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With the advent of next-generation whole genome sequencing, many variants of
uncertain significance (VUS) have been identified in individuals suffering from
inheritable hypertrophic cardiomyopathy (HCM). Unfortunately, this classification
of a genetic variant results in ambiguity in interpretation, risk stratification, and
clinical practice. Here, we aim to review some basic science methods to gain a
more accurate characterization of VUS in HCM. Currently, many genomic
data-based computational methods have been developed and validated against
each other to provide a robust set of resources for researchers. With the
continual improvement in computing speed and accuracy, in silico molecular
dynamic simulations can also be applied in mutational studies and provide
valuable mechanistic insights. In addition, high throughput in vitro screening can
provide more biologically meaningful insights into the structural and functional
effects of VUS. Lastly, multi-level mathematical modeling can predict how the
mutations could cause clinically significant organ-level dysfunction. We discuss
emerging technologies that will aid in better VUS characterization and offer a
possible basic science workflow for exploring the pathogenicity of VUS in HCM.
Although the focus of this mini review was on HCM, these basic science
methods can be applied to research in dilated cardiomyopathy (DCM), restrictive
cardiomyopathy (RCM), arrhythmogenic cardiomyopathy (ACM), or other genetic
cardiomyopathies.
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Introduction

Hypertrophic cardiomyopathy (HCM) is a common heart condition with a prevalence of

1:200–500 (1, 2). It is characterized by an increase in left ventricular wall thickness in the

absence of abnormal loading conditions and without an identifiable secondary cause such

as hypertension or aortic stenosis (3). It is thought to be a result of heterogeneous sets of

mutations in sarcomere proteins (4, 5). Since HCM is highly variable in both expressivity

and penetrance with many modifying factors (6, 7), the precise genetic determination is

important for diagnosis, treatment, and prognosis.
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About 40%–60% of people suffering from HCM have one or

more mutations in sarcomere proteins (3, 5, 8). Of the genes with

established pathogenicity for HCM (9), the vast majority (35%–

60%) are found in the genes encoding for cardiac myosin binding

protein C (MYBPC3) and myosin heavy chain (MYH7) (8, 10, 11)

(Figure 1A). Of those, a significant proportion is thought to be

due to missense mutations (4%–19% in MYBPC3% and 93% in

MYH7), underlying its substantial contribution to HCM (11–13).

Other genes that contribute a smaller proportion of HCM cases

include TNNT2 (5%–10%), TNNI3 (5%–7%), MYL2 (2%–4%),

MYL3 (1%–2%), TPM1 (<1%), and ACTC1 (<1%) (14).

Interestingly, pathogenic substitutions seem to cluster in certain

regions of the mutated protein (12, 15–17). For example, HCM-

linked missense variants in MYBPC3 have been shown to cluster

in specific regions, i.e., domains C3, C6 and C10, suggesting that

those domains might be mutational “hot-spots” (12). Similarly,

HCM-linked variants in MYH7 cluster in specific regions

commonly associated with stabilizing the cardiac myosin head

OFF state (i.e., interacting heads motif), in good agreement with

the myofilament hypercontractile phenotype of HCM variants (18).

A variety of techniques are used to identify genetic variants,

such as whole genome sequencing or targeted HCM multigene

panels. The variants are then classified based on criteria

developed by the American College of Medical Genetics and

Genomics (19, 20). Although whole genome techniques yielded

larger numbers of pathogenic variants helping confirm the

diagnosis for many (21, 22), it also resulted in an exponential

increase in “variants with uncertain significance” (VUS) (23). As

a result, there is ambiguity and difficulty in clinical interpretation.

Due to these limitations, VUS are typically disregarded in the

clinical decision-making process because there is insufficient

information (5, 24). However, prior research showed that

sarcomere mutations of uncertain significance or multiple VUS

variants in an individual with HCM are associated with earlier

disease onset and worse outcomes, thus, improved VUS

characterization is critical for clinical management and improved

outcomes (23, 25).

Here, we provide a roadmap of validated basic science methods

and emerging concepts to help reclassify VUS and address the

current limitations of VUS interpretation. These methods can

improve characterization of HCM-associated VUS by obtaining

molecular, mechanistic, and functional information, thereby, aid

in risk stratification, improved medical management and

prognostication. Finally, characterization of the pathogenicity or

mechanisms of VUS will facilitate development of targeted

disease-modifying therapies. These methods can be applied to

research in dilated cardiomyopathy (DCM), restrictive

cardiomyopathy (RCM), arrhythmogenic cardiomyopathy

(ACM), or other genetic cardiomyopathies.
Computational and genomic methods
used in identification of VUS

The classification of mutations in people with HCM starts with

pooling data from population, disease and sequence databases and
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de novo, allelic, computational, predictive, or segregation data (19,

26). Gene-level experimental tools for high throughput screening of

identified HCM mutations for pathogenicity, are reviewed

elsewhere (27–29). Although large databases like the ClinVar

database (https://www.ncbi.nlm.nih.gov/clinvar/), SHaRe registry

https://www.theshareregistry.org/), and HGMD database

(https://www.hgmd.cf.ac.uk/ac/index.php) have been created and

curated by the above-mentioned computational methods, large

numbers of HCM mutations are still classified as VUS and

require re-classification (9, 25, 30).

Many computational tools were developed to improve the

prediction of the pathogenicity of genetic variants in recent years

(31–33). CardioBoost utilizes an algorithm called “disease-specific

variant classifier” to predict the pathogenicity of missense

variants of inherited cardiomyopathies and arrhythmias (34).

The authors showed a high level of accuracy for variants

classified with >90% confidence, which were associated with

disease status and clinical severity (34). In fact, disease-specific

classifiers have been shown to perform better than methods not

trained specifically on features specific to the genes involved in

HCM (35). A similar machine learning algorithm using the

etiological fraction showed that 4%–20% of cases could be

reclassified into pathogenic variants and be used for clinical

applications and predictive testing in probands’ relatives (36).

Other tools utilize high-resolution structural data of proteins

and the effect that mutations have on protein folding and

stability to predict their pathogenicity (37). A study of people

with MYBPC3 VUS using the STRUM tool (evaluating the

change in free energy of domain folding upon introduction of a

mutation) showed that mutations that produced misfolding were

associated with lower event-free survival (38).

Developments in neural networks and artificial intelligence also

allow identification of pathogenicity in cardiac sarcomere protein

mutations. For example, the disease mutation, phenotype, and

pathogenicity in cardiac myosin and myosin binding protein C

(MyBPC) mutations were combined to predict global disease

mechanism using a neural/Bayes network (39). Although there

are limitations in AI technology, work has been done to

overcome those challenges and aid in a robust characterization of

the functional consequences of VUS and the interpretation of

variant classification (40).

Because many computational algorithms have not been validated,

the relative performance in identifying potential pathogenicity of

variants were assessed in a recent study (11). The authors

developed a method to perform variant prediction benchmarks and

quantified which algorithms were better in discriminating HCM

variant pathogenicity than others (11). They reported that utilizing

a combination of the best performing tools can help to narrow

down the most important VUS to screen (11).

As there are many different computational tools (11, 32), it

may be beneficial to create a consolidated platform of all

available algorithms to streamline the in-silico re-classification

process, and potentially produce a combined score of

pathogenicity scaled by the tested accuracy of each tool. The

combine use of these rapid computational algorithms may

improve accuracy of prediction and help guide clinical practice.
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FIGURE 1

(A) Structural models of cardiac myosin folded into the interacting heads motif (left) and cardiac myosin binding protein-C (right). Individual domains are
labelled accordingly. RLC, regulatory light chain; ELC, essential light chain; MHC, myosin heavy chain; P/A, proline/alanine-rich linker. (B) High throughput
in vitro screening process for VUS in genes associated with HCM. Gene synthesis and expression allows an initial screen for protein folding and production
of purified proteins for characterization. A variety of biophysical techniques such as differential scanning fluorimetry, circular dichroism spectroscopy, and
size exclusion multi-angle scattering can aid in characterizing the folding pathway, protein stability, and aggregation potential. More advanced techniques
such as microscale thermophoresis or NADH-coupled ATPase assays can also be performed in high throughput micro-well formats. By utilizing this high
throughput in vitro screening pipeline, it will be possible to obtain mechanistically and clinically meaningful information for VUS in HCM.
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Rapid protein modeling and molecular
dynamics simulations

With improvements in various aspects of molecular dynamics

simulations (MDS) such as modeling software, high performance

computing, or advanced sampling techniques, MDS can be

readily applied to mutational analyses of VUS in HCM (41–44)

(Figure 1A). In the protein simulation workflow, one of the

most time-consuming processes is model creation and validation.

A recently developed tool (“Ensembler”) may enable a high

throughput method to produce simulation-ready ensembles of

protein models with and without VUS mutations (45). It can

accomplish the series of tasks necessary to build a validated

model by combining various tools and libraries including

homology modeling, refinement, protonation, solvation, and

simulation using open-source Python codes that can also be

customized (45).

Following the modeling process, many techniques can be

applied to study HCM VUS pathogenicity. One method is simply

to simulate two models, one with and without the VUS of

interest, and to compare the results of protein structure,

dynamics, or interactions. However, this method can be time

consuming and require much user input. Thus, many automated

or semiautomated servers and tools have been developed to

accelerate the process. In the Galaxy server, one can rapidly

assess hydrogen bond interactions and principal components

(transforming higher dimensional data to a set of orthogonal

axes) to determine how intra- and inter-molecular structure and

dynamics are affected by the VUS (46). In the tool HTMD, more

detailed parameters such as relaxation or equilibrium time scales,

folding/unfolding pathways, standard free energy, protein

conformation, and secondary structure changes can be screened

(47). Other high throughput MDS methods and algorithms

assess the mechanism or kinetics of protein-ligand association

and modulation by amino acid substitutions (48).

The automation process provides valuable information about a

HCM VUS rapidly, but it will still require further study for “hits”

or mutations that seem to alter structure or function. For example,

a confirmatory MDS study for an HCM-causing substitution in

cMyBPC (p.Y235S) showed that this pathogenic variant altered

specific intramolecular interactions that explained the

hypercontractile cross bridge behavior (41). Another study

showed that protein MDS combined with experimental

correlation was helpful in reclassification of VUS (49). They used

the averaged structural changes resulting from various thin

filament protein variants together with differential scanning

calorimetry (DSC) experiments to propose the reclassification of

nine VUS mutations as benign, likely benign, likely pathogenic,

and pathogenic (49). Such combinatorial workflow can provide

an additional method to reaffirm disease mechanisms.

Simulations can be time consuming and resource heavy;

however, with the continual improvement in the speed of

computation, and streamlining processes of simulations, we

foresee that in silico modeling and simulation will be a valuable

tool in assessing pathogenicity of many HCM VUS.
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High throughput in vitro screening
tools for rapid characterization of VUS

Although in silico methods for predicting variant pathogenicity

have significantly improved over the last decade (50), the output

scores or results do not inform about potential molecular

etiologies. More biologically meaningful insights into the

structural and functional effects of VUS can be gained by

utilizing high throughput pipelines for the production, and

biophysical and biochemical characterization of a large number

of protein constructs (Figure 1B).

Gene synthesis has become an affordable tool for the design

and creation of large libraries of protein expression constructs.

Subsequent small-scale expression of these constructs in micro-

well format not only allows an initial screen for protein folding

by measuring the distribution of protein variants in the soluble

and insoluble cellular fractions(51), but also generates sufficient

material (usually in the low milligram scale) for initial

biophysical characterization (52). Hexahistidine-tagged single or

multi-domain constructs of sarcomere proteins can be produced

in high yields and purified to >90% homogeneity using a single

optimized purification step (53), suggesting that the production

of large number of protein constructs carrying individual VUS is

highly feasible. Recombinant proteins produced from bacterial

sources usually do not carry any post-translational modifications

(PTMs) identified in the mammalian heart in vivo (i.e., serine or

threonine phosphorylation). However, known PTMs can be

readily introduced into purified protein constructs using in vitro

biochemical assays (53–55) and incorporated into the analysis

pipeline.

Misfolded proteins can derail proteostasis by aggregate-

formation, local cleavage or accelerated protein turnover (56).

Stability of solubly expressed protein domains can be directly

assessed in a high throughput manner via differential scanning

fluorimetry (DSF) in either 96- or 384-well format, which allows

for the identification of variants that likely alter domain folding

by changes in the observable melting temperature (57–60). Initial

“hits” in DSF screen can subsequently be confirmed using

orthogonal methods such as circular dichroism (CD)

spectroscopy, which can give additional information of changes

in protein secondary and tertiary structure. More recently, a

high-throughput label-free chemical denaturation workflow has

been developed that allows the determination of protein

thermodynamic stability using a semi-automated plate reader

system (52). Lastly, size exclusion-multi angle light scattering

(SEC-MALS) in combination with an auto-sampler allows the

rapid assessment of the aggregation behavior of large number of

protein variants. The combined workflow of solubility screens,

and various techniques to assess domain stability and folding will

allow the rapid identification of potential pathogenic variants

that cause HCM via changes in proteostasis.

Previous studies showed that about a third of investigated VUS

inMYBPC3 do not affect either mRNA or protein stability (61, 62),

adding an additional layer of complexity and difficulty to the

classification of those variants into either benign or pathogenic.
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Variants that do not affect mRNA/protein stability are likely to

alter protein-protein interactions (39). However, traditional

techniques such as isothermal titration calorimetry or surface

plasmon resonance spectroscopy severely limit the number of

variants that can be examined because they are too time

consuming.

This limitation can be overcome by incorporating new

biophysical interaction techniques into the in vitro screening

pipeline. Microscale thermophoresis (MST) is a rapid and

sensitive method to quantify biomolecular interactions, which in

contrast to classical methods is highly material-, time-, and cost-

efficient (63, 64). MST measures the movement of biomolecules

along temperature gradients which is determined by the

molecule’s size and shape, hydration shell and surface charge

distribution. Previous studies have successfully used MST to

characterize the binding of sarcomere protein domains to both

thin and thick filament components (53, 65, 66). Moreover,

recent developments in plate reader technologies accelerated the

measurement of myofilament protein function by utilizing

Foerster Resonance Energy Transfer (FRET)-based technologies

to probe protein-protein interactions (67, 68). FRET is based on

the radiation-free transfer of energy from a donor to an acceptor

fluorophore when they are in sufficient proximity to each other

(<15 nm). It can therefore be employed to determine both the

structural dynamics and interactions of proteins. Recent studies

have successfully employed FRET to test for the effects of HCM-

associated mutations on cMyBPC structural dynamics and its

interaction with both actin and myosin (68, 69).

Additionally, myofilament function can readily be measured in

a high throughput micro-well format using NADH-coupled

ATPase assays (70). Previous studies used this assay system to

measure the effects of cMyBPC fragments on thin filament

activation (71), and protocols can be readily adopted to test for

the functional effects of a plethora of VUS in other proteins.

Lastly, induced pluripotent stem cells (iPSCs) have diverse

applications and are extensively used in genetic studies, but are

the topic of other focused reviews and are not reviewed here

(72–82).

In summary, high throughput in vitro screening pipelines have

the potential to not only discriminate between pathogenic and

benign variants, but also help to understand the molecular

etiologies associated with individual variants (Figure 1).

Integration of experimental results into meaningful matrices to

assess pathogenicity, and bridging between the structural and

functional consequences observed in isolated proteins to cell and

organ level function are areas of focus for future improvements.
Mathematical modeling and simulation
to explore effects of VUS on higher
level function

Computer modeling may be able to complement the

experimental techniques described above and eventually be scaled

to test a large number of VUS in short time. The primary goal

would be to develop a framework that can predict whether a
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variant will lead to clinically significant organ-level dysfunction.

Once that is accomplished, it might be possible to extend the

framework to test potential therapeutic interventions.

Both sarcomere (83–85) and organ-level (85, 86) modeling

have rich histories but screening cMyBPC VUS is particularly

challenging. In particular, the computer model will need to span

from molecular events that occur with timescales of milliseconds

to organ-level growth that takes place over weeks and months

(87). Numerous challenges will need to be overcome.

We will take cMyBPC as an example. At the sarcomere level,

the computer model will need to reproduce the effects of

cMyBPC VUS on myofilament level function. At present,

cMyBPC is thought to modulate contractile function in two

ways: by stabilizing myosin heads in their functional OFF or

super-relaxed state, and by extending towards and subsequently

binding to thin filaments, which can alter its regulatory state.

These competing effects are further complicated by the fact that

cMyBPC is localized to distinct regions of thick filaments so that

some myosin heads are likely to be directly impacted by

cMyBPC while others are left unaffected. Recent structural data

suggests that even within the C-zone, each of the three crowns

within the thick filament’s 43 nm repeat could interact with

cMyBPC in a different way (88, 89). Different strategies for

simulating these interactions exist (90) but spatially-explicit

models that track the location and status of individual molecules

in the filament lattice arguably provide the most direct approach

(91–93). This area of work remains relatively underdeveloped,

but there are published simulations performed using the

FiberSim framework that predict how different modes of

cMyBPC function will impact myofilament contractile

function (94).

Scaling towards the organ level provides additional challenges

because of the heart’s complex shape and motion during the

cardiac cycle. The most common approach is to use finite

element modeling, but this technique is very computationally

demanding. As a result, most organ-level models are based on

very simple contraction modules that are unable to capture the

complexity of cMyBPC effects. One approach would be to embed

a spatially explicit system like FiberSim (94) inside each element

of a complex 3D model, but these calculations will have to be

optimized for wide-spread deployment. A simpler alternative is

to drive an organ-level model like CircAdapt (95) with a

sarcomere-level system that can capture cMyBPC’s effects.

One of the remaining challenges is how to simulate growth. By

definition, individuals with HCM have abnormally thick

ventricular walls. Ideally, the modeling framework would be able

to capture that thickening so that benign variants of cMyBPC

lead to hearts of normal size while pathogenic mutations produce

walls that thicken over time. This is another area of cutting-edge

research, and the technology is advancing rapidly (96). Most

models to date have used macroscopic variables, such as stress or

strain, to drive growth but recent studies (97) suggest that

intrinsic sarcomere-level contractility may be a better predictor of

wall thickening. Whether eccentric growth (changes in chamber

diameter) is paired directly to concentric growth (changes in wall

thickness) remains unclear.
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FIGURE 2

Mathematical modeling and simulation framework for HCM-associated VUS in cardiac MyBPC. The left-hand panels illustrate a multiscale system in which
a sarcomere-level model of myofilament function is embedded inside a ventricle and pumps blood around a closed circulation. Growth can be added to
this framework by allowing myocytes to add myofibrils in parallel (concentric growth, wall thickening) or to add sarcomeres in series (eccentric growth,
chamber dilation). If the approach is to be useful for testing the potential impact of VUS, the sarcomere-level model must reproduce the different
potential biophysical actions of cardiac MyBPC.

Doh et al. 10.3389/fcvm.2023.1238515
In summary, computer modeling has the potential to help

bridge the gap between genetic variants and predictions of

clinically important phenotypes (Figure 2). This will require

bridging multiple structural and temporal scales, but important

components of the framework already exist at each level. The

main challenge will be developing a system that links the

disparate scales together.
Discussion and perspectives

The key issues regarding variants of uncertain significance

are the huge numbers of variants identified with genome

sequencing technology, difficulty in interpretation, and lack of

use in clinical decision making. We reviewed various existing
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basic science tools and emerging frameworks to address some

of these limitations facing VUS interpretation, and how these

technologies can be applied to characterize or reclassify

HCM-causing VUS. Although there are still many limitations

of various algorithms and techniques mentioned, it may

provide a conceptual workflow to guide future work in

elucidating the functional role of a VUS in HCM. There are

other basic science methods not reviewed here that may be

applicable as well (e.g., rapid animal model generation and

testing) (98–100). By utilizing advanced computational

techniques and simulation, high throughput in vitro methods,

and multi-level mathematical modeling, the improved

characterization of HCM VUS will facilitate better medical

decision making, improve risk stratification, and allow

personalized treatment options. The exploration of VUS
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causing HCM may also lay the foundation for further detailed

in vivo functional experiments or clinical trials to evaluate

evidence-based therapies.
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