Sensors & Transducers, Vol. 244, Issue 5, September 2020, pp. 28-36

s
"

www.sensorsportal.com

Sensors & Transducers

Published by IFSA Publishing, S. L., 2020
http://www.sensorsportal.com

The Usage of Process Metricsto Analyze
the Ener gy Efficiency of the Softwar e Development
Process and Product

Daniel ATONGE, Shokhista ERGASHEVA, " Artem KRUGLOV,
Dragos STRUGAR, Andrey SADOVYKH, Giancarlo SUCCI,

Xavier VASQUEZ and Evgeny ZOUEV
Innopolis University, Universitetskaya st., 1, 420500 Innopolis, Russia
" E-mail: akruglov@innopolis.ru

Received: 16 July 2020 /Accepted: 26 August 2020 /Published: 30 September 2020

Abstract: The InnoMetrics project aims at building and validating a quantitative framework to assess and guide
the software development teams using process metrics collected non-invasively throughout the life-cycle of
software systems, from theinitial concept to the deployment, execution, and mai ntenance taking into consideration
energy concerns, which play a pivotal role in the success of applications and infrastructures. In this paper, we
report the early experience we havein its devel opment together with the data of devel opers activitiesthat we have
obtained so far, including running processes and applications, user actions in browser or IDE, and associated
energy consumption.

Keywords: Non-invasive measurement, Granular computation, Energy efficiency, Software development,

Process metrics.

1. Introduction

With the growing need for IT devices, the
pervasiveness of energy efficiency is rising rapidly.
According to the data from U.S. Energy Information
Administration [1], globa resource consumption
began exceeding planetary supply by 2030, and the
consumption of energy is increased more than three
times starting from 1980 till 2018. To be concise, the
world consumed about 23000 billion kWh in 2017.
These kinds of numbers let us know that the
energy consumption issue is becoming much
more globalized.

If we look at the daily behavior of people related
to energy consumption, there are lots of habits been
neglected by us, where we do not even think about it.
For example, there is a tendency of leaving the PC

28

running while switching between the jobs. The
running computer, estimating a typical desktop PC
with a 17-inch LCD monitor, consumes electricity
about 65-100 watts and 35 watts for the computer and
monitor respectively. If the computer system is left
on 24/7 for ayear, it will consume 874 kilowatt-hours
of electricity that isenough to release 341 kg of carbon
dioxideinto the atmosphere and can also be equated to
driving 1312 kmin an average car [2].

Keeping in mind the importance of the above-
mentioned problems, many organizations have started
to design their products in the way that they will
consume less energy not only in terms of financial
expense limitation but to minimize the heat emission
and support a green environment. The process of
energy consumption analysis, which becomes one of
the major issues for any software development

http://www.sensorsportal.com/HTML/DIGEST/P_3163.htm

https://www.sensorsportal.com/

Sensors & Transducers, Vol. 244, Issue 5, September 2020, pp. 28-36

project today, defines the processes that require the
power the most.

An important role in the design of energy-efficient
systems takes the anaysis of values of the basic
parameters (metrics) of energy consumption. Software
metrics are quantitative measures of specific attributes
of software development, including software process,
product, and resource metrics [3-4]. There are severa
kinds of product metrics, based on the analysis of
source code, developed during the past few decades
for different programming paradigms such as
structured programming and object-oriented
programming (OOP). To provide a novelty approach
to energy efficiency assessment of the software
product, we focused on the development process
analysis metrics [4]. However, the group of process
metrics has not properly been observed yet [5]. One of
the reasons for this is the absence of a tool for
sufficient analysis of the development process [4].

Usually, such a process involves the participation
of the developer which is called an invasive
measurement collection method [6], where we faced
the problem of subjective measurement. Furthermore,
it in turn leads to the increase in time costs of the
project as far as it requires the personal involvement
of the developers where switching between tasks can
be a disturbing and time-consuming activity. Thus,
software metrics collection in a non-invasive way -
where metrics are collected automatically, without
developers intervention - is claimed as promising
approachesin this area [7-9]. This approach allows us
to track a variety of software development process
factors affecting its efficiency and calculateit in real-
time. The advantages of this approach can be

- The process is analyzed continuously and not on
apunctua basis;

-The granularity of the data derived
can be maximized opposed to invasive metric
collection method,;

-The process itself will proceed without
interrupting the developers from the main workflow,
hence the data can be collected more reliably [4].

Moreover, thetoolkit integrates with the most used
software development environment and office
applications. Development of the framework which
provides a non-invasive way of collecting software
development process metrics could result in a set of
vital metrics and development effort patterns. Using
effective visualization of the results of data analysis,
one can get sufficient insights into the development
process and its energy efficiency.

The framework we are proposing, InnoMetrics, is
mainly focused on energy consumption metric
collection [10] and analysis of software development
process improvement based on the insights derived
from the framework. InnoMetrics collects the data
throughout the development process automatically
and sends the data to the server automatically in an
established time interval by the developer for further
analysis. It alows the developers and managers to be
aware of the software devel opment process' sstrengths
and weaknesses and which is more about the energy

consumption of the process itself and the developing
product. By virtue of the data, its visuaized
representation concerning metric and analysis gives a
decisive vision of the overall processin real-time. As
a benefit of the framework can serve the modifiability
of the framework depending on the size and | atitude of
the company and the devel opment team.

2. Energy Metrics

The system InnoMetrics is basicaly developed
based on the monitoring of the software development
process energy efficiency and the developers teams
productivity. As the Systematic Literature Review
(SLR) we did at the beginning of the project resulted
in the set of different energy-related metrics of the
development process [4]. Throughout the study,
metrics were divided into three types. process,
product, and code (hardware).

In general, all studiesin SLR were devoted to real
measurement and model-based measurement. As this
kind of measurement involves usage of third-party
hardware tools to get energy metrics from various
components, we considered them as out of the scope
of our non-invasive software development process
analysis approach. The study suggests that code
analysis is thoroughly analyzed, nonetheless, the
group of process metrics was not properly explored.
The main reason for this insufficient analysis of
process measurements is the absence of the tool.
Furthermore, the process cost increases since usually
it requires the developers' participation.

The energy consumption of software applications
wasthoroughly researched and concluded based on the
research findings.

Battery draining applications result in lower user
experience and dissatisfied users. Optimal battery
usage (energy usage) is an important aspect that every
client must consider.

Application energy consumption is dependent on a
wide variety of system resources and conditions.
Energy consumption depends on, but is not limited to,
the processor the device uses, memory architecture,
the storage technologies used, the display technology
used, the size of the display, the network interface that
you are connected to, active sensors, and various
conditions like the signal strength used for data
transfer, user settingslike screen brightnesslevels, and
many more user and system settings.

For precise energy consumption measurements,
one needs specialized hardware. While they provide
the best method to accurately measure energy
consumption on a particular device, such a
methodology is not scalable in practice, especialy if
such measurements have to be made on multiple
devices. Even then, the measurements by themselves
will not provide much insight into how the application
contributes to the battery drainage, making it hard to
focus on any application optimization efforts.

The InnoMetrics system aims at enabling users to
estimate their application’'s energy consumption

29

Sensors & Transducers, Vol. 244, Issue 5, September 2020, pp. 28-36

without the need for specialized hardware. Such
estimation is made possible using a software power
model that has been trained on a reference device
representative of thelow powered devices applications
might run on.

2.1. Windows Energy Metrics

Based on the findings of the research, metrics like
following were investigated [5]:

- Software Energy Consumption (SEC) - the total
energy consumed by the software;

- Unit Energy Consumption (UEC) - the energy
consumed by a specific unit of the software;

Considering our profiling method and the tools
available for us, the ability to attribute the energy
consumption was possible only at the process level in
coarse granularity. However, the hardware resource
usage can fill the gap when it comes to accurately
relating Energy Consumption (EC) to individua
software elements hence enabling the computation of
the UEC.

Profiling the performance requires a basic
understanding of hardware components that has to be
monitored through "performance counters', which is
possible in Windows System. While interpreting
performance data for further analysis, the context
infformation has to be taken into account (e.g.
hardware-specific details).

To evaluate the Unit Energy Consumption
(UEC) the following hardware resources should
be monitored:

- Hard disk: disk bytes/sec, disk read bytes/sec,
disk write bytes/sec;

- Processor: percentage of processor usage;

- Memory: private bytes, working set, private
working set;

- Network: bytes total/sec, bytes sent/sec, bytes
received/sec;

- 10: 10 data (bytes/sec), 10 read (bytes/sec), 10
write (bytes/sec).

Attributing some weights to elements of the UEC
or by some reliable assumption such as considering the
power model to be linear in nature for each individual
component, the SEC Metric is computed.

Besides, the energy usage can aso be appraised
using Performance Counter, Performance Counter
Category, and related classes that are available with
.NET Framework [11-12]. To be specific, by
analyzing the MSDN documentation to attain the goal
of collecting energy-related metrics, it was concluded
that the information about CPU time, Total Processor
Time per process, CPU usage, Memory usage,
network usage that Performance Counter provides can
bereliable.

The bottleneck in this situation is that it is difficult
to match up constantly changing application process
IDsand names. The energy consumption of the system
depends on a variety of factors that are not limited to
those which can be collected using the above-
mentioned performance classes.

30

2.2. MacOSEnergy Metrics

In order to obtain energy-related data, we explored
some of the APIs that MacOS provides. The first and
most obvious tool was Activity Monitor, an
application that comes built-in every MacOS system.
One of its aspects is energy consumption,
shownin Fig. 1.

eue Activity Monitor {Applications intast 12 howrs|
0 @ cru Memory [[EEERTN Ok Metwork

et

M MR P

Fig. 1. MacOS energy metrics.

The second column, Energy Impact, attracted our
attention immediately. We then wanted to figure out
what these values (4.0, 0.6, 1.6, etc.) represent. It has
been then brought to our attention that the definition
of Energy Impact is not precisely defined by Apple.
According to Activity Monitor’'s documentation, the
definition of Energy Impact is” A relative measure of
the current energy consumption of the app. Lower
numbers are better” [13]. In another document [14] it
is stated that “ The Energy tab of Activity Monitor
displaysthe Energy Impact of each open app based on
a number of factors including CPU usage, network
traffic, disk activity and more. The higher the number,
the more impact an app has on battery power” . Both
of these are vague, and we needed a concrete way of
obtaining this metric's values.

One article on the Mozillablog attempted to figure
out aformulafor this. They indicated that the result of
macOS's top command-line tool which performs
periodic measurements of al kinds of metrics;
including ones relevant to energy consumption: CPU
usage, wakeups, and the power measure. The article
we mentioned above suggests running the following

command to get the above-mentioned information:
top -stats pid, command, cpu,idlew,power -o
power -d

To yield the results (trimmed) as givenin Table 1.

Table 1. Top results.

PID | COMMAND |% CPU|IDLEW | POWER
50300 Firefox 129 | 278 | 266
76256 ~ Flugin- 34 | 150 | 113
container
151 Coreaudiod 0.9 68 4.3
76505 Top 15 1 16
76354| Acivity 1.0 0 1.0
Monitor

Sensors & Transducers, Vol. 244, Issue 5, September 2020, pp. 28-36

They go on to suggest that POWER measure is
calculated using a simple formula, and a specific
configuration file (tuned for every machine's
architecture). Using the findings from that article, we
decided to use some of the most impactful metrics:

- Battery percentage;

- Battery status (is charging or not);

- RAM measurement (how much RAM does the
active process use);

- VRAM measurement (how much vRAM doesthe
active process occupy);

- % CPU utilized (per process).

All of these metrics were obtained using the
macOS command-lineinterface. E.g. to get the current
battery percentage we used pmset -g batt, and
for other measurements, we used the ps -axm -o
command with varying parameters (depending on the
use case). It was also possible to use the top command,
but as we are performing periodic checks anyway,
the top wasnot necessary. Further investigation on
the impact of these metrics, as well as some others, is
acrucia part of our research agenda.

3. System Description

The framework for the non-invasive approach for
software metrics collection and analysis consists of
three parts, which were defined in a high-level of
abstraction of the general architecture from thelogical
point of view (see Fig. 2.):

- DataCollectors, for collecting datafrom different
OS types;

- Server, which includes the analytic module
for quantitative and qualitative analysis of the
obtained data;

- Dashboard, for the visual representation of
information about the development process.

In general, the architecture has 3 main parts
mentioned above, however, the detailed information
of al components separately will be described
throughout this section.

The data collectors in the architecture are a set of
services developed for major operating systems, in
which they have the main aim of monitoring the
activities that users perform on their devices, and
collect the data needed to calculate and analyze the
energy consumption of the device under usage and the
process efficiency.

DataCollector API isthe main point of interaction
for the data collection componentswith the centralized
database, in the same way, this APl handles the
outgoing notifications to these components.

Innometrics Database, the information repository
inwhich theraw information collected is stored, which
will be transformed and analyzed through the
Analytics service.

Anaytic service is an automatic data
transformation process, whose main purposeisto take
the raw collected data and transform it to perform a
much faster analysis process, without impacting the

performance of the transactional database. Whereasin
InnoMetrics Analytics Database, the analysis of the
information collected is carried out, which will not
have the information in real-time, but a periodic load
of the information collected and transformed will be
performed. Finaly, the Dashboard backend
component provides an interface between the
presentation layer and the analysis database.

Data collectors

A= AR A]

Android Mac Windows Linuo

Json Server

v

Data collector AP

Data AT
validator ‘ FJ:HE ization

I Ircp
Json O
l InnoMetricsDB

e

Data

processor

[Dara moce:}

Authorization Service | | Analytics service

Json

l X
TCP
v

Dashboard back-end

I Tcp—b@wno!‘.'ehc sAnalyticsDB

hitp

e
Ll
InnoMetrics
Dashboard

Fig. 2. System architecture. Logical view.

The interface of the system is a small control
module where the users are in charge of a specific
project have the ability to visualize information with
the help of graphs, charts, and maps. InnoMetrics
Dashboard isaweb system, focused on visualizing the
analyzed information based on the obtained data from
collectors during the development process. The
analyzed data can play a vital role in the Agile
software development process optimization which
helps in the decision-making process. In addition, it
will have a small module to manage the system
settings like automatic data transfer based on the time
interval the user set, the users ability to send error
reports to the developers, and ease of collected
metrics modification.

Before analysis of the application design methods,
the set of functional and non-functional requirements
were established in terms of the system
implementation. These requirements and the
constraints under which the system should operate and
be developed have distinctive features from other
software metrics collection systems. The main

31

Sensors & Transducers, Vol. 244, Issue 5, September 2020, pp. 28-36

functionality that our system defines is the energy-
related metrics collection and analysis. Based on these
process metrics, the energy efficiency prediction and
development process optimization can be of
paramount importance.

In order to provide quality attributes like
scalability, fault-tolerance, and adaptability to new
requirements of the system, it is based on a micro-
services architecture with two main access points and
a series of specialized services such as Analytic
services, Administration services, Authorization
service, etc.

For aninitial deployment of the solution, thereisa
server that will host all the services (see Fig. 3).

Lol gl—{@ |
du\sll:m- I).l:.:(\\g]l:ctnl AuthorzationService 3
y - =

0!
InnoMetncsDB

- o T e T e

Manager InnoMeincs Dashboard AdmumistrationSenvice

Dashboard APl

len——ge

AnalytiesService InnoMetncsAnalyticsDB.

Fig. 3. System architecture. Physical view.

The user devices here in the figure are tracked by
the data collection components that are only focused
on data collection, storage and transmission. While
Managers component represents the user with a
manager role of each project to where they have
access to a dashboard where they can easily monitor
the performance of their work team from the
information collected.

The DataCollector service is mainly in charge of
providing an interface of communication for the
different data collectors so they can store data in our
data repository. Additionally, providing a notification
interface to send information from the core system to
these external components.

AuthorizationService component speciaizesinthe
authentication and authorization of users, generation,
and validation of tokens that are required to process
any request that is processed by the different services
within the system.

DashboardAPI is responsible for providing the
necessary data to generate graphics within the
dashboard. AdministrationService provides the
functionalities that allow you to make configurations
within the system, such as user and role
administration, configure the frequency with which
the data analysis process is executed, among others.

Administration Service provides the
functionalities that allow the users to make
configurations within the system, such asuser and role
administration, configure the frequency with which
the data analysis process is executed, etc.

AnalyticsService is in charge of carrying out the
data transformations to generate the information
required by end-users.

With the purpose to provide an agile way to deploy
and scale the system, Docker container is used as a
virtualization engine, having OpenJDK as the main
JVM of the services and Postgres as RDBMS.

The diagram in Fig. 4 provides a high-level
perspective on the implementation of the APl used by
the data collector components, which is being
developed under the Spring Boot framework. It
incorporates such functionalities as Spring boot
security for user validation processes and
authorization, Spring boot Data as a persistence
engine. Additionally, thereisthe support of third-party
libraries that will be described later.

restapl.

L~ com
+

calniertace cclniertace celnierface>

com. restapi.

] com.innopolis.innometrics.restapi.config

Repesacry By

dwiToken

Adminari |

<elnterface>> <clnrtaces> <cinierface>>

com.innopolis.innometrics.restapi.entity

Activity Measuremen 2 | [MeasurementType]

W

DataCollectorsAP] AuthaP | “_‘.}Mm\'ﬂucanonEmryanl_
| I

T eom, restapl.DTO

restapi.Service

Project | Rele 1 User | |

ActivityService | [UserSarvice

Fig. 4. System technical architecture.

32

Sensors & Transducers, Vol. 244, Issue 5, September 2020, pp. 28-36

Within the controller package are the classes to be
exposed as REST services, which are divided
into 3 classes:

- AdminAPI exposes those methods that are related
to the administration of users, roles and system
configurations,

- AuthAPI provides the mechanisms for user
authentication and token generation;

- DataCollectorAPI, the controller in charge of
exposing the methods that are used by the different
collection modules for the transmission of data to the
central repository.

Following the structure proposed in the spring boot
architecture, the services layer contains the business
logic needed in each of the processes exposed by the
controllers and also provides an abstraction layer
between the controllers that make use of DTO (Data
Transfer Objects) and the persistence layer that
naturally maps the entities contained in the database.

Using the functionalities provided by the
implementation of JPA in spring boot through the
JPARepository interface, this layer contains the
persistence interfaces of the entities modeled within
the entity package.

In the entity package, we have the models of the
entitiesthat areinvolved in the data collection process,
which are an abstraction of the database entities.

The DTO layer models the objects used in the
request and response processes of each method
exposed in the controller layer, this layer alows usto
decouple the data collection components and the
model that is being persisted in the database.

Within the config layer are those classes that
provide the configuration mechanisms for the libraries
used, such as, spring boot security configuration to
integrate it with the JsonwWebToken (JWT) library,
which is in charge of the generation of
authentication tokens. As well as the configuration
spring fox-swagger libraries for the API
documentation generation.

Exception is a layer that alows us to make an
extension of the RuntimeException class to provide a
unified exceptions handling mechanism.

4. Data Collection Process

Data collection from the users devices is
described in detail in Fig. 5, to be able to store the
information collected within the central repository.

It is suggested that the components perform the
data load process periodically but not in rea-time
because of the technical limitation in terms of real-
time data collection API. Each of the requests must
include an authorization token which was decided to
establish as 90 days in order not to overload the users
every time with the authentication process.
Nevertheless, if the tokenisnot valid or isexpired, the
component that performs the request will be notified
with an error response. Under such conditions, the
component has to request a new token or request the
user access credentials.

Innometrics-
[Data col\ectorJ [Backend J [AuthServer [DB]
& an request ! | I
with token | |
[POSTIN factivity

if: ltoker} expired Token va\idation_
or invalid Return exception 7
Return valid token|

Create nev‘,‘ activity
with a trari‘saction

foreach:
activityReport,

measurements
|

e e s

[Create a Set of

Save H ata R
Appraved 'U

Approved
" ppi

= =
| |
' '

Fig. 5. Data collection sequence diagram.

Then, the API loads the data sequentialy and
returns a flag in each of the activities sent in order to
notify the collection component of the status of the
load. The same process followsin order to provide the
components with the ability to re-try the load of
information that could not be processed and notify the
user about these problems.

As a result of the above-mentioned sequence of
activities, the following data is being collected in
tabular form: process name, process id, status (app
focus or idle), start time, end time, 1P address, mac
address, process description, battery power, memory
and GPU utilization.

Further, at the hand of these data collected, the
analysis of the process is done. The time data of the
development process such as start time and end time,
program status are used to calculate the time spent for
particular programs during the given period of time.

5. Implementation

The collector is presently an application with the
following interfaces:

- Registration interface for the users;

- Login interface for the users;

- Collector Interface: Which displays data
collected from the host’s machine.

5.1. Registration Interface

By using this interface if the user is not signed in
yet, the user has either login or create a new account
of which sequence of actionsis described in Fig. 6. If
the user chooses to create an account, the parameters
like token and user details like email, name,
surname, and password should be included via the
provided interface.

Theuser will be provided with one of thefollowing
responses as feedback (Table 2).

33

Sensors & Transducers, Vol. 244, |

Table 2. Feedback types as a response.
200 OK
201 Created
401 Unauthorized
403 Forbidden
404 Not Found

5.2. Login Interface

If the user isn't signed in and wants to send the
collected data to the backend at the end of the working

ssue 5, September 2020, pp. 28-36

day, the only option is first to login with the user
credentials and then send. The required parameter to
be provided while login in Authentication Request
which containstheinformation about email, password,
and project ID fields. Otherwise, the data collected has
a defined time interval that is set to send the data
collected automatically without user intervention. The
whole sequence of process activities is illustrated in
Fig. 7 below.

The feedback to the AuthenticationRequest as
responses are described in Table 2.

REST API [AuthServer] [DB]

API request with token _
[POST] /V1/Admin/entity]
if: token expired or invalid J Token validation
Return exception
ISR UL L !
check user grants:
if: user doesn't have < J] Return exception | _______|
grants to perform the action
- Retumn token valid

| Data validation

if: token expired or invalio) » retum a hitp status code 200

]--

Save data :
Ok | g |
R e

Fig. 6. User registration sequence diagram.

API login request _

Data collector Innometrics-
:] AuthServer

[POST] /login L request access token

access token

5.3. Collector |

RNty

L

Request user credentials

Retrieve user information

Fig. 7. User login sequence diagram.

nterface

The parameters to send the collected data to the

back-end should

include the token and the report.

Here, the token should be added to the header. The
report structure should be as following:

{

"activities": [

"activityID": O,

"activityType": "string",
"browser_title": "string",
"browser_url": "string",

"end _time":"2019-11-28T09:30:38.4702",

Sensors & Transducers, Vol. 244, Issue 5, September 2020, pp. 28-36

"executable name": "string",
"idle activity": true,

"ip address": "string",
"mac_address": "string",
"measurements": [

{

"measurementTypeId": 0,
"value": 0

}

1,

"start time":"2019-11-28T09:30:38.471Z",
"userID": "string"

}

]

Here in the data collector interface, the minimal
interaction will be possessed, as sending the data
collected is triggered by just one click (send). Where
token and the report of collected data with required
parameters are sent to the backend. The required
parameters are collected as discussed in the previous
section (see Fig. 5.). The response feedback is
described in Table 1. If the users' local database isn't

empty, the data collected will be transferred to the
backend viaa REST API.

6. Testing

Assoon asthe development of the system has been
finished, the beta testing phase was arranged with the
contribution of university graduates. During the beta
testing phase of our system, we have been able to
collect data about 50+ applications used by the
participants of the test group, with a daily average of
2500 samples.

After testing our data collector for along period of
time, and running queries in the back-end to export
collected data into CSV format, we obtain the
following result (see Fig. 8). Added to the previous
system test, this validates that our developed collector
successfully communicates with the back-end without
loss of data.

Fig. 8. Data stored on the back-end.

sctivityid v | activitytype v |idle_activity | email = |start_time | = |end_time || executable_name w|bw||viip_address | w|mac_sddress | = ¥ v |cPu || v [RAM | ¥ | vRAM |
404 05 1 vaguer 12720000 12820000 Windowsinternal ComposableShell Experis 109167229 FCTTTAAAFIAG o 2 o -1 39772160 2203758412
405 0% L Evatquer 12620000 12820000 chrome.exe 109167229 FCTTTAAAFIAG o 2 o -1 B3O8 2204440412
406 05 1 » vanguer 12720000 12820000 AcroRdil.exe 109167229 FCTTTAAAFIAG o 2 o 1 231608 557633536
407 05 1 X VagUeT 12620000 12810000 WINWORD EXE 109167229 FCTTTEAAFIAG o 2 o 1 26E+0B 2204570412
408 05 1 Pp—— 12620000 1.28.20 000 EXCELEXE 109167229 FCITT2AAFSAG [2] <1 1266408 1704176412
409 05 [X vasquer 12720000 1.28.200:00 Microsoft Notes.exe 109167229 FCTTTAAAFIAG [2 0 1 LIESDE 5253758976
410 0% 1 Ewaiguer 12620000 12830000 Telegramexe 109167229 FCTTTAAAFSAL L] 2 o *1 1.539E+08 752340992
411 0% 1 Evasquer 12620000 12820000 ApplicationFramehostexe 109167229 FCTTTAAAFIAG] 2 o «1 28938240 2,20358E412
116 0% 1 ¥ vagquer 12720000 12720000 deverv.exe 17229.160.1 040027000018 o 1 o 81 48M+08 113455)448
117 0% L xvaquer 12720000 12720000 ApplicationFrameHostexe 17229.160.1 0ADO27000018 o 1 o 81 26017792 2.200580+12
118 05 1 * waguer 12720000 123720000 deverv.exe 1722391601 QA002700001R o 1 1606 81 48F+08 1169199104
119 05 L} vaguer 12720000 1.27.20000 Telogramexe 17229.160.1 QADO2700001B 0 1 o 81 179608 475254784
120 05 1 xvanquer 12720000 12730000 MobaXterm_Personal_11.1.exe 172391601 0ADOZ7000018 0 1) B1 IBIENNI6 223931416
121 0% 1 Lvanques 12720000 1.27.200:00 chrome.exe 172.29.160.1 OADOZT000018 a 1 o 81 1886408 2,20421E+412
122 0% 1 Ewaiguer 12720000 12720000 Calculator exe 17239.160.1 040027000018 o 1 o 81 135168 4673720320
123 0% ' vanquer 12720000 12720000 DataColiectorUlexe 17229.160.1 DADO27000018 o 1 1606 81 BB4E9984 5127491584
124 0% 1 xwanguer 137.20000 1.27.20 0:00 Systemienings exe 172391601 OADDT00001B o 1 o Bl 150124 21200750412
125 0% 1 nvatguer 12720000 127.200:00 MobaXterm_Persanal_11.1.exe 172.29.160.1 0AOOZT00001R o 1 o 81 3EITI0 223531416
126 0% ' »edigaer 12720000 12720000 DataColiectorUl exe 172391601 DADO27000018 o 1 06 B1 BS475328 5127491584
127 05 1 wvangaet 13720000 12720000 Telegramone 172391601 DADO27000018 [1 (] B1 1786408 473944064
128 0% 1 xwagaer 127.200.00 1.27.200:00 chrome.sut 17239.1601 DADOI7000018 (] 1 (] 81 188608 2208226412
129 0% 1 L vangaer 12720000 12720000 Calculatoroxe 17229.160.1 DAD027000018] 1 o a1 135168 4673720320
130 0% t waiqaer 13720000 1.27.100.00 ApplicationFrameHostexe 172291601 0ADO27000018 (] 1) Bl 20017792 1.2035BE+12
131 0% 1 wanguer 12720000 12730000 SystemSettingsexe 17229.160.1 0ADO27000018 o 1 o 81 180224 2.20375E412
112 0% L ®walquer 12720000 123720000 WinStore App exe 172301121 0ADOIT00001A L] 1 o 74 1M+08 5268013536
133 05 ! Lwanguet 12720000 123720000 DataColiectorUlexe 1723010121 DADOZ700001A] 1 2606 T4 72352704 5167955968
134 0% 1 waquer 12720000 12730000 ApplcationFrameHost exe 172301121 0ADOZ700001A 0 1) 74 15061760 220360412
135 0% 1 vagues 12720000 12720000 chrome.exe 172301121 0ACO2700001A L] 1 o 74 198E«08 2.20426E+12
136 0% L Ewaiquer 12720000 12720000 SystemSemtings.exe 172301121 OADOIT000D1A [} 1 o 74 65110016 2,200750+12
420 05 U Lvaguer 12620000 12820000 WINWORD EXE 109167229 FCTTTAAAFIAG 0 2 o -1 26E«DB 2.20457E+12
138 0% L} T waigaer 12720000 12720000 Telegramese 172301121 OADOZT00001A 0 1 o 69 161E«DB 453193728
41 05 1 L vangaer 12620000 12870000 Telogramene 109167229 FCTTTAAAFIAG [] 2 0 <1 16E«0B 752742400
421 08 1 vt 12620000 1.28.200:00 ApplcationFrameHestexe 109167229 FCTTTAAAFIAG 0 2 0 -1 29085696 2,20358F412
141 0% 1 L wngaer 12720000 123730000 ApplcationFrameHost.ens 172301121 QADOZT00001A [} 1] 69 37323232 2,20359E+12

Based on the information we collect on a daily
basis, the development team is in charge of analyzing
and assessing some relevant aspects, quality inthe data
collection process, and data itself. Which will help us
to develop a reliable and consistent data model, to
subsequently move on to the next stage - experiment
on the energy consumption metrics collection.
Besides, starting focusing on deep data analysis and
infer additional information on energy efficiency from
collected datawill be the main concentration.

7. Conclusions

In this paper the new approach of measuring the
software development process metrics in a non-
invasive way. The architecture and implementation of
this system were announced and tested with the
contribution of university students. For now, all the

necessary sorts of operating system versions were
developed for collecting the basic process metrics
mentioned above. However, for some platforms, it is
prohibited to collect such information about user
processes at OS level due to security reasons [14].
Thus, the extraction of reliable energy consumption
dataat the required level of granularity isthe aspect of
further investigation.

We came up with using process metrics in
combination with product metrics to reconstruct the
development process.

Architectural decisions of the development were
justified with the non-functional requirements we are
focused on. Based on the requirements and research on
energy consumption process metrics, additional
metricswill be added to the system to collect for more
reliable results. The next step in our research is to
verify the results of the collected data from
industrial companies.

35

Sensors & Transducers, Vol. 244, Issue 5, September 2020, pp. 28-36

In addition, we will focus on energy metrics
collection for different data collectors and other agents
like software management systems and integrated
development environments in future work.

Acknowledgments

This research project is carried out under the
support of the Russian Science Foundation Grant
No 19-19-00623.

References

[1]. Energy information administration. viewed: July 10,
2020: https://iwww.ela.gov/international/overview/world

[2]. Green facts. viewed: July 10, 2020
https://www.greenlivingpedia.org/Green_facts

[3]. Jagroep E., et al., An energy consumption perspective
on software architecture, Software Architecture,
Issue 9278 in LNCS, Springer, 2015, pp. 239-247.

[4]. Shokhista Ergasheva, et al., Metrics of Energy
Consumption in Software Systems: A Systematic
Literature Review, in Proceedings of the 3
International Conference on Power and Energy
Engineering, 2019.

[5]. Jagroep E., et al., Energy efficiency on the product
roadmap: an empirical study across releases of a
software product, Journal of Software: Evolution and
Process, 2016, pp. 1-34.

[6]. Hayri A., et al., The Impact of Source Code in
Software on Power Consumption, International
Journal of Electronic Business Management,
Electronic Business Management Society, Taiwan,
Vol. 14, 2016, pp. 42-52.

[71.

[8].

9.

[10].

[11].

[12).

[13].

[14].

[15].

Andrea Janes, Marco Scotto, Alberto Sillitti,
Giancarlo Succi, A Perspective on Non Invasive
Software Management, in Proceedings of the
Instrumentation and Measurement Technology
Conference (IMTC), 2006.

Marco Scotto, Alberto Sillitti, Giancarlo Succi, Tullio
Vernazza, Non-invasive Product Metrics Collection:
An Architecture, in Proceedings of the Workshop on
Quantitative Techniques for Software Agile Process
(QUTE-SWAP'04), ACM, New York, NY, USA,
2004, pp. 76-78.

Tullio Vernazza, Giampiero Granatella, Giancarlo
Succi, Luigi Benedicenti, Martin Mintchev, Defining
metrics for software components, in Proceedings of
the 5" World Multi-Conference on Systemics,
Cybernetics and Informatics, Florida, Vol. 11, 2000,
pp. 16-23.

Artem Kruglov, Daniel Atonge, Dragos Strugar,
Giancarlo Succi, Shokhista Ergasheva, Xavier
Vasquez, Software Development Analysis for Energy
Efficiency Using Process Metrics, in Proceedings of
the 2" International Conference on Advances in
Sgnal Processing and Artificial Intelligence
(ASPAI’ 2020), Berlin, Germany, 2020, pp. 175-181.
Performance counters. https://docs.microsoft.com/en-
us/windows/win32/perfctrs/performance-counters-
portal, December 2019.

Performance counters in the .NET framework.
https://docs.microsoft.com/en-
us/dotnet/framework/debug-trace-
profile/performance-counters, December 2019.
AppleInc. 2020, How to use Activity Monitor on your
Mac, viewed: February 21, 2020 https://support.
apple.com/en-au/HT201464.

Apple Inc. 2020, About Mac Notebook Batteries,
viewed: January 29, 2020 https://support.apple.com/
en-au/HT204054

MetricKit documentation. Accessed: February 21,
2020: https://devel oper.apple.com/documentation/metrickit

@ @ Published by International Frequency Sensor Association (IFSA) Publishing, S. L., 2020
™ (http://www.sensorsportal.com).

36

