flux bias unit includes a Josephson junction shunted with an
inductor coupled to the inductor loop. The Josephson junction
can be made of an intrinsic Josephson junction in parallel with a
resistor to be an overdamped Josephson junction. The node
connected to the Josephson junction and the inductor is
treated as an input port of QET for the SFQ pulse signal.
After receiving an SFQ pulse, a positive flux bias unit

FIGURE 1
Structure of a qubit energy tuner coupled with a flux-tunable
transmon.
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increases the external flux through the SQUID by a specific
amount, whereas a negative flux bias unit increases it in the
opposite direction or decreases it by the same specific amount.
This is realized by making the direction of dotted terminals of
positive flux bias units the same as that of the corresponding
inductor in the inductor loop but making the direction of dotted
terminals of negative flux bias units opposite to that of the
corresponding inductor in the inductor loop.

A QET should have at least a pair of flux bias units, one positive
and the other negative. In order to tune the energy levels of a
transmon more precisely, QET can be designed to have two or more
pairs of flux bias units, among which some pairs are used for coarse
tuning and others are used for fine-tuning. Inductors in different
flux bias units can be coupled. The inspiration for the QET is from
the design of the flux DAC proposed in [14] and [17]. Therefore, its
circuits have similar but simpler structures compared with those of
flux DACs.

The QET shown in Figure 2 is an example of the following
analysis. It has a pair of flux bias units for coarse tuning and another
pair for fine-tuning. The parameters of elements in the example are
listed in Table 2. The symbol for QET in Figure 2 is drawn as in
Figure 3. This kind of QET with two pairs of flux bias units is chosen
to be analyzed because it combines accuracy, simplicity, and speed
better than other cases with only one or over two pairs of flux bias
units. On one hand, the QET with only a pair of flux bias units has
only one precision, which causes a low speed of high-precision
tuning or a low precision of high-speed tuning. On the other hand,
the QET with three or more pairs of flux bias units has more ports
and circuit elements, which means more complicated control,
reduced reliability, and a larger footprint.

According to Kirchhoff’s voltage law, the electric potentials of
nodes A, B, C, D, and E in Figure 2 are

FIGURE 2
Schematic representation of a qubit energy tuner with two pairs
of flux bias units for coarse tuning and fine-tuning.

FIGURE 3
Symbol of a QET.

TABLE 1 Parameters of elements in the DC/SFQ.

Parameter Value Parameter Value

Lq1 1.071 pH Lj33 0.103 pH

Lq2 3.927 pH Jj1 225 μA

Lq3 0.913 pH Jj2 225 μA

Lq4 4.399 pH Jj3 250 μA

Lq5 1.090 pH Lv1 16.8 pH

Lj11 0.058 pH Lv2 15.5 pH

Lj12 0.945 pH Rv1 9.09 Ω

Lj13 0.355 pH Rv2 14.29 Ω

Lj21 0.05 pH Rj1 0.766 Ω

Lj22 0.955 pH Rj2 0.766 Ω

Lj23 0.096 pH Rj3 0.688 Ω

Lj31 0.028 pH Vq 2.5 mV

Lj32 0.961 pH

Frontiers in Physics frontiersin.org03

Geng et al. 10.3389/fphy.2023.1215468

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1215468


VA t′( ) � L1
di1 t′( )
dt′ +M1

dip t′( )
dt′ +M12

di2 t′( )
dt′ , (1)

VB t′( ) � L2
di2 t′( )
dt′ −M2

dip t′( )
dt′ +M12

di1 t′( )
dt′ , (2)

VC t′( ) � L3
di3 t′( )
dt′ +M3

dip t′( )
dt′ +M34

di4 t′( )
dt′ , (3)

VD t′( ) � L4
di4 t′( )
dt′ −M4

dip t′( )
dt′ +M34

di3 t′( )
dt′ , (4)

VE t′( ) � LΣ
dip t′( )
dt′ +M1

di1 t′( )
dt′ −M2

di2 t′( )
dt′

+ M3
di3 t′( )
dt′ −M4

di4 t′( )
dt′ +M

diq t′( )
dt′ ,

(5)

where

LΣ � Ln0 + Ln1 + Ln2 + Ln3 + Ln4 + Ln5 (6)
is the total inductance of the inductor loop obtained by summing
self-inductances of all parts of the inductor loop. L1, L2, L3, and L4
are self-inductances of inductors in flux bias units.M1,M2,M3, and
M4 are mutual inductances of flux bias units and the inductor loop,
as shown in Figure 2. M is the mutual inductance between the
inductor loop and the SQUID of flux-tunable transmon. i1 (t′), i2
(t′), i3 (t′), and i4 (t′) are currents of inductors in flux bias units at the
moment t′. ip (t′) and iq (t′) are the currents of the inductor loop and
the SQUID at the moment t′.

Under the zero initial condition, integrating both sides of Eqs
1–5 with 0 as the lower bound and time t as the upper bound yields

∫t

0
VA t′( )dt′ � L1i1 t( ) +M1ip t( ) +M12i2 t( ), (7)

∫t

0
VB t′( )dt′ � L2i2 t( ) −M2ip t( ) +M12i1 t( ), (8)

∫t

0
VC t′( )dt′ � L3i3 t( ) +M3ip t( ) +M34i4 t( ), (9)

∫t

0
VD t′( )dt′ � L4i4 t( ) −M4ip t( ) +M34i3 t( ), (10)

∫t
0
VE t′( )dt′ � LΣip t( ) +M1i1 t( ) −M2i2 t( )

+ M3i3 t( ) −M4i4 t( ) +Miq t( ). (11)

The mutual inductance M is designed to be much smaller than the
total inductance of the inductor loop LΣ and other mutual
inductances like M1 for weak coupling to the SQUID of the
qubit. Additionally, the ring current of the SQUID iq(t) should
be less than the critical current of its Josephson junctions, which is
about tens of nA for Al/AlOx/Al junctions and smaller than the
current in the inductance loop ip(t) (about several or tens of mA) by
two or more orders of magnitude. Therefore, the influence of the
SQUID on the inductance loop, Miq, can be ignored in Eq. 11, and
the electric potential of node E is rewritten as∫t

0
VE t′( )dt′ � LΣip t( ) +M1i1 t( ) −M2i2 t( )

+ M3i3 t( ) −M4i4 t( ). (12)

Then, let

ΦA t( ) � ∫t

0
VA t′( )dt′, (13)

ΦB t( ) � ∫t

0
VB t′( )dt′, (14)

ΦC t( ) � ∫t

0
VC t′( )dt′, (15)

ΦD t( ) � ∫t

0
VD t′( )dt′, (16)

ΦE t( ) � ∫t

0
VE t′( )dt′, (17)

and we get
Φ t( ) � Li t( ), (18)

where

Φ t( ) �

ΦA t( )
ΦB t( )
ΦC t( )
ΦD t( )
ΦE t( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (19)

i t( ) �

i1 t( )
i2 t( )
i3 t( )
i4 t( )
ip t( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (20)

and

L �

L1 M12 0 0 M1

M12 L2 0 0 −M2

0 0 L3 M34 M3

0 0 M34 L4 −M4

M1 −M2 M3 −M4 LΣ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (21)

TABLE 2 Parameters of elements in the QET.

Parameter Value Parameter Value

L1 Lc L11 0.05 pH

L2 Lc L12 0.955 pH

L3 Lf L13 0.096 pH

L4 Lf L21 0.05 pH

Lc 10 nH L22 0.955 pH

Lf 10 nH L23 0.096 pH

Ln0 1 nH L31 0.05 pH

Ln1 Lc L32 0.955 pH

Ln2 Lc L33 0.096 pH

Ln3 Lf L41 0.05 pH

Ln4 Lf L42 0.955 pH

Ln5 2 nH L43 0.096 pH

M1 Mc R1 0.766 Ω

M2 Mc R2 0.766 Ω

M3 Mf R3 0.766 Ω

M4 Mf R4 0.766 Ω

M12 7.023 nH J1 160 μA

M34 7.023 nH J2 160 μA

Mc 8 nH J3 160 μA

Mf 0.8 nH J4 160 μA

M 0.02 nH
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Then, to get i(t), we have

i t( ) � L−1Φ t( ), (22)
where L−1 � 1

FA.
1
F is the common factor of the elements in the

inverse matrix of L. F is

F � L2 M2
34 L1LΣ −M2

1( ) + 2L1M3M34M4(
+ L3 −L4 L1LΣ −M2

1( ) + L1M
2
4( ) + L1L4M

2
3)

+ −L1M
2
2 − LΣM

2
12 − 2M1M12M2( )M2

34− 2M2
12M3M34M4

+ L3 L1M
2
2 + LΣM

2
12 + 2M1M12M2( )L4 −M2

12M
2
4( )

− L4M
2
12M

2
3.

(23)

The elements aij (i, j = 1, 2, 3, 4, 5) of A are

a11 � L2 M2
34LΣ + 2M3M4M34(

+ −L4LΣ +M2
4( )L3 + L4M

2
3)

+M2
2 L3L4 −M2

34( ),
a12 � M12 −M2

34LΣ − 2M3M4M34(
+ L4LΣ −M2

4( )L3 − L4M
2
3)

+M1M2 L3L4 −M2
34( ),

a13 � − L4M3 +M34M4( ) L2M1 +M12M2( ),
a14 � L2M1 +M12M2( ) L3M4 +M3M34( ),
a15 � L3L4 −M2

34( ) L2M1 +M12M2( ),

a21 � M12 −M2
34LΣ − 2M3M4M34(

+ L4LΣ −M2
4( )L3 − L4M

2
3)

+M1M2 L3L4 −M2
34( ),

a22 � L1 M2
34LΣ + 2M3M4M34(

+ −L4LΣ +M2
4( )L3 + L4M

2
3)

+M2
1 L3L4 −M2

34( ),
a23 � L4M3 +M34M4( ) L1M2 +M1M12( ),
a24 � − L1M2 +M1M12( ) L3M4 +M3M34( ),
a25 � − L3L4 −M2

34( ) L1M2 +M1M12( ),

a31 � − L4M3 +M34M4( ) L2M1 +M12M2( ),
a32 � L4M3 +M34M4( ) L1M2 +M1M12( ),
a33 � L4 LΣM

2
12 + 2M1M2M12(

+ −L2LΣ +M2
2( )L1 + L2M

2
1)

+M2
4 L1L2 −M2

12( ),
a34 � M34 −LΣM

2
12 − 2M1M2M12(

+ L2LΣ −M2
2( )L1 − L2M

2
1)

+M3M4 L1L2 −M2
12( ),

a35 � L1L2 −M2
12( ) L4M3 +M34M4( ),

a41 � L2M1 +M12M2( ) L3M4 +M3M34( ),
a42 � − L1M2 +M1M12( ) L3M4 +M3M34( ),
a43 � M34 −LΣM

2
12 − 2M1M2M12(

+ L2LΣ −M2
2( )L1 − L2M

2
1)

+M3M4 L1L2 −M2
12( ),

a44 � L3 LΣM
2
12 + 2M1M2M12(

+ −L2LΣ +M2
2( )L1 + L2M

2
1)+M2

3 L1L2 −M2
12( ),

a45 � − L1L2 −M2
12( ) L3M4 +M3M34( ),

a51 � L3L4 −M2
34( ) L2M1 +M12M2( ),

a52 � − L3L4 −M2
34( ) L1M2 +M1M12( ),

a53 � L1L2 −M2
12( ) L4M3 +M34M4( ),

a54 � − L1L2 −M2
12( ) L3M4 +M3M34( ),

a55 � − L3L4 −M2
34( ) L1L2 −M2

12( ).
Therefore, we have

ip t( ) � 1
F

a51ΦA t( ) + a52ΦB t( )(
+a53ΦC t( ) + a54ΦD t( ) + a55ΦE t( )),

(26)

that is,

ip t( ) � 1
F

ΦA t( ) L3L4 −M2
34( ) L2M1 +M12M2( )(

−ΦB t( ) L3L4 −M2
34( ) L1M2 +M1M12( )

+ΦC t( ) L1L2 −M2
12( ) L4M3 +M34M4( )

−ΦD t( ) L1L2 −M2
12( ) L3M4 +M3M34( )

−ΦE t( ) L3L4 −M2
34( ) L1L2 −M2

12( )).
(27)

Because node E is connected to the ground, ΦE should always be
zero. In order to make the flux bias units of coarse tuning be able to
increase or decrease the external flux through the SQUID by the
same amount, the following requirements should be met:

L1 � L2 � Lc, (28a)
M1 � M2 � Mc. (28b)

Similarly, for the flux bias units of fine-tuning, we have

L3 � L4 � Lf , (29a)
M3 � M4 � Mf . (29b)

Therefore, ip(t) becomes

ip t( ) � 1
F

ΦA − ΦB( ) L2
f −M2

34( ) Lc +M12( )Mc[
+ ΦC − ΦD( ) L2

c −M2
12( ) Lf +M34( )Mf ], (30)

where ΦA, ΦB, ΦC, and ΦD are the integral of the voltage at nodes A,
B, C, and D over time t, respectively. Because the input signal to
these nodes is SFQ, ΦA, ΦB, ΦC, and ΦD are multiples of flux
quantum Φ0. F becomes

F � LcLf −LΣLf +M2
f( )Lc + LfM

2
c( )

+ Lf +M34( ) LΣLf − LΣM34 − 2M2
f( )M2

12

+ 2L2
fM

2
c − 2M2

34M
2
c( )M12

+ Lc LΣLc − 2M2
c( )M2

34(
+ 2LcMfMfM34 + LcLfM

2
f + L2

fM
2
c).

(31)

Hence, the relationship between the current of the inductor loop
ip(t) and the external flux through the SQUID Φe is

Φe � Mip t( ). (32)

Denoting

ΦA − ΦB � ncΦ0, (33)
ΦC − ΦD � nfΦ0, (34)

M

F
L2
f −M2

34( ) Lc +M12( )Mc � rc, (35)
M

F
L2
c −M2

12( ) Lf +M34( )Mf � rf , (36)
1
F

L2
f −M2

34( ) Lc +M12( )McΦ0 � Δipc, (37)
1
F

L2
c −M2

12( ) Lf +M34( )MfΦ0 � Δipf , (38)
MΔipc � Φec, (39)
MΔipf � Φef (40)

yields

ip � ncΔipc + nfΔipf , (41)
Φe � ncΦec + nfΦef , (42)

Φec � rcΦ0, (43)
Φef � rfΦ0. (44)
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Eqs 42–44 mean that the flux provided by QET can be divided
into two parts, ncΦec and nfΦef, which are, respectively, created by
coarse tuning and fine-tuning.Φec can be regarded as the flux unit
of coarse tuning, and Φef can be regarded as the flux unit of fine-
tuning. If nc (or nf) SFQ pulses are inputted to port A (or C) of the
QET, then the external flux through the SQUID will increase by
nc times of Φec (or nf times of Φef). Subsequently, if this external
flux needs to be eliminated, nc (or nf) SFQ pulses should be
inputted to port B (or D). Usually, for fine-tuning, rf is smaller
than rc. If

Lc � L1 � Ln1 � L2 � Ln2, (45)
Lf � L3 � Ln3 � L4 � Ln4, (46)

then the ratio of the flux unit of coarse tuning to the flux unit of fine-
tuning can be defined as

rcf � Φec

Φef
. (47)

With Eq. 33 ~Eq. 47, there is

rcf � rc
rf

� Δipc
Δipf

� Kc 1 −K34( )
Kf 1 −K12( ), (48)

where the coupling coefficients are

Kc � Mc�����
L1Ln1

√ � Mc�����
L2Ln2

√ � Mc

Lc
, (49)

Kf � Mf�����
L1Ln1

√ � Mf�����
L2Ln2

√ � Mf

Lf
, (50)

K12 � M12����
L1L2

√ � M12

Lc
, (51)

K34 � M34����
L3L4

√ � M34

Lf
. (52)

The parameter rcf indicates the ratio of the flux precision of
coarse tuning to that of fine-tuning. It should have an appropriate
value greater than 1, like 10, to distinguish the two precisions. The
parameter rf is the ratio of the smallest variation of the fluxΦe,Φef, to
flux quantumΦ0; it determines the flux precision of fine-tuning. The
parameter rc is the ratio of Φec to flux quantum Φ0 and can be set by
rc = rcf · rf.

The parameters rcf, rf, and rc are the main concerns and should
be first determined to design a QET. Then, with constraints
including Eqs 35, 36, 45, 46, 48 ~Eq. 52, all parameter values of
circuit elements should be tried and iterated to meet the
requirements from the higher-level design; for example, the
footprint of the QET on the chip is matched with the footprint
of the qubit.

A QET has almost zero static power dissipation in theory
because no current will flow through its resistors when Josephson
junctions are not switched. Assuming that a QET is used for a
gate operation per 20 ns and about 20 SFQ pulses are required for
each gate operation, the average switching frequency of
Josephson junctions in the QET, fs, is about 1 GHz. With the
critical current IC = 160 μA and a flux quantum Φ0 ≈
2.06783385 × 10−15Wb, the dynamic power dissipation PD of a
QET can be estimated to be 0.33 nW according to the following
formula [18]:

PD � fsΦ0IC. (53)

3 Ideal Z control by square-wave-like
currents

In order to simplify the analysis and understand themain factors
affecting the results of Z control, the square-wave-like waveforms of
currents producing external flux Φe are considered as the ideal cases
for a flux-tunable transmon. This section reviewed and discussed
how the ideal Z control is performed.

The Hamiltonian of a flux-tunable transmon [19] is

Ĥ � 4EC n̂ − ng( )2 − EJS φe( )cos ϕ̂( ), (54)
where

EJS φe( ) � EJΣ| cos φe( )| �������������1 + d2 tan2 φe( )√
(55)

is the effective Josephson energy of the SQUID of the transmon with
a total Josephson coupling energy of two junctions

EJΣ � EJ1 + EJ2, (56)
an asymmetry coefficient

d � EJ2 − EJ1

EJΣ
, (57)

and a reduced external flux

φe � π
Φe t( )
Φ0

. (58)

EC is the charging energy of the transmon. ng is the effective offset
charge. n̂ and ϕ̂ are, respectively, the number operator and the phase
operator of Cooper pairs. For convenience, the hats of all operators,
including Hamiltonian, are left out in the following derivation.

The solution for the kth eigen energy of Eq. 54 with the first-order
approximation of perturbation theory [19] is

Ek � k
����������
8ECEJS φe( )√

− EC

12
6k2 + 6k + 3( ) − EJS φe( ). (59)

Usually, the external flux Φe(t) at the moment t for Z control is
provided by a conductor line beside the SQUID with its current,
iz(t), and a mutual inductance between the line and the SQUID, M.
Because the current in the SQUID is much smaller than iz(t), its
influence on iz(t) can be ignored. There is

Φe t( ) � Miz t( ). (60)
Therefore, EJS (φe) can be written as

EJS iz t( )( ) � EJΣ cos π
Miz t( )
Φ0

( )∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣
�������������������
1 + d2 tan2 π

Miz t( )
Φ0

( )√
. (61)

By changing iz(t), EJS (iz(t)) can be set to a target value. Then, the
energy level Ek, especially E0 and E1, can be tuned so that the qubit
frequency is set to the corresponding target value. When EJS (iz(t)) is
set, the condition EJS (iz(t))/EC ≫ 1 should be guaranteed to make
sure that the qubit is a transmon. According to Eq. 59, we have

E0 � −EC

4
− EJS φe( ), (62)

E1 �
����������
8ECEJS φe( )√

− EC − EC

4
− EJS φe( ), (63)

E2 � 2
����������
8ECEJS φe( )√

− 3EC − EC

4
− EJS φe( ). (64)
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Therefore, the differences of energy levels are

E10 � E1 − E0 �
����������
8ECEJS φe( )√

− EC, (65)
E21 � E2 − E1 �

����������
8ECEJS φe( )√

− 2EC, (66)
and the anharmonicity of the qubit is

α � E21 − E10 � −EC. (67)
Without losing generality, iz(t) has a square-wave-like waveform
and is set as

iz t( ) � iw, ts#t#te,
ii, 0#t< ts or t> te,{ (68)

where iw and ii are the currents for setting working frequency ωqw

and idle frequency ωqi of a transmon, respectively. ωqw is the qubit
frequency used for Z control. ωqi is the qubit frequency when it is
idle and is determined to be the frequency of the rotating frame [20].
ts and te are the moments when a gate operation starts and ends,
respectively. Then, the qubit frequency becomes

ωq t( ) � ωqw , ts#t#te,
ωqi, 0#t< ts or t> te,

{ (69)

where

ωqw �
���������
8ECEJS iw( )
√

− EC( )/Z, (70)

ωqi �
���������
8ECEJS ii( )
√

− EC( )/Z. (71)
Here, we denote

Δωq � ωqw − ωqi. (72)
With Eqs 70–72, we have

Δωq �
����
8EC

√ ������
EJS iw( )
√

−
������
EJS ii( )
√( ). (73)

For an idle qubit, its Hamiltonian is

H0 � Z ωqia
† a + α

2
a†a†aa( ). (74)

Actually, the time-dependent Hamiltonian of the qubit is

H � Z Δω t( )a†a + ωqia
†a + α

2
a†a†aa( ), (75)

where a† and a are the creation and annihilation operators,
respectively, and Δω(t) is defined by

Δω t( ) � ωq t( ) − ωqi. (76)
ωq(t) is the actual frequency of the qubit. We denote

Hdz � ZΔω t( )a†a (77)
as the drive Hamiltonian for Z control. Therefore, there is

H � H0 +Hdz. (78)
In the rotating frame, the drive Hamiltonian for Z control becomes

~H � Hdz, (79)
and the corresponding evolution operator in the rotating frame is

~Udz � T exp −i∫te

ts

~H

Z
dt( ), (80)

where T is the chronological operator. With Eqs 77–80, we have

~Udz � T exp −ia†a∫te

ts

Δω t( )dt( ). (81)

In the ideal situation in which iw and ii are constants, when the qubit
is working (ts#t#te), there is ωq(t) = ωqw, so Δω(t) becomes the
constant Δωq:

Δω t( ) � Δωq � ωqw − ωqi, (82)
and the Hamiltonian H becomes

H � Hw � Z ωqwa
†a + α

2
a†a†aa( ). (83)

We define

φ � −∫te

ts

Δω t( )dt (84)

as the phase shift realized by Z control, and define

tz � te − ts (85)
as the gate operation time for Z control. With Eqs 73, 82, 84, 85, we
have

φ � −Δωqtz
� ����

8EC
√ ������

EJS ii( )√ − ������
EJS iw( )√( )tz. (86)

According to Eq. 81, the corresponding evolution operator for the
qubit becomes

~Udz � 1 0
0 eiφ

( )
� 1 0

0 exp i
����
8EC

√ ������
EJS ii( )√ − ������

EJS iw( )√( )tz( )( ). (87)

To realize on-chip Z control by SFQ, instead of choosing the Z
control line, ii and iw can be produced by the inductor loop current
ip(t) of a QET, which means making iz(t) = ip(t).

4 Simulation about a QET and its gate
operations

4.1 A Single QET

In order to show how the inductor loop current ip(t) of a QET is
controlled by the SFQ signal, a simulation with superconducting
circuit simulation software WRSpice for the circuits in the blue-
dashed-line box in Figure 4 is performed. The SFQ pulses sent to the
input ports of QET, A, B, C, and D, are generated by four DC/SFQs,
each of which is driven by a time-dependent current source. Here,
the DC/SFQ is used only for generating SFQ pulses to verify the
functionality of the QET. In practical engineering, the QET can also
be driven by SFQ pulses from other SFQ digital circuits. The
existence and influence of two qubits in Figure 4 are ignored
temporarily. The circuits of DC/SFQ and QET for simulation are
shown in Figures 5, 6, and the corresponding parameters of their
elements are listed in Table 1 and Table 2, which are based on the
SFQ circuit design data from [21]. In these two tables, the
parameters whose names start with the letter “J” are the critical
currents of the corresponding Josephson junctions. The circuit of
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the QET in Figure 6 is slightly different from Figure 2 for
consideration of the parasitic inductances, but the functions of
the QET will not change essentially. Figure 7 shows the
simulation results, including the waveforms of (A) the drive
currents for DC/SFQ, ISA, ISB, ISC, and ISD mentioned in
Figure 6; (B) the node voltages for QET input ports, VA, VB, VC,
and VD, which are SFQ pulses with time interval 2 ns; and (C) the
inductor loop current ip.

To change the inductor loop current ip(t), which provides
external flux Φe = Mip(t), nc and nf can be set by the SFQ pulse
sequence from DC/SFQ. The simulation and analytical values of the
inductor loop current with different nc and nf are compared in
Table 3. First, by setting nc = 1 and nf = 0 with SFQ pulses sent to
ports A and B (coarse tuning), Δipc can be extracted from the height
of the leftmost lug boss of the inductor loop current curve in
Figure 7C. The extraction value of Δipc is 13.58935 μA, which is
close to the value 13.03599 μA, calculated by Eq. 37 with a relative
deviation of 4.245%. Similarly, by setting nc = 0 and nf = 1 with SFQ
pulses sent to ports C and D (fine-tuning), Δipf can also be extracted
as 1.358815 μA from the second left current lug boss, which is also
close to analytical solution 1.303599 μA from Eq. 37 with relative

deviation 4.236%. Therefore, rcf from this simulation is
10.00088 according to Eq. 48, almost the same as 10.0, the theory
value from analytical solutions.

By setting nc = 1 and nf = 1, the two parts of the inductor loop
current correspondingly made by coarse tuning and fine-tuning can be
accumulated, as shown in the third left lug boss in Figure 7C. By setting
nc = 2 and nf = 0, the inductor loop current can be double times Δipc.
Similarly, by setting nc = 0 and nf = 2, the inductor loop current can also
be double times Δipf. Generally, if the inductor loop current is required
to beNc times Δipc plusNf times Δipf, then nc should be set asNc and nf
should be set as Nf according to Eq 41. The relative deviations between
analytical solutions and simulation solutions of ip for other cases (nc = 1
when nf = 2, 3, 4 and nc = 2 when nf = 1, 2, 3, 4) are also calculated, and
the average relative deviation is 4.259%, as shown in Table 3.

The waveform of the inductor loop current is similar to
composited square waves on the whole. Their rising and falling
edges are steep, which helps avoid crosstalk when the qubit
frequency is changing across frequencies of other qubits or
resonators because the qubit frequency is changed quickly
enough within time (several picoseconds) much shorter than a
gate operation time (several nanoseconds).

FIGURE 4
Circuits for all simulations.

FIGURE 5
Simulation circuits of DC/SFQ.
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4.2 Z Gate by a QET

The simulation in this subsection shows how a QET can
perform a Z gate. The circuit for simulation is defined as the
circuit in the purple-dashed-line box of Figure 4, which is based
on the circuit of the former simulation in the blue-dashed-line
box. The controlled qubit, Qubit 1, is a symmetric flux-tunable
transmon connected to the former circuit, so we set d = 0 and
EJ1 = EJ2 = EJ. Qubit 2 is ignored temporarily. By controlling the
time interval of two SFQ pulses inputted to ports A and B of the
QET, the phase of a flux-tunable transmon can be adjusted. Qubit
1 is driven only by coarse tuning with nc = 1, so we set ii = 0 and
iw = Δipc. Then, Δω(t) can be approximately treated as the
constant Δωq when ts#t#te; that is,

iz t( ) � ip t( ) � Δipc, ts#t#te,
0, 0#t< ts or t> te,{ (88)

and

Δωq � 4
����
ECEJ

√
Z

�������������
cos π

MΔipc
Φ0

( )∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣
√

− 1⎛⎝ ⎞⎠. (89)

Then, with Eqs 86, 89, we have

φ � 4
����
ECEJ

√
Z

1 −
�������������
cos π

MΔipc
Φ0

( )∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣
√⎛⎝ ⎞⎠tz. (90)

The evolution operator ~Udz becomes

~Udz �
1 0

0 exp i
4
����
ECEJ

√
Z

1 −
�������������
cos π

MΔipc
Φ0

( )∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣
√⎛⎝ ⎞⎠tz⎛⎝ ⎞⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (91)

By designing the qubit and QET, the parameters EC, EJ, M, and
Δipc can be determined properly to make tz in a range easy to realize.
Then, for more precise control, the value of tz should be optimized in
practical experiments. Fine-tuning can also be performed to
compensate for gate errors. In this simulation as a simple case,
there are EJ/Z = 2π · (11.147 GHz), EC/Z = 2π · (148.628 MHz),M =
0.02 nH, and Δipc = 13.58935 μA. Moreover, to realize a Z gate, tz
should be 2.261 ns by solving the equation φ = π with Eq 90. The
initial state of Qubit 1 is set as

|ψ〉init � 1�
2

√ |0〉 + 1�
2

√ |1〉. (92)

The data on ip(t) are first extracted from its time-domain simulation
in WRSpice, similar to the former simulation of a single QET without
the qubit. Then, it is imported into the Z gate simulation program
using QuTip [22,23] to calculate the time-domain data on the drive
Hamiltonian for Z control. By calling the function solving master
equation or Schrödinger equation of QuTip, like qutip.mesolve() or
qutip.sesolve(), the time evolution of the qubit state changed by a Z
gate operated by the QET can be figured out with a total Hamiltonian
H consisting of drive HamiltonianHdz and idle qubit HamiltonianH0,
which is expressed by Eqs 75–78. The anharmonicity of the qubit is
also considered in the simulation. Therefore, the creation operator a†

and annihilation operator a are treated as 3 × 3 matrices, and the state
vectors are all 3-dimensional. The state vectors in the simulation
results are projected onto the computational basis to obtain the qubit
states in the 2-dimension computational space.

The simulation results for a Z gate by the QET in the rotating
frame are presented in Figure 8. In addition to the waveforms,
including (A) drive currents for DC/SFQ, (B) node voltages for the
QET input, and (C) inductor loop current, (D) the frequencies of the
qubit eigenenergies and (E) the qubit frequency are also plotted in
Figure 8. The black trajectory of the point representing the qubit
state on the surface of the Bloch sphere is drawn in Figure 9. In this
simulation, the gate operation time of 2.261 ns is actually controlled
by setting the time interval of the rising edges of two square-wave
pulses in Figure 8A. During the period of gate operation (in the lug
boss of the inductor loop current curve), the qubit frequency is kept
at 4.779 GHz with EJS/EC = 137.5, changed from 5.0 GHz with EJS/
EC = 150. The end state of the qubit becomes

|ψ〉end � 0.70943|0〉 + −0.70476 − 0.0049432i( )|1〉, (93)
which is close to the ideal end state

|ψ〉iend � 1�
2

√ |0〉 − 1�
2

√ |1〉. (94)

The Z gate fidelity for only this time of operation isF Z � 99.99884%.

FIGURE 6
Simulation circuits of QET.
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If relaxation and dephasing are considered, then the simulation
should obey the master equation describing the time evolution of a
transmon coupled to the environment [24]:

_ρ � − i
Z

H, ρ[ ] + γD a[ ]ρ + 2γφD a†a[ ]ρ, (95)

where γ is the relaxation rate and γφ is the pure dephasing rate. H is the
Hamiltonian described by Eq 75. ρ is the densitymatrix of the qubit.With
approximation [24,25], the relationships of the two rates, T1 and T2, are

γ ≈
1
T1
, (96)

γφ � 1
T2

− 1
2T1

. (97)

For transmon based on Al/AlOx/Al Josephson junctions, the typical
range of T1 is 10 ~ 110 μs, and the typical range of T2 is 2 ~ 18 µs
[26–28]. In the simulation, T1 is set as 50 µs, and T2 is set as 10 μs.
The density matrix of the initial state is

FIGURE 7
Time-domain responses of QET to SFQ pulses produced by DC/SFQ. (A)Drive currents for DC/SFQ, including ISA, ISB, ISC, and ISD. (B)Node voltages
for QET input, including VA, VB, VC, and VD. (C) Inductor loop current ip.

TABLE 3 Simulation and analytical values of the inductor loop current ip with different nc and nf in the simulation for a single QET.

nc nf Simulation (μA) Analytical (μA) Relative deviation (%)

1 0 13.58935 13.03599 4.245

0 1 1.358815 1.303599 4.236

1 1 14.94845 14.33959 4.246

2 0 27.18550 26.07198 4.271

0 2 2.717590 2.607198 4.234

1 2 16.30779 15.64319 4.248

1 3 17.66717 16.94679 4.250

1 4 19.02664 18.25039 4.253

2 1 28.54613 27.37558 4.276

2 2 29.90666 28.67918 4.280

2 3 31.26738 29.98278 4.284

2 4 32.62829 31.28638 4.289

Average relative deviation 4.259
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ρinit � |ψ〉init〈ψ|init �
0.5 0.5 0
0.5 0.5 0
0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (98)

The simulation results for a Z gate with relaxation and dephasing
show that the density matrix of the end state is

ρend �
0.50004 −0.49977 + 0.0031974i 0

−0.49977 − 0.0031974i 0.49996 0
0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (99)

Additionally, the density matrix of the ideal end state is

ρiend �
0.5 −0.5 0
−0.5 0.5 0
0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (100)

Therefore, the fidelity of the Z gatewith relaxation and dephasing for only
this time is FZ′ � 99.98832%, which is smaller than FZ � 99.99884%.

4.3 iSWAP Gate by a QET

The simulation in this subsection shows how a QET can perform
an iSWAP gate by making the frequency of Qubit 1 the same as that

of Qubit 2. The corresponding Hamiltonian (considering rotating
wave approximation (RWA) [20]) is

H � Z(Δωa†1a1 + ωq1a
†
1a1 +

α

2
a†1a

†
1a1a1 + ωq2a

†
2a2

+α
2
a†2a

†
2a2a2 + g a†1a2 + a1a

†
2( )). (101)

Here, the two qubits have the same anharmonicity α but different
idle frequencies ωq1 and ωq2. The creation and annihilation
operators are defined as follows:

a†1 � a† ⊗ I, (102)
a1 � a ⊗ I, (103)
a†2 � I ⊗ a†, (104)
a2 � I ⊗ a, (105)

where Δω is the frequency variation of Qubit 1 caused by the QET. I
is a 3 × 3 identity matrix. As defined in the last Section 4.2, a† and a
are 3 × 3 matrices as the creation operator and the annihilation
operator for a single qubit, respectively. Therefore, the state vectors
of qubits in the iSWAP gate simulations are 9-dimensional, and their
density matrices are 9 × 9 matrices. Compared with the former
simulation for the Z gate, the method of this simulation with

FIGURE 8
Z gate time-domain simulation results. (A)Drive currents for DC/SFQ, including ISA, ISB, ISC, and ISD. (B)Node voltages for QET input, including VA, VB,
VC, and VD. (C) Inductor loop current ip. (D) Frequencies of the qubit eigenenergies fk. (E) Qubit frequency fq1.
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WRSpice and QuTip remains unchanged, but the simulation circuit
is enlarged, as shown in the green-dashed-line box in Figure 4. The
coupling strength between Qubit 1 and Qubit 2 is g = 2π · (5 MHz).
The results are presented in Figure 10. Figure 10A shows the drive
currents for DC/SFQ, including ISA and ISB. Figure 10B presents the
node voltages for the QET input, including VA and VB. Figure 10C
shows the curve of the inductor loop current ip. Figure 10D shows
the curve of frequencies of Qubit 1 and Qubit 2 (fq1 and fq2).
Figure 10E shows the probability of the qubit state |ψ〉
populating on |01〉 or |10〉.

The frequency of Qubit 1 (5.0 GHz) is tuned to the same level as
the frequency of Qubit 2 (4.779 GHz) with ip = Δipc = 13.58935 μA
by inputting an SFQ pulse to port A of the QET. Then, the QET does
nothing for tz = 49.16 ns to wait for state swapping between Qubit
1 and Qubit 2 with the initial state:

|ψ〉init � |01〉. (106)
When they finish swapping the qubit state, the second SFQ pulse is
inputted to port B of the QET, which makes Qubit 1 back to its idle
frequency. With the ideal end state,

|ψ〉iend � −i|10〉 (107)
and the actual end state

|ψ〉end � −0.012969 + 0.032406i( )|01〉
+ 0.00057846 − 0.99939i( )|10〉 (108)

in the simulation, the fidelity of the iSWAP gate (49.16 ns) for only
this time of operation is F iSWAP � 99.93906%.

Usually, for two qubits coupling with g = 2π · (5 MHz), the
iSWAP gate needs 50 ns. However, here the gate operation time is
optimized as 49.16 ns to eliminate the extra phase shift of Qubit
1 caused by changing its frequency and to ensure that the fidelity of
the iSWAP gate is high enough at the same time. The optimal gate

operation time can be found by performing the simulation with the
same other parameters but different values of gate operation time
around 50 ns. As shown in Figure 11, the point at 49.16 ns has
almost 0 extra phase shift (0.00058 rad) with a high enough fidelity
of 99.93906%, which is a little smaller than the maximum value of
99.95724% at 50.35 ns.

Similar to the simulation of the Z gate in the last Section 4.2, the
simulation of the iSWAP gate considering the relaxation and
dephasing is also performed. For the two-qubit system in the
simulation, assuming that both qubits have the same relaxation
time T1 and dephasing time T2, the master equation is

_ρ � − i
Z

H, ρ[ ] + γD a1[ ]ρ + 2γφD a†1a1[ ]ρ + γD a2[ ]ρ
+ 2γφD a†2a2[ ]ρ, (109)

where H is the Hamiltonian described by Eq 101. ρ is the 9 × 9
density matrix of the two-qubit system. With the initial state,

|ψ〉init � |01〉 �
1
0
0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ ⊗ 0
1
0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ �
0
1
0
0
0
0
0
0
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (110)

the density matrix of the initial state is

ρinit � |ψ〉init〈ψ|init �

0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (111)

Moreover, the density matrix of the end state is

ρend �

0.0011993 0 0 0 0 0 0 0 0
0 0.00242833 0 −0.0062854 + 0.011886i 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 −0.0062854 − 0.011886i 0 0 0 0 0 0 0
0 0 0 0 0.996373 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(112)
The density matrix of the ideal end state is

ρiend �

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (113)

The fidelity of the iSWAP gate by QET considering relaxation and
dephasing isF Z′ � 99.81846%, which is a little worse thanF iSWAP �
99.93906%.

FIGURE 9
Trajectory of the point representing qubit state in Z gate
simulation (in black).
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5 Summary and outlook

In conclusion, we have proposed theQET device with the description
of its circuit structure and theory for its SFQ-based digital Z control to a
flux-tunable transmon.AQETcan convert SFQpulses to external flux for
qubits. Therefore, it can set the idle frequency of a flux-tunable transmon
and, at the same time, perform gate operations involving Z control, such
as Z gates and iSWAP gates, thus paving an approach for digital Z control
of an SFQ-based quantum-classical interface, which is highly desirable for
the research and development of a large-scale superconducting quantum
computer.

For integrating with flux-tunable transmons and avoiding
noise from SFQ circuits simultaneously, the parts of QETs
consisting of flux bias units can be fabricated on another
substrate, which is electrically connected to the qubit chip
with through silicon vias (TSVs) and indium bumps of a
silicon interposer [15,16]. In order to realize mutual
inductances between transmon SQUIDs and inductor loops of
QETs, TSVs and indium bumps should be parts of inductor loops

FIGURE 11
Fidelity F iSWAP of the iSWAP gate and the extra phase shift of
Qubit 1 with different gate operation time tZ.

FIGURE 10
iSWAP gate time-domain simulation results. (A) Drive currents for DC/SFQ, including ISA and ISB. (B) Node voltage for QET input. (C) Inductor loop
current. (D) Qubit frequencies. (E) Probability of the qubit state |ψ〉 populating on |01〉 or |10〉.
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so that the piece of the inductor line of an inductor loop for flux
bias can be fabricated on the qubit chip or the surface of the
silicon interposer faced to qubits. To eliminate the electrical loss
of inductor loops, the material of TSVs should be
superconductive (e.g., TiN). QETs may also be used in other
application scenarios requiring flux tuning, such as CZ gates [29],
flux-tunable couplers [30,31], and qubit readout with a Josephson
photomultiplier [32]. Further research should design and
fabricate this device for experiments about SFQ-based digital
control of qubits, especially flux-tunable transmons.
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