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Metabolomic and transcriptomic
profiling reveals the effect of
dietary protein and lipid levels on
growth performance in loach
(Paramisgurnus dabryanus)

Zi-Rui Wang1,2†, Shu-Yao Li1,2†, Ya-Zhou Zhang1,2, Yong-An Li1,2,
Huan-Huan Huo1,2, Chuan-Qi Yu1,2 and Qiu-Bai Zhou1,2*

1College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China, 2Key
Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
The subject of this study was to explore the optimum requirements of loach

(Paramisgurnus dabryanus) regarding dietary proteins and lipids and discuss the

underlying mechanism. We designed nine diets to determine the effects of

different levels of dietary crude protein (CP: 30%, 35%, and 40%) and ether

extract (EE: 6%, 10%, and 14%) on the growth performance and metabolism of P.

dabryanus. In total, 2160 healthy P. dabryanus (5.19 ± 0.01 g) were divided into

nine groups with four replications at 60 fish per barrel stocking density. The trial

lasted for eight weeks. Serum and liver samples were gathered for metabolomic

and transcriptomic analyses. The results showed that the specific growth rate of

P. dabryanus in the CP40EE10 group was the fastest and notably higher than that

in other groups (P< 0.05). Analysis of the metabolome results found that the

mTOR signaling pathway, glycerophospholipid metabolism, D-arginine and D-

ornithine metabolism were significantly enriched pathways in the CP40EE10

group compared with the other groups (P< 0.05). Moreover, the transcriptomic

analysis of differentially expressed genes (DEGs) showed that the expression of

ARG (arginase) involved in protein synthesis was significantly upregulated in the

CP40EE10 group compared to the slowest growing group (P< 0.05). Additionally,

the expression of SPLA2 (secretory phospholipase A2) involved in lipid

metabolism and FBP (fructose-1,6-bisphosphatase) involved in glucose

metabolism were all significantly downregulated in the CP30EE6 group

compared with the CP40EE10 group (P< 0.05). Furthermore, the analysis of

differentially expressed metabolites (DEMs) and DEGs co-enriched in the KEGG

pathway revealed that the significantly enriched pathways were arginine and

proline metabolism, glycerophospholipid metabolism, and glycolysis/

gluconeogenesis in CP40EE10 compared with other groups (P< 0.05). We

conclude that including 40% CP and 10% EE in the P. dabryanus diet could

result in a better growth rate. We hypothesized from metabolomic and

transcriptomic analyses that the CP40EE10 diet might promote the growth of

P. dabryanus by promoting protein synthesis, lipid metabolism, and

energy production.
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Introduction

Paramisgurnus dabryanus (P. dabryanus), a member of

Cypriniformes, Cobitidae, Paramisgurnus, it is famous for its high

survival rate, strong disease resistance and fast-growing (1).

Moreover, the fillet of P. dabryanus richly contains high-quality

protein, fatty acid, various mineral elements, and B vitamins, which

are popular among consumers (2, 3). The nutritional value of wild

loach is higher than that of farmed loach, but the yield of wild loach

cannot meet the needs of consumers. Thus, an artificial culture of

loach is necessary. At present, studies of loach have focused on

investigating breeding and reproduction (4), hybridization (5), and

immune responses (6, 7). However, research progress on the

nutritional requirements of artificial feed for loach is slower than

that of other fish (2, 8).

The suitable nutrient composition of feed ensures a nutritional

balance to promote growth and minimizes production costs and

nitrogen emissions. Furthermore, it has been reported that dietary

lipids have a protein-retaining effect, and the addition of more lipids

in the diet improves the efficient utilization of protein, thereby

maximizing nitrogen retention and improving growth performance

(9–11). As a result, evaluate and determine the optimal levels of

dietary protein and lipid for the artificial diet of P. dabryanus is of

great significance

Previous studies on the nutrient composition of the feed of

aquatic animals tend to focus on apparent indicators, such as weight

gain rate, survival rate, and biochemical blood indicators (11–13).

However, more and more researchers have paid attention to

understanding the growth of fish on the metabolic and molecular

levels after technological developments (14–16). In recent years, the

rapid development of integrated multi-omics analysis reported has

provided new understanding for revealing the hidden biological

regularities of various phenotypes (17–20). Transcriptomic data can

be used to explore functional genes associated with phenotypes, but

do not reflect actual metabolite level in an organism at the level of

gene expression, which makes it hard to determine the critical path

of specific character (21–23).

Metabolomics can be used to understand the physiological and

biochemical states of biological systems about phenotypes at the

metabolite level (24, 25). Therefore, an integrated analysis of

metabolomics and transcriptomics can further link genes and

metabolites to systematically characterize metabolic pathways

associated with phenotypes (19, 26).

In previous studies, dietary protein requirements of

Paramisgurnus dabryanus (3 to 6 g) were from 33% to 36% and

lipid levels were from 5% to 7% to achieve optimal growth

performance (1, 27–29). Thus, 3 protein levels of 30%, 35%, 40%

and 3 lipid levels of 6%, 10%, 14% were designed to evaluate the

interaction effects of different dietary protein and lipid levels on
Abbreviations: P. dabryanus, Paramisgurnus dabryanus; CP, Crude protein; EE,

ether extract; WGR, Weight gain rate; SGR, Specific growth rate; PCA, Principal

coordinates analysis; PLS-DA, Partial least squares discriminant analysis; VIP,

Variable importance in the projection; FC, Fold change; DEM, Differentially

expressed metabolite; DEG, Differentially expressed gene; KEGG, Kyoto

Encyclopedia of Genes and Genomes.
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growth performance and investigated the optimal balance of

protein and lipid in P. dabryanus diets and the mechanisms

behind it using LC-MS/MS metabolomics approach and the

RNA-seq transcriptomics approach. These findings will

strengthen our comprehension of the mechanisms behind growth

differences and help to explore optimal nutritional requirements

and feeding regimens of P. dabryanus.
Materials and methods

Experimental diets, animal and design

Soybean meal and fish meal were the main sources of protein,

soy lecithin, soybean oil and fish oil were the main sources of lipid.

A complete crossover experiment with three levels of crude protein

(CP) and three levels of ether extract (EE) was used to formulate a

total of 9 diets with four replicates (Table 1). The ingredients were

ground to an ideal particle size (80 mesh), weighed, mixed and

added water to stir evenly according to the formula, then used a

granulator to form feed pellets with a diameter of 2 mm, which were

dried for later use.

Paramisgurnus dabryanus conducted in the sunshine shed of

the breeding base of Jiangxi Agricultural University were from the

Fengcheng Loach Breeding Professional Cooperative of Jiangxi

province, China. In this study, a total of 2160 healthy P.

dabryanus (5.19 ± 0.01 g) were divided into nine groups with

four replications at a stocking density of 60 fish per tank (80 cm ×

66 cm × 64 cm), and fed with nine diets (Table 1) twice-daily (08:00

and 17:00) for an eight-week period according to 3% of the fish

body weight. During the trial, 1/2 water was exchanged once a week

with continuous aeration throughout the experimental period. The

water temperature was 25~28°C and the dissolved oxygen was

above 5 mg/L, and the photoperiod was determined by the

natural lighting. All experimental procedures were performed

according to the regulations in the China Law for Animal Health

Protection and Instructions (Ethics approval No. SCXK

(YU2005-0001)).
Sample collection

At the end of the feeding experiment, the number and weight of

loaches were obtained after 24 hours of starvation to evaluate

growth performance. Four loaches per barrel were anesthetized

with MS-222 (100 mg/mL). Then wipe the surface of the loaches

with 75% ethanol. Blood samples of 8 loaches from each group were

collected, centrifuged at 3000 r/min for 10 min, and serum samples

were collected for metabolomics analysis. Liver samples of 8 loaches

form each group were immediately stored in liquid nitrogen for

liver transcriptome analysis. All samples were transferred to an

ultra-low-temperature refrigerator at −80 °C.

All chemical composition analyses of diets were conducted

according to the methods specified by the AOAC (1995).

Moisture was analyzed by 105 °C normal temperature drying

method (GB/T 6435-2014), crude protein (N × 6.25) by Kjeldahl
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method (GB/T 6432-1994), crude lipid by Soxhlet extraction

method (GB/T 6433-2006) and ash analysis by combustion at

550°C using a muffle furnace (GB/T6438-2007).
Performance measurement

WGR(weight gain ratio, % ) = 100� (FBW – IBW)=IBW;

SGR(specific growth rate, % =d) = 100� ½Ln(FBW) – Ln(IBW)�=d
IBW is the initial body weight (g), FBW is the final body weight

(g), d denotes days of feeding.
Metabolomic assay

Metabolomic was performed in OE Biotech Co. Ltd., Shanghai,

China. The sample was added into 1.5 mL EP tube with 10 mL of 2-

chloro-l-phenylalanine (0.3 mg/mL) dissolved in methanol as the

internal standard. After 10 seconds of vorticity, 300 mL of ice-cold

mixture of methanol and acetonitrile (2:1) was added, and vortexed for

1 minute, then it is ultra sounded on ice for 10 minutes and incubation

at −20°C for 30 minutes to precipitated proteins. The extract was

centrifuged at 13000 rpm for 10 min at 4 °C, and the supernatant was

taken from a 300 μL glass vial and dried by freezing and concentrating

in a centrifugal dryer. A mixture of 400 μL methanol and water (1:4)
Frontiers in Immunology 03
were added to each sample, the sample was swirled for 30 seconds, ultra

sounded for 3 minutes, and then placed at -20 °C for 2 hours. The

sample was centrifuged at 13000 rpm for 10 min at 4 °C. Each tube of

supernatants (150 μL) was collected with a crystal syringe, filtered

through a 0.22 μm microfilter, and transferred into LC vials. The

samples were stored at −80°C for LC-MS analysis. Quality control

(QC) samples were prepared by mixing equal portions of all samples as

a single combined sample (30).

ACQUITY UPLC I-Class system (Waters Corporation, Milford,

USA) was used in conjunction with VION IMS QTOF mass

spectrometry to analyze ESI positive ion and ESI negative ion

mode metabolic profiles. ACQUITY UPLC BEH C18 column

(100×2.1 mm, 1.7 μm) was used for both modes. The column

temperature was 45°C. Water containing 0.1% formic acid and

acetonitrile/methanol 2/3 were used as mobile phases A and B,

respectively. The gradient program was 0/99, 1/70, 2.5/40, 6.5/10,

8.5/0, 10.7/0, 10.8/99, 13/99 (min/% mobile phase A), and the flow

rate of mobile phase was 0.4 mL/min. All samples were kept at 4 °C

during analysis. A mass spectrometry (MS) system equipped with

ESI source was used to scan samples with a mass range of 50 to 1000

in both positive and negative ion modes. The parameters of MS

were as follows: electrospray capillary voltage 2500 V, injection

voltage 40 V, collision voltage 4 eV, ion source temperature 115°C,

desolving temperature 450 m, desolving gas flow 900 L/h (30).

The data was preprocessed prior to pattern recognition, and the

raw data was subjected to baseline filtering, peak recognition,
TABLE 1 The composition and nutrient level of experimental feed (air-dry basis) %.

Items
Groups

CP30EE6 CP30EE10 CP30EE14 CP35EE6 CP35EE10 CP35EE14 CP40EE6 CP40EE10 CP40EE14

Ingredients

Fish meal 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00

Full-fat expanded
soybean

5.00 10.00 15.00 5.00 10.00 15.00 5.00 10.00 15.00

Soybean meal 22.50 19.00 15.50 22.50 19.00 15.50 22.50 19.00 15.50

Rapeseed meal 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00

Wheat flour 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00

Corn meal 20.00 20.00 20.00 20.00 17.60 12.90 15.00 10.10 5.40

Soybean oil: Fish oil
(1:1)

2.00 5.40 8.60 2.00 5.40 8.60 2.00 5.40 8.60

Soy protein
concentrate

0.00 0.00 0.00 7.50 7.50 7.50 15.00 15.00 15.00

Cellulose 11.0 6.10 1.40 3.50 1.00 1.00 1.00 1.00 1.00

Sodium carboxymethyl
cellulose

2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Ca(H2PO4)2 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Premix1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Soy lecithin 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Choline chloride (50%) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

(Continued)
f
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integration, retention time correction, peak alignment, and

normalization by metabolomics software Progenesis QI V2.3

(Nonlinear Dynamics, Newcastle, UK). Human Metabolome

Database (HMDB), Lipidmaps (V2.3), METLIN database and self-

built database were used to identify compounds based on accurate

mass numbers, secondary fragments and isotope distribution.

Differential metabolites were screened by partial least squares

discriminant analysis (PLS-DA) model with projected variable

importance (VIP≥1), and T-test results were obtained by univariate

analysis (P< 0.05).
Transcriptomic assay

Transcriptomics was performed in OE Biotech Co. Ltd., Shanghai,

China. Total RNA was isolated using the Mir-VANA miRNA kit (Cat.

AM1561, Invitrogen, Thermo Fisher Scientific Inc., USA), following

manufacturer’s protocol. RNA purity and quantification were assessed

using a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific,

Waltham, MA, USA). RNA integrity was assessed using the Agilent

2100 bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). The

library was then constructed using the TruSeq stranded mRNA LT

sample preparation kit (Illumina, San Diego, CA, USA) according to

the manufacturer’s instructions.

High-quality reads were screened by removing all reads

containing adapters, containing > 10% unknown nucleotides and

> 50% low-quality bases. Then, De novo splicing was conducted.

Trinity software was used to obtain the transcription sequences by

pairing end splicing (31). According to sequence similarity and

length, the longest one was selected, and the CD-HIT software was

used for clustering to eliminate redundancy, and a set of final

Unigene was obtained as a reference sequence for subsequent

analysis (32). BUSCO has constructed single-copy gene sets for

several extensive evolutionary clays from the OrthoDB database

(33). Unigene was compared with NR, KOG, GO, Swiss-Prot,

eggNOG and KEGG databases by diamond software (34) and

Pfam database by HMMER software (35). Using the spliced

Unigene as a database, the expression abundance of Unigene in

each sample was identified by sequence similarity comparison.

Bowtie2 was used to calculate the number of reads compared
Frontiers in Immunology 04
with Unigene in each sample (36), and the expression level of

Unigene (FPKM value) was calculated. These values were then

compared to explore differences in gene expression between the

samples. DESeq2 was used for inter-group and inter-sample

comparisons to identify DEGs. KEGG pathway enrichment

analysis was performed on these DEGs relative to the genome-

wide background using the same method as the differential

abundance metabolite analyses described above.
Statistical analysis

The results of growth performance data were determined using

one-way analysis of variance, followed by Duncan’s multiple

comparisons test. Optimal nutrient combination levels were

obtained by two-factor analysis of variance. The data were

presented as mean ± SE; significant differences (P< 0.05) between

variables. Statistical analysis was performed using SPSS 25.0.
Results

Growth performance

The combination of different lipid and protein levels in the diet

significantly affected the WGR and SGR of P. dabryanus (P< 0.05;

Figure 1). The WGR and SGR of P. dabryanus in CP40EE10 were

higher than those in the other groups. On the other hand, CP30EE6

as a low-protein/low-lipid diet group and CP30EE14 as a low-

protein/high-lipid diet group were inferior to the CP40EE10 group.

Next, a pairwise comparison of CP30EE6 vs. CP40EE10 and

CP30EE14 vs. CP40EE10 were conducted to analyze the

molecular mechanisms affecting the growth of P. dabryanus.
Serum metabolome analysis

Multivariate statistical analysis
Principal component analysis (PCA) was used to reduce the

dimensionality of the detected metabolite data to analyze the
TABLE 1 Continued

Items
Groups

CP30EE6 CP30EE10 CP30EE14 CP35EE6 CP35EE10 CP35EE14 CP40EE6 CP40EE10 CP40EE14

Nutrients level2, %

Moisture 9.51 9.36 8.80 9.77 9.41 8.62 9.38 9.12 8.92

CP 29.81 29.90 29.77 34.80 34.22 35.53 39.10 39.98 40.54

EE 3.56 8.21 12.07 3.63 8.38 12.67 4.85 9.22 14.24

Gross energy (kJ/g)3 14.63 16.49 18.28 15.88 17.34 18.32 16.26 17.28 18.26

Ash 7.18 7.18 7.19 7.50 7.64 8.45 8.33 8.74 8.76
f

1 The premix provided the followings per kg of diet: VA 5,000 IU, VB1 25 mg, VB2 45 mg, VB6 20 mg, VB12 0.1 mg, VK3 10 mg, VE 200 mg, VC 200 mg, VD3 2,500 IU, inositol 200 mg,
pantothenic acid 60 mg, niacin 200 mg, folic acid 10 mg, biotin 1.5 mg, NaSeO3·5H2O 0.3 mg, CoCl2·6H2O 0.4 mg, KI 0.8 mg, CuSO4·5H2O 10 mg, MnSO4·4H2O 20 mg, ZnSO4·H2O 50 mg,
FeSO4·7H2O 150 mg, MgSO4·7H2O 500 mg, NaCl 1,000 mg.
2 Nutrient levels were measured values.
3Calculated using the mean values for carbohydrates (17.2 kJ/g), proteins (23.6 kJ/g), and lipids (39.5 kJ/g) according to NRC (2011).
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grouping trends and outliers of the observed variables in the dataset.

There was a clear separation between the CP40EE10 vs. CP30EEE6

and CP40EE10 vs. CP30EE14 groups (Figure 2). Besides, PLS-DA

score plots showed an apparent division between groups (Figure 2).

Combining the above two results, the CP40EE10 group was

significantly different from both the CP30EE6 and CP30EE14

groups regarding their metabolite levels (P< 0.05).

Differential metabolite screening
LC-MS/MS was used to analyze the serum of eight replicate

samples from CP30EE6, CP30EE14, and CP40EE10. A total of 1492

metabolites were detected. There were 100 differentially expressed

metabolites (DEMs) in the CP40EE10 group compared with the

CP30EE6 group, including 73 metabolites markedly upregulated

and 27 metabolites significantly down-regulated (P< 0.05).

Meanwhile, there were a total of 107 DEMs in the CP40EE10

group, with 56 metabolites obviously upregulated and 51

metabolites obviously downregulated (P< 0.05) (Figures 3, 4),

compared with the CP30EE14 group.

Enrichment analysis of metabolic pathways
A total of 20 and 21 metabolic pathways were detected in

CP40EE10 vs. CP30EE6 and CP40EE10 vs. CP30EE14, respectively

(Figure 5), in the enrichment analysis of the above DEMs in the

KEGG pathway. Primary bile acid biosynthesis, mTOR signaling

pathway, glycerophospholipid metabolism, D-arginine and D-

ornithine metabolisms were the first four significant differential

pathways between the CP40EE10 and CP30EE6 groups (Figure 5A).

The glycerophospholipid metabolism, arachidonic acid metabolism,
Frontiers in Immunology 05
autophagy–other, mTOR signaling pathway, autophagy–animal,

and D-arginine and D-ornithine metabolisms were the first six

significant differential pathways between the CP40EE10 and

CP30EE14 groups (Figure 5B). The three metabolic pathways,

glycerophospholipid metabolism, mTOR signaling pathway, and

D-arginine and D-ornithine metabolisms in the CP40EE10 group

were significantly enriched compared with the other two groups

(P< 0.05), as shown in Figure 6. In these pathways, L-arginine was

available in the mTOR signaling pathway and D-arginine and D-

ornithine metabolism. Phosphatidylcholine (PC), 1-Acyl-sn-

glycero-3-phosphocholine (LysoPC), glycerophosphocholine,

phosphocholine, and phosphatidylethanolamine (PE) were

involved in glycerophospholipid metabolism. The expression of

these DEMs in the CP40EE10 group was significantly higher than in

the other two groups.
Liver transcriptome analysis

Transcriptome sequencing and
De novo assembly

Performing RNA sequencing on RNA samples extracted from

liver tissues of the CP30EE6, CP30EE14, and CP40EE10 groups,

transcriptomic sequencing of 24 samples was completed in this

analysis, and 83.82 G clean bases were obtained. The valid base

amount of each sample ranged from 94.26% to 95.40%, the Q30

base ranged from 95.41% to 95.85%, and the average GC content

was 46.44%. After filtering, 57,001 unigenes were assembled, with a

total length of 62,346,987 bp and an average length of 1,093.79 bp
FIGURE 1

Effect of different combinations of lipid and protein levels in diets on growth performance of Paramisgurnus dabryanus WGR, weight gain rate;
SGR, specific growth rate; Diets: CP30EE6: 30% crude protein, 6% ether extract; CP30EE10: 30% crude protein, 10% ether extract; CP30EE14: 30%
crude protein, 14% ether extract; etc.; Treatment means represent the average values for 4 tanks per treatment; treatment means followed by
different superscript letter in the same column are significantly different (P < 0.05).
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(Supplementary Table S1). Sequences ranging from 301 to 400 bp in

length were the most abundant, constituting 24.93% of the total

sequences (Figure S1A).

Transcriptional integrity can be estimated from conserved genes

in related species. The total number of genes in the selected BUSCO

groups was 4584, and 63.1% of the genes were encoded as complete

proteins. Among these genes, 58.3% were complete. Among single-

copy BUSCOs, 4.8% of the genes were complete and duplicated

BUSCOs, 9.3% were fragmented BUSCOs, and 27.6% were missing

BUSCOs (Figure S1B). The data were stored in the NCBI Sequence

Read Archive (SRA, http://www.ncbi.nlm.nih.gov/Traces/sra) with

accession number SRP384751.

Unigene expression level analysis
The assembled single genes were used as the database, and the

expression abundance of single genes in each sample was determined
Frontiers in Immunology 06
by sequence similarity comparison. Bowtie2 was used to obtain

the number of reads in each sample compared to single

genes (Supplementary Table S2) and could represent the

entire sequencing results, meeting the transcriptome data

analysis requirements.

Detection of DEGs
This study used P ≤ 0.05 and FC ≥ 2 as the thresholds for

significant differences in gene expression. Differentially expressed

genes (DEGs) in the livers of P. dabryanus from the CP30EE6,

CP30EE14, and CP40EE10 groups were identified. This approach

identified 2027 and 2055 DEGs in CP40EE10 vs. CP30EE6 and

CP40EE10 vs. CP30EE14, respectively. We found that 850 DEGs

were significantly downregulated, while 1177 DEGs were

significantly upregulated in the CP40EE10 group compared to

CP30EE6. Simultaneously, compared with the CP30EE14 group,
FIGURE 2

PCA and PLS-DA score plots of serum metabolites in samples. CP30EE6, 30% crude protein, 6% ether extract; CP30EE14, 30% crude protein,
14% ether extract; CP40EE10, 30% crude protein, 10% ether extract.
FIGURE 3

Volcanic plot of DEMs. DEMs, differentially expressed metabolites; CP30EE6, 30% crude protein, 6% ether extract; CP30EE14, 30% crude protein,
14% ether extract; CP40EE10, 30% crude protein, 10% ether extract.
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A

B

FIGURE 5

Metabolome view map of significant metabolic pathways. DEMs, differentially expressed metabolites; CP30EE6, 30% crude protein, 6% ether extract;
CP30EE14, 30% crude protein, 14% ether extract; CP40EE10, 30% crude protein, 10% ether extract. The X-axis means rich factor. The Y-axis
represents the KEGG pathway terms. The roundness color represents the p value. The roundness area represents the DEM number in this pathway.
(A, B) represent differential metabolic pathway comparison between CP30EE6-CP40EE10 and CP30EE14-CP40EE10, respectively
FIGURE 4

Statistics of DEMs in CP40EE10 vs CP30EE6 and CP40EE10 vs CP30EE14. Red represents significant up-regulation, and green represents significant
down-regulation (Same as below). DEMs, differentially expressed metabolites; CP30EE6, 30% crude protein, 6% ether extract; CP30EE14, 30% crude
protein, 14% ether extract; CP40EE10, 30% crude protein, 10% ether extract.
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the CP40EE10 group had 1400 significantly upregulated DEGs, and

655 downregulated DEGs (Figures 7, 8). Pathway analyses were

conducted using the KEGG database to characterize the DEGs

functionally. The CP30EE6 group had 180 downregulated DEGs

distributed in 240 pathways compared with the CP40EE10 group.

Among these pathways, 59 significantly enriched pathways were

identified via KEGG pathway analysis (P< 0.05).

The CP30EE14 group had 242 downregulated DEGs distributed

in 253 pathways. Among these pathways, there were 69 significantly

enriched pathways (P< 0.05). In the CP40EE10 vs. CP30EE6
Frontiers in Immunology 08
comparison, the 20 high-ranking significant pathways included

seven metabolism-related pathways, such as arginine and proline

metabolism, linoleic acid metabolism, alpha-linolenic acid

metabolism, arachidonic acid metabolism, pentose phosphate

pathway, ether lipid metabolism, and glycolysis/gluconeogenesis.

The remaining 13 pathways were linked to digestion, disease, and

immunity. Among them, three apparent pathways were pancreatic

secretion, protein or fat digestion, and absorption (P< 0.05). In the

CP40EE10 vs. CP30EE14 comparison, the 20 high-ranking

significant pathways included 16 metabolism pathways, such as
FIGURE 6

Network of metabolic pathways and key DEMs. Green represents DEMs and significantly enriched pathways in CP40EE10 vs CP30EE6 groups, yellow
represents DEMs and significantly enriched pathways in CP40EE10 vs CP30EE14, and blue represents DEMs and significantly enriched pathways in
common.
FIGURE 7

Volcanic plot of DEGs. DEGs, differentially expressed metabolites; CP30EE6, 30% crude protein, 6% ether extract; CP30EE14, 30% crude protein, 14%
ether extract; CP40EE10, 30% crude protein, 10% ether extract.
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phenylalanine metabolism, glycolysis/gluconeogenesis ,

phenylalanine, tyrosine, and tryptophan biosynthesis.

The PPAR signaling pathway and proximal tubule bicarbonate

reclamation were enriched in the remaining four pathways (P<

0.05; Figure 9). PPAR contained all upregulated genes in seven

metabolism-related pathways of the CP40EE10 vs. CP30EE6

comparison and 16 metabolism-related pathways of CP40EE10

vs. CP30EE14, as shown in Supplementary Table S3. Additionally,

the main DEGs involved in glycolysis/gluconeogenesis and arginine

and proline metabolism, such as proA/B (glutamate-5-

semialdehyde dehydrogenase/glutamate 5-kinase), FBP (fructose-

1,6-bisphosphatase), GAPDH (glyceraldehyde 3-phosphate

dehydrogenase), ALDO (fructose-bisphosphate aldolase), and

AMD1 (S-adenosylmethionine decarboxylase) in the CP40EE10

group, were higher than those in the CP30EE6 and CP30EE14

groups. The main metabolic pathways and key upregulated DEGs

are shown in Figure 10.
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Additionally, the DEGs significantly decreased in pancreatic

secretion, protein or fat digestion, and absorption pathways in the

CP30EE6 group were amyA (alpha-amylase), PRSS1-2-3 (trypsin),

LIPF (gastric triacylglycerol lipase), SPLA2 (secretory phospholipase

A2), and NPC1L1 (Niemann-Pick C1-like protein 1). Additionally, the

DEGs significantly decreased in the proximal tubule bicarbonate

reclamation. The PPAR signaling pathway in the CP30EE14 group

were PPARa (peroxisome proliferator-activated receptor alpha), gdhA

(glutamate dehydrogenase (NAD(P)+), PCK (phosphoenolpyruvate

carboxykinase (GTP), LPL (lipoprotein lipase), and ACS (acyl-CoA

synthetase) (Supplementary Table S4).

Combined analysis of DEMs and DEGs
The only significantly enriched metabolic pathway in the

CP40EE10 vs. CP30EE6 comparison, in which DEMs and DEGs

coexist, was glycerophospholipid metabolism (indicated by

rounded green rectangles, P< 0.05). Only arachidonic acid
FIGURE 8

Statistics of DEGs in CP40EE10 vs CP30EE6 and CP40EE10 vs CP30EE14. DEGs, differentially expressed metabolites; CP30EE6, 30% crude protein,
6% ether extract; CP30EE14, 30% crude protein, 14% ether extract; CP40EE10, 30% crude protein, 10% ether extract.
FIGURE 9

KEGG enrichment top 20 between CP30EE6, CP30EE14 and CP40EE10 groups. CP30EE6, 30% crude protein, 6% ether extract; CP30EE14, 30%
crude protein, 14% ether extract; CP40EE10, 30% crude protein, 10% ether extract. The X-axis means rich factor. The Y-axis represents the KEGG
pathway terms. The roundness color represents the p value. The roundness area represents the DEG number in this pathway.
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metabolism and autophagy were significantly enriched pathways for

DEM and DEG coexistence in the CP40EE10 vs. CP30EE14

comparison (indicated by rounded yellow rectangles, P< 0.05).

Arachidonic acid, arginine and proline, and tryptophan

metabolisms coexisted in the two comparison groups (indicated

by rounded blue rectangles). Several critical metabolic pathways are

shown in Figure 11. The metabolites and genes related to the amino

acid, lipid, and carbohydrate metabolism in the serum and liver of

P. dabryanus in the CP40EE10 group were significantly higher than

those in the other two groups (P< 0.05).
Discussion

Research on suitable feed formulations is essential for the

aquaculture industry. Inappropriate protein and lipid levels lead

to poor fish growth (13, 37–40). Therefore, by feeding diets with

different dietary protein and lipid levels, exploring the mechanisms

behind the differences in growth of P. dabryanus is critical to setting

optimal nutrient requirements and achieving optimal aquaculture

growth rates. In this study, P. dabryanus was fed a CP40EE10 diet

(40% protein and 10% lipid) and reached the highest WGR and

SGR. Hence, compared with other combinations, the CP40EE10

diet was the optimal dietary protein and lipid balance for P.

dabryanus based on growth performance. LC-MS/MS-based

metabolomic and RNA-seq-based transcriptomic analyses were

performed to analyze the effects of dietary protein and lipids and

explore the underlying mechanisms of the P. dabryanus fed with

CP40EE10 (optimal diet), CP30EE6 (low-protein/low-lipid diet),

and CP30EE14 (low-protein/high-lipid diet).
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During the in-depth analysis of the DEGs, an essential

functional gene, the arginase gene (ARG), was identified. ARG

regulates L-arginine to produce ornithine and urea. Ornithine is a

precursor of polyamines, a vital substance for regulating cell growth

and promoting cell proliferation (41). As an intermediate of the

urea cycle, L-arginine can alleviate ammonia poisoning with the

urea cycle and avoid metabolic disorders caused by excess ammonia

(42). Additionally, L-arginine can be used for ribosomal synthetic

proteins (41, 43). On the other hand, studies have found that dietary

protein content significantly affects amino acid metabolism (44). In

this study, the expression level of ARG was significantly higher in

the CP40EE10 group than in the other groups. Consistent with this,

the level of L-arginine in the CP40EE10 group was significantly

higher than that in the CP30EE6 and CP30EE14 groups. Therefore,

high protein intake in the CP40EE10 group might promote amino

acid metabolism, primarily through the arginine metabolism

pathway, to promote P. dabryanus growth. This result could

further support the optimal growth data.

Two other genes related to glucose metabolism have been paid

attention to, namely fructose 1,6-bisphosphatase (FBP) and

glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Glucose,

the primary energy substance of most cells, can provide energy

for the body to maintain normal physiological activities through

glycolysis/gluconeogenesis (16). FBP and GAPDH are essential

regulators of glycolysis/gluconeogenesis, and their reduction

affects energy production (45). Therefore, different gluconeogenic

enzyme activities in animal tissues will lead to different growth

rates, which should be the expected result. Likewise, animals fed

optimal dietary proteins and lipids exhibit the high activity of

enzymes related to glucose metabolism and considerable growth
FIGURE 10

Network of metabolic pathways and key genes. Green represents DEGs and significantly enriched pathways in CP40EE10 vs CP30EE6 groups, yellow
represents DEGs and significantly enriched pathways in CP40EE10 vs CP30EE14, and blue represents DEMs and significantly enriched pathways in common.
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potential (46). In this study, the expression of genes related to

glucose metabolism in the high-protein group (CP40EE10 group)

was higher than in the low-protein groups (CP30EE6 and

CP30EE14). This result was similar to results showing that liver

gluconeogenic enzyme activity increased when rainbow trout were

fed a high-protein diet (47). This can also support the result that the

growth of P. dabryanus fed an optimal diet was better than that of a

low-protein/low-lipid or low-protein/high-lipid diet. This result

resembles that of the tilapia (Oreochromis niloticus) trial (16).

Lipids are essential macronutrients for regulating animal

growth, reproduction, health, and body functions. It has been

reported that glycerophosphocholine is reduced along with a

decrease in compensatory liver ability (48). PC accounts for 40–

50% of total cell phospholipids, and it can control lipid metabolism,

mainly regulating lipid, lipoprotein, and whole-body energy

metabolism (49, 50). LysoPC is an essential metabolite produced

by many cells, widely distributed in various tissues. It can increase

the penetration of ions in the membrane and change the mucosal

barrier function (51, 52). The study found that LysoPC can promote

growth and lower lipid accumulation in juvenile turbots (53). In

mammals, the mTOR signaling pathway was found to play an

essential role in regulating lipid metabolism gene expression.

mTORC1 promotes lipid biosynthesis by being a sterol regulatory

element binding protein (SREBP) (54), which is an essential class of

transcription factors involved in lipid synthesis (55). mTORC1 also

promotes PPARg activity and adipogenesis (56) and regulates

PPARa activity and hepatic ketogenesis (54).

In this study, the PC, LysoPC, glycerophosphocholine,

phosphocholine, and PE expressions were significantly

upregulated in the CP40EE10 group. Notably, the expression of

these metabolite-regulating genes, such as SPLA2, ETNPPL, pmtA,

and mTORC1, also increased in the CP40EE10 group. These results

showed that the CP40EE10 group had better lipid metabolism

ability. Similar results were observed in seabass, large yellow

croakers, and grass carps (57–59). This indicates that appropriate
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dietary lipid levels facilitate lipid metabolism, thus promoting

fish growth.

In addition to the above metabolic pathways with significant

differences, there were other KEGG-enriched pathways with

significant differences among the three groups. Compared with the

CP30EE6 group, the protein or fat digestion and absorption, and

pancreatic secretion in the CP40EE10 group were also significantly

enriched, which was mainly due to the downregulated expression of

amyA, SPLA2, CPA/B, LIPF, and other genes involved in the above

pathways in the liver of the CP30EE6 group, indicating that low-

protein/low-lipid diet could not provide enough protein and lipid to

meet individual nutritional needs, resulting in slow growth.

Compared with the CP30EE14 group, the PPAR signaling pathway

was significantly enriched in the CP40EE10 group. PPARa,ME1, and

LPL were all regulatory genes in this pathway. PPARa plays a vital

role in fatty acid beta-oxidation, and the activation of the PPARa
signaling pathway has a noticeable hypolipidemic effect (60). The

ME1 protein is a part of the tricarboxylic acid shuttle and can be used

in Fatty acid biosynthesis and many other metabolic processes (61).

LPL is a rate-limiting enzyme that decomposes chylomicrons in

circulating lipoprotein and significantly low-density lipoprotein

triglycerides and releases FAs and glycerol (45, 57).

A high-fat diet provides more triglycerides, causing an

increase in LPL enzyme activity and promoting lipolysis. From a

nutritional point of view, it provides energy for the body and

releases fatty acids to meet the fatty acid requirements of fish (37).

In this study, the expression of LPL in the CP40EE10 group was

higher than in the high-fat diet CP30EE14 group, which may be

because its matched protein-to-lipid ratio can promote lipid

metabolism and utilization. However, in the present study, the

gene expression of PPARa,ME1, and LPL in the CP30EE14 group

was significantly lower than that in the CP40EE10 group,

indicating that P. dabryanus in the CP30EE14 group could not

fully utilize dietary lipids, which may lead to impaired fat

metabolism inhibiting fish growth.
FIGURE 11

A metabolic network of DEMs and DEGs in KEGG pathways identified by multi-omics analysis between CP30EE6, CP30EE14 and CP40EE10 groups.
DEMs, differentially expressed metabolites; DEGs, differentially expressed genes; CP30EE6, 30% crude protein, 6% ether extract; CP30EE14, 30%
crude protein, 14% ether extract; CP40EE10, 30% crude protein, 10% ether extract.
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Conclusion

In conclusion, the CP40EE10 (CP: 40%, EE: 10%) diet achieved

the best growth performance of P. dabryanus in this study. Integrated

metabolomic and transcriptomic analyses were applied to investigate

the changes in metabolites and genes between the CP40EE10,

CP30EE6, and CP30EE14 groups. Specific metabolic pathways were

identified, and the loach individuals with fast growth presented active

protein and lipid metabolisms, robust signal transduction systems.

These characteristics may be essential for WGR in P. dabryanus. The

results of this study enhance our understanding of the effects of

dietary protein and lipid levels on the growth of P. dabryanus.
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