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Crop-saving with AI: latest
trends in deep learning
techniques for plant pathology

Zafar Salman, Abdullah Muhammad, Md Jalil Piran
and Dongil Han*

Department of Computer Science and Engineering, Sejong University, Seoul, Republic of Korea
Plant diseases pose a major threat to agricultural production and the food supply

chain, as they expose plants to potentially disruptive pathogens that can affect

the lives of those who are associated with it. Deep learning has been applied in a

range of fields such as object detection, autonomous vehicles, fraud detection

etc. Several researchers have tried to implement deep learning techniques in

precision agriculture. However, there are pros and cons to the approaches they

have opted for disease detection and identification. In this survey, we have made

an attempt to capture the significant advancements in machine-learning based

disease detection. We have discussed prevalent datasets and techniques that

have been employed as well as highlighted emerging approaches being used for

plant disease detection. By exploring these advancements, we aim to present a

comprehensive overview of the prominent approaches in precision agriculture,

along with their associated challenges and potential improvements. This paper

delves into the challenges associated with the implementation and briefly

discusses the future trends. Overall, this paper presents a bird’s eye view of

plant disease datasets, deep learning techniques, their accuracies and the

challenges associated with them. Our insights will serve as a valuable resource

for researchers and practitioners in the field. We hope that this survey will inform

and inspire future research efforts, ultimately leading to improved precision

agriculture practices and enhanced crop health management.

KEYWORDS

deep learning, disease detection, computer vision, machine learning, plant disease,
vision transformers
1 Introduction

More than 58% of the world’s population works in agricultural industries. In India,

about 70% of small households depend upon agriculture (Government of India, 2020). A

widespread disease in plants poses a potential threat to not only the livelihood of

thefarmers but also to the ones consuming the crops. To protect the crop yield, early

disease diagnostics are necessary. According to the Food and Agriculture Organization of

the United Nations, plant diseases have increased in recent years due to climate change
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1224709/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1224709/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1224709/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1224709&domain=pdf&date_stamp=2023-08-01
mailto:dihan@sejong.ac.kr
https://doi.org/10.3389/fpls.2023.1224709
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1224709
https://www.frontiersin.org/journals/plant-science


Salman et al. 10.3389/fpls.2023.1224709
(Oerke and Dehne, 2004). This poses a serious risk to the livelihood

of the population associated with farming and the consumers. This

risk can be minimized by early detection of diseases in plants which

is conventionally done by the visual inspection of a Plant. A

diagnosis of a particular disease depends upon the knowledge and

expertise of the inspector (Shirahatti et al., 2018). This becomes a

challenge for small-scale farmers who do not have access to an

expert as these methods are expensive and time consuming. In the

past, scientists typically applied large-scale genetic screening and

genomic approaches to identify genes and proteins of interest.

These studies provided knowledge on plant behavior in response

to an infection. Researchers gathered a large amount of data on the

behavior and visuals of an infected plant and used digital image

processing techniques to identify behavioral patterns of plants in

response to a disease. Many researchers have proposed automatic

recognition of disease in plants to overcome problems associated

with unavailability of resources for disease detection (Oerke, 2006).

With recent advancements in technology, researchers have made

use of Machine Learning and Deep Learning to not only identify

genes/proteins involved in plant-pathogen interactions (Danilevicz

et al., 2022; Ilyas et al., 2022), but also to classify plant diseases from

images of infected leaves, stems and roots. Machine Learning is the

use and development of computer systems that are able to learn and

adapt without following explicit instructions, by using algorithms

and statistical models to analyze and draw inferences from patterns

in data. Some traditional machine learning techniques that have

been used in the past for disease detection in plants include Support

Vector Machines (Rumpf et al., 2010), Naïve Bayes (Sperschneider

et al., 2016), random forest (Ramesh et al., 2018) and K-nearest

neighbors (Resti et al., 2022). However, these conventional Machine

Learning approaches performed well under limited circumstances

only (Nigam and Jain, 2019).

With the technological advancements in computational power,

Deep learning, a subset of machine learning, has gained popularity

among researchers for disease identification and classification. Deep

Learning is a branch of machine learning composed of a number of

algorithms that try to model high-level data abstractions using a

deep graph with several processing layers containing linear and

non-linear transformations. Deep Learning techniques, including

Convolutional Neural Networks (CNN) for image classification,

object detection and semantic segmentation have emerged as the

most promising approaches given their ability to learn reliable and

discriminatory visual characteristics. These techniques have shown

success in various applications of computer vision such as instance

segmentation and detection. However, deep learning is data-hungry

and relies on large datasets consisting of hundreds and thousands

of images.
1.1 Related work

Scientists are studying to address the problems related to plant

disease and these studies indicate a rising need of an affable

approach of identifying a plant disease through the use of a

stand-alone device which would eliminate the need for an

expert’s analysis (Mohanty et al., 2016). To accomplish this task,
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a large image dataset is required for Deep Learning models to train

and classify healthy and diseased plants (Katal et al., 2022). To

explore plant pathology studies and the application of deep learning

techniques, we conducted a keyword analysis using terms such as

“Plant,” “Disease,” “Defects,” “Computer vision,” “Machine

Learning,” “Deep Learning,” and “Image Processing.” We

performed searches on Scopus and extracted relevant research

papers, which were used to generate a network visualization map

for insights.

The network visualization map shown in Figure 1 was generated

by VOSViewer (Van Eck andWaltman, 2011) bibliometric software

illustrates a co-word visualization. Co-word visualization is a

technique used to represent the relationships between the

keywords in a dataset where each circle represents a keyword and

each line represents the relationship between the keywords. The size

of a point is directly proportional to the presence of that keyword in

the analyzed data indicating its occurrence frequency.

As seen in Figure 1, there are two main clusters: one related to

deep learning and the other related to plants (botany). These

clusters suggest that a significant amount of work has been done

in the field of plant pathology using deep learning techniques.

The sub-clusters within the deep learning cluster contain

keywords that are closely related to various topics such as cross-

validation, neural networks, SVM, VGG16, and more. These

keywords indicate specific areas or techniques within the field of

deep learning that have been explored in the context of plant

pathology. The second main cluster, focused on plants (botany)

also consists of several sub-clusters that branch out of it. These sub-

clusters represent keywords related to different aspects of plant

pathology. For instance, there are keywords related to antibacterial

activity, plant disease diagnosis, black rot, tomato leaf and others.

By visually analyzing the co-word visualization, one can gain an

intuitive understanding of the main themes or topics covered in the

analyzed data. These clusters provide insights and highlight the

relationships and importance of various concepts within the field of

plant pathology and deep learning.

In this survey, we reviewed the most recent and most cited

survey papers that are published since 2019. Table 1 shows notable

contributions of 11 most cited survey papers as per Scopus index

which considered different aspects of disease diagnostics in Plants

while Table 2 represents the most recent surveys ranked on Scopus

index. In 2019, a comprehensive survey on using deep learning for

image-based plant disease detection was conducted by S.P.

Mohanty (Kaur et al., 2019) in which various studies were

performed for the automation of identification and classification

of plant disease using machine learning and image processing

techniques. Their survey demonstrates the effectiveness of

convolutional neural networks (CNNs) in accurately identifying

and classifying plant diseases. The key findings of the study include

the superior performance of deep learning models compared to

traditional machine learning approaches, the importance of dataset

quality and diversity for training robust models, and the potential of

transfer learning to overcome limited data challenges in plant

disease detection. Kaur et al. did a similar survey on plant disease

identification and classification through leaf images (Li et al., 2021)

and discussed well-known deep learning architectures. The paper
frontiersin.org
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highlights the importance of automated disease detection in

agriculture for early diagnosis and effective management. The key

findings of their survey includes the use of deep learning models,

such as convolutional neural networks (CNNs), for accurate disease

identification, the significance of image preprocessing techniques,

and the potential of transfer learning for improving classification

performance in limited data scenarios. However, dataset limitations

were not discussed very well.
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1.2 Our contributions

In this paper, we conducted a survey about conventional and

latest application of deep learning in plant pathology. It covers

several sections of deep learning technologies in Plant Pathology

such as the use of conventional methods of image classification,

Artificial Neural Networks (ANNs), Convolutional Neural

Networks (CNNs), Vision Transformers and other techniques.
FIGURE 1

A co-word visualization illustrating the research landscape and interplay between computer vision, deep learning technologies and agricultural
challenges through an analysis of keywords in research papers.
TABLE 1 Top most cited papers in recent years.

Year Reference Datasets Dataset limitations Research limitations Results Comparison

2019 H. Saleem (Saleem et al., 2019) � � � �

2019 S. Kaur (Kaur et al., 2019) � � √ √

2021 Liu J (Liu and Wang, 2021). √ √ √ �

2021 Ngugi L.C (Ngugi et al., 2021). √ � √ √

2019 Shruthi U (Shruthi et al., 2019). � � � √

2021 Dhaka V.S (Dhaka et al., 2021). √ � √ √

2021 Li L (Li et al., 2021). √ � √ √

2020 Hassan R.I (Hasan et al., 2020). � √ √ √

2020 Nagaraju M (Nagaraju and Chawla, 2020). √ � √ √

2020 Singh V (Singh et al., 2020). � � �

2020 Chouhan S.S (Chouhan et al., 2020). � � � �

– Ours √ √ √ √
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We also discuss related concepts, applications and limitations

involved in its implementation. The main contributions of the

study is described as below:
Fron
• Present a comprehensive survey about prominent datasets used

for plant disease identification and discuss their limitations

• Review Image capturing and processing techniques for

preparing datasets

• Review conventional and deep learning techniques for the

classification, detection and segmentation of diseases

• Show challenges and open research directions for the

implementation of Plant Pathology using Deep Learning
As shown in Figure 2, this survey is divided into four sections.

In Section 2, we discuss datasets that have been used for plant

pathology and their properties, image acquisitions, focus areas and
tiers in Plant Science 04
discuss their limitations. In section 3, we described the methods that

have been used by researchers, results and their limitations. Finally,

in Section 4, we summarize and discuss future approaches.
2 Datasets

Datasets play a vital role in producing accurate results with deep

learning models. A large number of images are required in a dataset

for training deep learning models to classify diseases. It has been

observed that the Plant Village dataset is the most popular publicly

available dataset for researchers. However, researchers also opted

for customized small datasets in the reviewed studies. These

customized datasets were focused on classifying particular disease

(s). A summary of datasets that are used by researchers in this

survey has been presented in Table 3.
FIGURE 2

The structure and organization of the paper at a glance.
TABLE 2 Most recent papers.

Year Reference Datasets Dataset limitations Research limitations Results Comparison

2022 Jackulin C (Jackulin and Murugavalli, 2022). √ � � √

2022 Ghosh D (Ghosh et al., 2022). � � � √

2022 Tugrul B (Tugrul et al., 2022). √ √ √ √

2022 Altalak M (Altalak et al., 2022). � � √ �

2022 Rokhman N (Derisma et al., 2022). � � � �

2022 Jhajaria K (Jhajharia and Mathur, 2022). � � � �
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2.1 Plant village

The Plant Village dataset (Hughes and Salathé, 2015) was

published in 2015 and it contains a total of 54,306 images

depicting both healthy and infected leaves. Each image in the

dataset is labeled with a unique identifier, plant species, and the

disease or health status of the plant. The dataset is divided into

predefined training and test subsets, encompassing 14 different

crops that are further segregated into 38 classes. Notably, tomato

is the most common species in the dataset, accounting for 43.4%

of the images.

The Plant Village dataset offers a diverse range of plant diseases,

with a total of 26 different diseases represented in the dataset. Early

blight and late blight are the most common diseases in the dataset,

accounting for 15.6% and 14.9% of the images, respectively. The

availability of a large number of labeled images, coupled with the

diversity of crops and diseases, makes the Plant Village dataset an

important resource for researchers and developers working on plant

disease detection models. With its well-defined training and test

subsets, this dataset provides a robust means of training and

evaluating machine learning models, and could ultimately lead to

improved plant disease diagnosis and control in agricultural

settings. The distribution of the number of images has been

shown in Figure 3. Figure 4 contains sample images of Apple

Scab disease from the Plant Village dataset.
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2.2 PlantDoc

PlantDoc (Singh et al., 2020) dataset was created in 2019 and it

is composed of 2,598 images depicting both healthy and infected

leaves. This dataset was compiled from a variety of sources

including images from Google and Ecosia and it features 13

different crops with 17 associated diseases. One notable

characteristic of the PlantDoc dataset is that the images were

captured under real-field conditions, providing a more realistic

representation of the challenges faced by plant disease detection

models. Despite its potential usefulness, the PlantDoc dataset has

some limitations that must be considered. Due to the lack of

domain expertise and knowledge, some of the images in the

dataset are incorrectly classified, which impact the performance of

machine learning models trained on this dataset. Figure 5 contains

sample images from the PlantDoc dataset.
2.3 Digipathos

Digipathos dataset (Barbedo et al., 2018) consists of 3,000

images of cash crops namely rice, coffee, soybeans, beans, maize,

wheat and other fruits and classifies 171 diseases among these

classes. A major portion of images in this dataset is also acquired

under a lab-controlled environment while a small portion contains
TABLE 3 Summary of existing relevant datasets.

Dataset Environment Plant Species Disease Classes No. of Images Annotation Type

Plant Village Lab-Controlled 14 26 54,309 Bounding Box

PlantDoc Real-field 13 17 2,598 Bounding Box

Digipathos Lab-Controlled 21 171 3,000 Bounding Box

PlantCLEF2022 Real Field 80K – 4,000,000 Specie Labels

Rice Disease Image Dataset Lab-Controlled 1 3 3,355 Bounding Box

Rice Leaf Disease Dataset Lab-Controlled 1 3 120 Bounding Box
FIGURE 3

Sample images showcasing instances of Apple Scab disease within the Plant Village dataset.
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real-field images. Figure 6 contains sample images of Diplodia

disease in Digipathos Dataset.
2.4 PlantCLEF2022

PlantCLEF2022 (Goëau et al., 2022) is an extensive dataset

comprising over 4 million images and includes a wide range of

80,000 plant species. This dataset is compiled from two distinct
Frontiers in Plant Science 06
sources; a trusted set built from the Global Biodiversity Information

Facility (GBIF) and a noisy web dataset obtained from search

engines like Google and Bing. In order to overcome balancing

issues, the number of images are limited to a maximum of 100 per

class with an average of 36.1 images per class. This large-scale

dataset offers significant potential for the development and testing

of machine learning models for plant species classification as it

provides a diverse range of images that accurately represent the

variation in plant species found in nature. The availability of a
FIGURE 5

Sample images showcasing in-the-wild and lab-controlled instances of soybean within the PlantDoc dataset.
FIGURE 6

Sample images showcasing instances of Diplodia disease within the Digipathos dataset.
FIGURE 4

Visual representation of class distribution in the Plant Village dataset, revealing skewed proportions where certain classes dominate a significant
portion while others occupy a smaller segment.
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trusted set of images from the GBIF also ensures the reliability and

accuracy of the dataset, making it a valuable resource

for researchers.
2.5 Rice Disease Image dataset

Rice disease dataset (Deng et al., 2021) contains 3,355 images of

healthy and infected leaves of rice plants. These images are captured

with white background and are not real-field condition images. The

images in this dataset are divided into 3 disease classes such as

Brown spot, Hispa and Leaf Blast. Figure 7 contains sample images

of Brown Spot diseased rice leaves in the Rice Disease dataset.
2.6 Rice Leaf Disease dataset

The Rice Leaf Disease Image dataset (Vbookshelf, 2019) is a

compact yet well-balanced collection of 120 images of infected rice

leaves. This dataset is composed of three distinct disease classes:

Bacterial Leaf Disease, Brown Spot Disease, and LeafSmut with each

class containing 40 images. Although small in size, it serves as a

valuable resource for researchers in the field of rice disease

detection, offering a diverse set of real-world images that can be

used to train and evaluate machine learning models.
2.7 Discussion and limitations

Deep learning requires datasets with a large number of images

to yield better accuracy. In order to increase performance, a deep

learning model requires a large dataset with correct annotations.

Due to limited expertise of an annotator, some of the infected areas

of the leaf go unmarked in the image or they get wrongly annotated.

This has been reported by the curators of the PlantDoc dataset

(Singh et al., 2020) as well. Another issue encountered in annotating

datasets is that certain diseases lack well-defined boundaries and the

diseased tissue blends into the healthy tissues. Due to it, annotating

boundaries of those diseases becomes difficult. Due to limited

expertise and complex nature of these cases, the annotations may

not accurately capture the extent of the disease. This adds to the

complexity of dataset annotation and further impacts accuracy and

learning of deep learning classifiers.
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When working with datasets comprising real-field images, the

issue of image illumination becomes a significant concern (Barbedo,

2016). Various factors related to image capture conditions,

including specular lighting and overcast conditions, have a

considerable impact on the visual attributes of the images. These

conditions affect the way light interacts with the objects in the scene,

resulting in variations in illumination. Consequently, datasets

containing real-field images need to address the challenges arising

from these illumination variations. The presence of specular

lighting can introduce intense highlights or reflections, distorting

the appearance of objects. Similarly, overcast conditions can lead to

diffuse and even lighting, which alters the overall image

characteristics (Shoaib et al., 2022). Therefore, researchers and

practitioners working with such datasets must consider these

aspects to ensure accurate and reliable analysis and interpretation

of the image data.

When working with datasets that consist of a number of classes,

it is essential to include images from all classes in a well-balanced

proportion. A balanced dataset ensures that each class is

represented adequately, thereby minimizing bias and allowing for

more accurate and comprehensive analysis. By incorporating

images from all classes in a balanced manner, the dataset can

capture the full spectrum of visual characteristics and variations

present in the real world. This inclusivity enables the development

and evaluation of models or algorithms that are robust and

adaptable to diverse conditions. Additionally, a balanced dataset

prevents the dominance of certain classes, ensuring that the model’s

performance is not skewed towards specific categories. A balanced

dataset enhances the robustness of models, enables accurate

analysis, and reduces bias by capturing the diverse visual

characteristics present in the real world. Plant Village is a fairly

big dataset but it has been observed in Figure 3. that this dataset is

imbalanced i.e., it contains skewed class proportions where some

classes take up a major portion of a dataset while a minor portion

consists of other classes. This impacts the ability of deep learning

models to learn significant features that distinguish a particular

class from other classes (Ahmad et al., 2021). This lack of diversity

in the Plant Village dataset results in over-fitting of data while

learning (Ahmad et al., 2021). Other datasets such as Digipathos

and Rice Disease Dataset contain very small amount of images

which focus on particular diseases in certain plant species. This

issue is addressed by Karam C (Karam et al., 2023). by proposing a

novel GAN-based pipeline for data augmentation. This increases a
FIGURE 7

Sample images showcasing instances of Brown Spot disease within the rice disease dataset.
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small dataset size four-fold and enhances the performance of the

lightweight object detection model by more than 38% points.

In a separate study (Barbedo et al., 2018), J. Barbedo

emphasized the immense challenge associated with creating a

comprehensive database for classifying plant diseases. This

challenge primarily stems from the requirement of amassing a

large and accurately annotated image collection encompassing all

diseases related to plants. Annotating such datasets is an arduous

task that demands significant labor and meticulous attention to

detail. The process involves carefully labeling each image with

precise information regarding the specific disease it represents.

Due to the vast diversity of plant diseases and the complexity of

their visual manifestations, achieving accurate annotations becomes

crucial for training reliable disease classification models. Thus, the

development of a comprehensive database for plant disease

classification necessitates dedicated efforts in acquiring and

meticulously annotating a wide range of images depicting various

plant-related diseases.

In conclusion, deep learning models require large and

accurately annotated datasets to achieve better performance and

accuracy. However, the annotation process is challenging due to

limited expertise, leading to missed or incorrect annotations of

infected areas in images. Additionally, some diseases lack well-

defined boundaries, making boundary annotation difficult. These

challenges in dataset annotation further impact the accuracy and

learning of deep learning classifiers. Moreover, when working with

datasets containing multiple classes, it is crucial to ensure a

balanced representation of all classes to minimize bias and enable

comprehensive analysis. Imbalanced datasets, such as the Plant

Village dataset, can lead to overfitting and hinder the model’s ability

to learn distinguishing features. To address dataset limitations,

innovative approaches like GAN-based data augmentation have

been proposed, increasing dataset size and improving model

performance. Creating a comprehensive database for plant disease

classification requires dedicated efforts in acquiring and

meticulously annotating a wide range of images depicting various

plant-related diseases.
3 Methods

Plant disease identification methods are classified into 1)

Conventional (Hand-Crafted features) and 2) Deep learning

based methods.
3.1 Conventional methods

Conventional methods of object detection rely on hand-

designed features such as Haar-like features (Zaidi et al., 2022),

and Histogram Of Gradients (HOG) (Dalal and Triggs, 2005) and

SIFT (Piccinini et al., 2012). Before extracting features, it is crucial

to find the location or region, therefore, region selection methods

are employed first to identify the regions with objects. It is also

challenging because the same object can have different scales in

images and could be at any location in the image. Therefore, whole
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image is inspected using a sliding window method and feature

extraction techniques are applied on these regions before

forwarding them to later stages.

Previously, it was very challenging to design a global feature

extractor which can work efficiently and accurately for all types of

objects. Mostly, features were designed for specific object categories,

for instance, HOG features were designed for human detection.

Finally, after the feature extraction, these features are fed to some

classifier such as Support Vector Machines (SVM) (Malisiewicz

et al., 2011), or AdaBoost (Freund and Schapire, 1997) to localize

objects and assign them appropriate class categories in the image.

Support Vector Machines (SVM) are powerful classifiers known for

their ability to handle high-dimensional data and complex decision

boundaries. They can effectively separate data points using a

hyperplane and are less prone to overfitting. SVMs perform well

in scenarios with limited training data and can handle large feature

spaces. However, SVMs can be computationally expensive,

especially when dealing with large datasets and may struggle with

noise and outliers. On the other hand, AdaBoost(Adaptive

Boosting) is an ensemble learning method that combines multiple

weak classifiers to create a strong classifier. It is particularly effective

in handling complex datasets with overlapping classes. AdaBoost

can focus on misclassified instances and iteratively improve

classification accuracy. It is relatively simple to implement and

less prone to overfitting. However, AdaBoost can be sensitive to

noisy data and outliers, and its performance heavily depends on the

quality and diversity of the weak classifiers used.

Conventional methods require tremendous human effort and

engineering to build a powerful object detection system.

Furthermore, the region extraction methods also take huge

computations because there are no region proposal mechanisms.

Instead, regions are extracted from the whole image using the

sliding window as described earlier. Such an approach lacks

scalability and responsiveness, hence limiting the applicability in

various scenarios where real-time processing is crucial. Moreover,

these hand-designed features suffered from various commonly

existing variations in images, such as illumination variation, and

object pose variations. Most of the disease identification methods

based on hand-crafted features consist of some common processing

stages as shown in Figure 8. The identification process begins with

acquiring digital images via image capturing device. Images are then

pre-processed using image transformation, resizing and filtering etc.

Then images are segmented using a suitable segmentation

technique such as clustering, edge detection, region growing to

extract the infected part of a plant. Later, features of interest such as

color, shape or texture are extracted via feature extraction

techniques. After that, classifiers are used to classify the images

according to a specific problem.

3.1.1 Image acquisition
Most of publicly available datasets (Table 3), contain images

that are acquired using hand-held devices such as cameras. For the

most of articles surveyed, camera has been used for acquiring

images and creating databases. However, drones and Unmanned

aerial vehicle (UAV) have also been used to capture aerial images of

maize and weed in soybean plants by Ferreira D. S (dos Santos
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Ferreira et al., 2017). and Stewart E. L (Stewart et al., 2019).

respectively. Lowe A (Lowe et al., 2017). used hyperspectral

imaging to capture images which allowed them to capture

wavelength beyond the limited range of human vision.

3.1.2 Image preprocessing
Acquired images are preprocessed to highlight the area of

interest i.e. diseased area of a plant. This involves image resizing

(Mokhtar et al., 2015; Zhang et al., 2018; Hang et al., 2019; Militante

et al., 2019), colorspace conversion (Al-Hiary et al., 2011; Mokhtar

et al., 2015; Brahimi et al., 2017) and applying filters to reduce noise

in an image to yield better outcomes while segmenting an image.

Figure 9 shows results of Grey Scaling and Soft-Edging against an

original image.

3.1.3 Image segmentation
Image segmentation is the process of categorizing an image into

different regions based on the characteristics of pixels to identify

objects or boundaries. It is the first step of most image-based tools

for leaf analysis in which leaf is isolated from the background. There

are several techniques that are used for image segmentation such as

K-Means, Otsu thresholding, color-space conversions etc. In K-

Means clustering, similar data points are grouped together while

Otsu thresholding determines an optimal threshold for separating
Frontiers in Plant Science 09
background and Object. Color-space conversions, edge detection

and region growing are some of the techniques that are used for

segmenting an image. Figure 10 shows results of image

segmentation techniques such as Otsu Thresholding, Background

Extraction and Extraction of foreground or object.
3.1.4 Feature extraction
Feature extraction is the process of extracting properties of a leaf

such as its shape, size, texture, edges and color etc (dos Santos

Ferreira et al., 2017). performed the feature extraction from each

segment of the dataset using a collection of shape, color, texture and

image orientation extractors implemented in common image

processing toolboxes and libraries such as MATLAB Image

Processing Toolbox, OpenCV, and Dlib (Cope et al., 2012).

presented a review on image processing methods that have been

applied in recent years to analyze leaf shape, venation, leaf margin

features, leaf texture. Feature extraction is used in conventional

object recognition. However, for deep learning, feature extraction is

not required since deep learning models generates these features

themselves. Islam M (Islam et al., 2017). has used image

segmentation with multiclass SVM on RGB based features of 300

images acquired from Plant Village dataset and achieved an

accuracy of 95% to classify 2 diseases; late blight and early blight

in potato leaves.
FIGURE 9

Image preprocessing: original image, greyscale conversion and soft-edged representation (Left to right).
FIGURE 8

Hand-crafted features framework: image acquisition captures the input. Preprocessing enhances image quality. Segmentation identifies regions of
interest. Feature extraction algorithms extract descriptive hand-crafted features. Classification utilizes these features for labeling and predictions.
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3.1.5 Classification
Classification is the process of analyzing image features. It

classifies the image data into categories. This process is categorized

into supervised, unsupervised and semi-supervised classification.

Supervised classification is a machine learning paradigm that deals

with data available in the form of labelled examples. In supervised

learning, training data consists of input values and desired output

values.While in unsupervised learning, algorithm figures out patterns

from unlabeled data. Some of the popular classification techniques

are Logistic Regression, K-nearest neighbor, support vector machine

(SVM) and artificial neural networks. SVM were implemented for

sugar beet disease (Rumpf et al., 2010) and depending upon severity

of disease, classification accuracy of 65% was achieved when 1-2%

area of the leaf was diseased and accuracy increased to 90% when

diseased area of the leaf was 10%-15%. Pattanaik A. P (Pattanaik

et al., 2022). proposed an approach where late blight disease was

detected using “Improving Localization and Classification with

Attention Consistent Network” (ILCAN) approach and achieved

98.9% accuracy which was better than the accuracy of 91.43%

achieved by Grad-CAM++ (Chattopadhay et al., 2018).
3.2 Detection and Identification using
advanced techniques

Artificial neural network (ANN) involves a collection of

connected units called neurons. ANN is composed of 3 types of

layers which contains these neurons named as input, hidden and

output layer. The design of ANN is inspired by that of a biological

brain. Like a brain, a neuron in ANN receives an input, processes it

and outputs it to the neurons of the next layer. Advancements in

computing power enabled to design deeper ANNs especially neural

networks based on convolutional layers called convolutional neural

networks (CNNs). The convolutional layer’s parameters contains a

set of learnable filters called kernels. A CNN consists of four layers

i.e. input, convolutional and pooling, fully connected layer, and

output layer. Similarly, these type of approaches were applied to

plant disease classifications. Mohanty S. P (Mohanty et al., 2016).

used CNNs to classify 26 disease in 14 crops and achieved an

accuracy of 99.35% on testing data. However, their accuracy

dropped to 31% when classifier was tested on images that were

different from the training dataset.
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3.2.1 Object detection based on deep learning
Object detection deals with the classification as well as

localization of an object in an image. Object localization is the

identification of an object in an image and drawing a bounding

box around it. In deep learning, object detection is achieved using

supervised learning by providing annotated images. Convolutional

neural networks (CNNs) are used for object detection due to their

property of high feature representation. Two main types of object

detectors are 1) Two-stage object detectors and 2) One-stage object

detectors. Two-stage detectors provide high localization and

recognition accuracy whereas one-stage detectors have high

inference speed.

In two-stage object detectors, detection is divided into two

stages. First stage deals with the localization of an object and the

second stage deals with the classification of the object that has been

localized. Object localization is the identification of an object and

then drawing a bounding box around it. While two stage object

detectors provide a high accuracy in detection, it comes with a

trade-off of slow detection speed. Some of the most popular CNNs

include Region-based Convolutional Neural Network (R-CNN)

(Altalak et al., 2022), Faster R-CNN (Ren et al., 2015) and Mask

R-CNN (He et al., 2017).

R-CNN deep learning method for detection of objects proposed

by Ross G (Altalak et al., 2022). In R-CNN, region proposals or

regions of interest are extracted using a selective search algorithm.

Selective search algorithm groups regions together based on their

pixel intensities. Then these regions are re-scaled into the input

image size and features from each candidate region are extracted

with the help of convolutional neural networks. Then a support

vector machine (SVM) classifier is used to detect the presence of an

object within the extracted region. Then, output is generated in the

form of a bounding box using a linear regression model. This

process has been explained in Figure 11.

Faster R-CNN is an end-to-end deep learning detector which

replaces region proposal algorithms such as selective search,

multiscale combinatorial grouping or edge boxes with CNN called

Region Proposal Network (RPN). This improves the detection

speed of Fast R-CNN. In this approach, an image is fed into the

CNN which produces a feature map. This feature map is then

provided as an input to the RPN which provides multiple object

proposals using a sliding window on the provided feature maps. In

the sliding window, the network generates reference boxes of
FIGURE 10

Visual depiction of image segmentation techniques: Otsu thresholding, background extraction, and foreground/object extraction, showcasing the
distinct results achieved through each method.
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different dimensions. Class-specific features are selected from these

reference boxes. For each reference box RPN predicts the

objectiveness probability and bounding box regressor to adjust

the box to fit the object. RPN then returns multiple object

proposals along with their objectiveness score. Then the ROI

pooling layer is applied to extracted object proposals to transform

them into a fixed dimension. The feature vectors are then fed into a

fully connected layer including a softmax layer for categorization

and linear regression layer for bounding box generation. This

process has been illustrated in Figure 12.

Mask R-CNN (He et al., 2017) deals with image instance

segmentation and is based on the R-CNN family of networks,

which are a popular object detection method. R-CNN performs a
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pixel-level segmentation and decides the probability of it being a

part of an object. Like Faster R-CNN, it also uses RPN but it is

differentiated by its three outputs for individual object proposals

which include a bounding box offset, a class label, and the object

mask. Mask R-CNN uses an RoIAlign layer instead of a RoI pooling

layer to preserve spatial information and avoid misalignment in the

RoI pooling layer resulting in increase in its detection accuracy.

RoIAlign layer uses binary interpolation for feature map creation

and evaluates feature values at each sampling point.

Object detection itself is a complicated problem as it contains

various components and engineering. These components rely on

image classification networks as backbones. In other words, these

backbones act as the feature extraction network for the object
FIGURE 11

An overview of R-CNN architecture: RoI warping extracts regions of interest (RoIs) from the input image. A convolutional neural network (CNN)
processes these RoIs to extract features. The bounding box regressor refines object locations and sizes. Classification assigns labels to the objects
based on the extracted features.
FIGURE 12

An overview of faster R-CNN object detection pipeline. The RPN generates region proposals, while ROI Projection maps these proposals to feature
maps. Finally, ROI Pooling extracts fixed-length feature vectors for classification and bounding box regression for object detection.
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detection framework. Some of the most prominent backbone

networks include VGG (Simonyan and Zisserman, 2014),

EfficientNet (Tan and Le, 2019), MobileNet (Howard et al., 2017),

Inception (Szegedy et al., 2015) and ResNet (He et al., 2016).

VGGN is a CNN based architecture which is similar to AlexNet

but expands its depth to 16-19 layers. Initially, the success in deep

learning was associated with the depth of the network i.e.,

increasing the number of layers tends to increase the

performance. Mainly, the constraint was the availability of

computation power. VGG solved this problem by reducing the

kernel size. Previously, using a kernel size of 7 x 7 was the norm.

Authors of VGG showed that having three layers with 3 x 3 kernels

has the same exposure as that of 7 x 7 with only half the trainable

parameters. Moreover, having 3 layers meant it had 3 more non-

linear activations as compared to one layer with kernel size of 7 x 7.

Overall, VGG uses the kernel size of 3 x 3 and pooling kernel of size

2x2 which significantly improves its performance while having a

deeper network structure. VGG16 and VGG19 are the most popular

variations having 16 and 19 layers respectively. Specifically, VGG16

contains 13 convolutional layers and 3 fully connected layers and

has an extensive network of about 138 million parameters.

The bottleneck in the performance gain of CNNs was the

computational requirements. InceptionNet (Szegedy et al., 2015)

addresses this issue by reducing the computational complexity by

introducing the 1 x 1 convolutional layers. Hence, increasing the

extent to which the network’s depth can be increased. Moreover,

InceptionNet won the prestigious ILSVRC challenge in 2014, which

is an image classification benchmark based on ImageNet (Deng

et al., 2009) dataset having 1000 classes. Furthermore, InceptionNet

is built upon the basic Inception module which contains parallel

layers having 1 x 1, 3 x 3, and 5 x 5 kernel sizes, therefore having the

capability to capture information with different spatial exposures

simultaneously. InceptionNet was further improved by introducing
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the concept of batch normalization which improved the training

times by InceptionV2 (Ioffe and Szegedy, 2015). The most

characteristic feature of InceptionNet is its huge depth as

compared to the predecessors while having only a partial number

of trainable parameters i.e., 6.7 Millions.

EfficientNet (Tan and Le, 2019) is a CNN architecture which was

introduced in 2019, that achieves high performance while being

computationally efficient. It uses compound scaling to balance

accuracy and efficiency by scaling the depth, width, and resolution

of the network. As compared to EfficientNet, MobileNet (Howard

et al., 2017) is a lightweight CNN architecture designed for mobile

and embedded vision applications. It reduces computations using

depth-wise separable convolutions, achieving a good balance between

accuracy and efficiency for resource-constrained devices.

Up until the success of InceptionNet, it was known that

increasing the depth of CNN architectures has a directly

proportional relation with the performance. However, it was shown

by Kaiming He et al. (2016) that this direct relation is not linear, and

the performance starts getting saturated after increasing the depth to

some extent. If the network depth is further increased, the

performance starts decreasing. They further showed that the major

cause of drastic performance degradation was vanishing gradients.

This means that as the network depth increases, it gets more

challenging to back propagate the error through the large number

of layers where the gradient ultimately vanishes, and the weights of

the layers stop updating according to the calculated error. To solve

this problem while being able to build deeper networks, they

proposed a simple yet clever way to preserve the original

information by introducing the concept of skip connections. Skip

connections introduced a parallel path that bypasses the convolution

block and is added again with the output of the convolution block as

shown in Figure 13. This simple technique helped construct ResNet

architecture with depth of 101 and even 152.
A B

FIGURE 13

Comparison of ResNet residual blocks: (A) Residual block without 1x1 convolution, and (B) Residual block with 1x1 convolution. The addition of the
1x1 convolution in (B) enhances the representation power and allows the network to learn more complex features, leading to improved performance
in deep learning tasks.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1224709
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Salman et al. 10.3389/fpls.2023.1224709
3.2.2 Disease identification based on Image
classification

As discussed earlier, image classification is a fundamental task

in computer vision. Therefore, a number of methods have utilized

image classification for plant disease identification as shown

in Table 4.

Ahmad (Ahmad et al., 2020) used VGG16, VGG19, ResNet and

InceptionV3 (Szegedy et al., 2016) and fine-tuned the network to get

optimal results on tomato leaves dataset containing images of both

types; lab-controlled and real-field, and classified 6 disease classes.

As per their results, InceptionV3 yielded an accuracy of 99.60% on

lab-controlled images and 93.70% on images captured in-the-wild.

Mishra S (Mishra et al., 2020). proposed a deep learning based

approach for disease recognition in corn plants on a stand-alone

device such as a smartphone or Raspberry pi. They trained their

model on Intel Movidius system chip and were able to achieve an

average accuracy of 98.4%.

Militante (Militante et al., 2019) used CNN on plant village

dataset to yield an average accuracy of 96.5% on classification of 4

types of grape leaf diseases, 4 types of corn leaf disease, 4 types of

apple leaf disease, 6 types of sugarcane diseases and 9 types of

tomato leaf diseases. The dataset consisted of 35,000 images from

plant village and testing was done on 1,000 images taken in-

the-wild.

Hang J (Hang et al., 2019). used VGG16 with inception and

Squeeze-and-Excite Module to classify 4 diseases in apple, cherry

and corn and yielded an accuracy of 91.7% by generalizing the AI

Challenger dataset.

Zhang X (Zhang et al., 2018). were able to achieve 98.9% and

98.8% accuracy using improved deep neural network architectures;

GoogLeNet (also known as InceptionV1) (Szegedy et al., 2015) and

Cifar10 respectively. They reported the possibility to improve

recognition accuracy by adding Relu function, increasing diversity
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of pooling operations and including adjustments to the

model parameters.

Ferentinos (2018) used AlexNet (Krizhevsky et al., 2017),

AlexNetOWTBn (Krizhevsky, 2014), GoogLeNet and VGG on the

Plant Village dataset and yielded an accuracy 99.53% on classifying

38 classes in 25 different plant species.

3.2.3 Disease identification based on object
detection

Object detection encompasses both the categorization and

positioning of an object within an image. Localization refers to

the process of recognizing an object in an image and delineating it

with a bounding box. In deep learning, object detection is

accomplished through supervised learning, where annotated

images serve as training data. R-CNN (Girshick et al., 2014), Fast

R-CNN (Girshick, 2015), Faster R-CNN (Ren et al., 2015), YOLO

(Redmon et al., 2016) and Single shot MultiBox Detector(SSD) (Liu

et al., 2016) are the most popular CNN based object detection

algorithms. Object detection has been used in plant disease

identification to detect presence of a disease in the provided

image of a plant. Faster R-CNN were used with VGG-Net and

ResNet for identification of pests and tomato diseases and mAP of

85.98% was achieved to classify 9 categories by Fuentes A (Fuentes

et al., 2017). Similarly, Ozguven M (Ozguven and Adem, 2019).

proposed a method for detection of beet leaf spot disease by

optimizing parameters of CNN and classification rate of 95.48%

was achieved. Zhou G (Zhou et al., 2019). proposed a method for

fast detection of rice blast, bacterial blight using fusion of FCM-KM

and Faster R-CNN to achieve an accuracy rate of 97.2%. Ina latest

research, Xie X (Xie et al., 2020). implemented Faster R-CNN on the

grape leaf disease dataset by utilizing InceptionV1, ResNet V2 and

achieved accuracy of 81.1%. Table 5 provides a concise overview of

various object detection methods and their corresponding results.
TABLE 4 Comparison of image classification models and results.

Dataset Year Model Accuracy Subject Disease Classes

Plant Village 2016 AlexNet, GoogleNet, CNN 99.35% 14 Crops 26

2018 VGG 99.53% 25 Plants 38

2017 Multiclass SVM 95% Potato 2

2017 GoogleNet 99.18% Tomato plant 9

2017 GoogleNet 98.6% Banana Leaf 2

Custom 2022 SE-ResNet-101, ILCAN 98.99% Late Blight Detection 1

2020 InceptionV3, VGG16, VGG19 93.4% Tomato Leaves 6

2020 CNN 98.4% Corn 2

2019 CNN 96.5% Leaf images 11

2019 VGG16 with Inception and Squeeze-and-Excite Module 91.7% Apple and Cherry 4

2019 CNN 98.8% Maize Leaves 8

2018 GoogleNet 98.9% Maize Leaves 8

2016 CaffeNet, CNN 96.3% Leaf images 13
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3.2.4 Disease identification based
on image segmentation

Image segmentation in plant disease diagnostics is the

categorization of semantic and instance segmentation of diseased

and healthy area. It not only provides details of location and

category of the segmented region but also provides properties

such as area, length and outlines. A summary of image based

segmentation studies is shown in Table 6. Image segmentation is

further divided into two main architectures namely Fully

Convolutional Networks (FCN) and Mask R-CNN. FCN deals

with implementation of locally connected layers only. This

excludes the dense layer which results in less trainable parameters

which lead to faster training of the network. A simple Fully

Convolution Network for Image Segmentation has been shown in

Figure 14. To compensate the lost information during down

sampling, skip connections are also utilized in some FCNs e.g.,

U-Net (Ronneberger et al., 2015). U-Net is an encoder-decoder

structure which introduces a layer-hopping connection and fuses

the feature map from one encoder’s layer to its corresponding

decoder layer. A modified version of U-Net was utilized by Lin K

(Lin et al., 2019). to segment cucumber powdery mildew leaves to

achieve an average accuracy of 96.08%.

Mask R-CNN deals with image instance segmentation and is

based on R-CNN family of networks, which are popular object

detection methods. Mask R-CNN were implemented to individually

segment diseased instances with accuracy of 96% by Stewart E. L

(Stewart et al., 2019).. Mask R-CNN with object detection networks

were utilized by Wang Q (Wang et al., 2019). to segment location

and shape of diseased area of tomato disease and classify into 11

diseases with mAP of 99.64% using ResNet-101.

3.2.5 Disease identification based on
vision transformers

Transformers (Vaswani et al., 2017) were originally introduced

for the Natural Language Processing (NLP) tasks such as language

classification or language generation. The key idea of transformers

is based on the attention mechanism. Specifically, it was proposed to
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compute the self-attention between the different word tokens in a

sentence. The architecture of the Transformers itself is simple as it

contains multiple Multi-Layer Perceptron (MLP) layers, so it is not

wrong to say that the transformer network is essentially a mapping

network that simultaneously computes all pairwise interactions

among elements in an input sequence.

After the success of Transformers in the natural language

domain, researchers from the vision domain have also attempted

to apply it to several vision tasks such as for image classification,

Vision Transformers (ViT) (Dosovitskiy et al., 2020) is the

most prominent.

Even though Transformer architectures have shown impressive

performance on various language tasks, it is challenging to apply to

the vision domain mainly due to the high dimensional vision data.

ViT proposed to solve this problem by dividing the input image into

16 × 16 patches and flatten them sequentially and the rest of the

process is similar to the original Transformer architecture used for

the language tasks. Essentially, the image is broken down into a

sequence of patches, which is similar to having a sequence of

language tokens so that the Transformer architecture can be

easily adapted for image data.

Following ViT, several other researchers utilized the power of

these architectures for other vision tasks. In the specific domain of

object detection, DETR (Carion et al., 2020) proposed an end-to-

end object detection method using Transformers. The overall

method of DETR is shown in Figure 15

Moreover, DETR models the object detection problem as a

direct set prediction problem and follows the original encoder-

decoder based architecture. Another interesting feature about

DETR is that in contrast to traditional object detection models,

DETR predicts all the objects in an image at once. These object

predictions are then bipartite matched with the ground truth.

Another revolutionary aspect of this approach is that it eliminates

the need to hand-design object detection components which were

previously a part of all object detection methods such as Region

Proposal Network (RPN), Feature Pyramid Network (FPN), Non-

Maximal Suppression (NMS), or Spatial Anchors.
TABLE 6 Image segmentation methods and results.

Year Model Segmentation Subject Results

2019 Modified U-Net Cucumber powdery mildew 96.08% Accuracy

2019 Mask R-CNN Northern Leaf Blight 96% Accuracy

2019 Mask R-CNN, ResNet-101 Tomato Diseases 99.64% mAP
TABLE 5 Object detection methods and results.

Year Model Disease Classes Results

2017 Faster R-CNN, VGG, ResNet 9 85.98% mAP

2019 Faster R-CNN 1 95.48% Accuracy

2019 Faster R-CNN, FCM-KM – 97.2% Accuracy

2020 Fast R-CNN, InceptionV1, ResNet V2 4 81.1% Accuracy
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Specifically, The architecture consists of a backbone

convolutional neural network (CNN) encoder that extracts

feature maps from the input image. These feature maps are then

passed to a transformer-based decoder, which generates a set of

fixed-size bounding boxes, their corresponding class labels, and a

special label for no object detection. The decoder uses self-attention

mechanisms to capture global context information and process the

object queries, which represent the potential locations of objects in

the image. It predicts the object class and regresses the bounding

box coordinates for each query. To encourage accurate predictions,
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DETR utilizes bipartite matching with Hungarian algorithm

(Kuhn, 1955) during training, aligning predicted and ground-

truth boxes. It also incorporates positional encodings (Parmar

et al., 2018; Bello et al., 2019) to maintain spatial information in

the transformer architecture.

Mingle X (Xu et al., 2022). proposed a transfer learning

approach to achieve plant disease detection through few-shot

learning. To reduce computation cost, they have employed a dual

transfer learning. Their Vision Transformer (ViT) model is first

pre-trained using the ImageNet dataset in a self-supervised manner
FIGURE 14

An illustration of the functionality of a straightforward Fully Convolutional Network (FCN) for precise image segmentation.
FIGURE 15

An overview of object detection based on DETR.
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and then fine-tuned using the PlantCLEF2022 dataset in a

supervised fashion. They name their approach dual transfer

learning because the ViT-L model is trained with datasets and

transferred twice. The ViT-L model comprises 24 transformer

blocks, with a hidden size of 1024, an MLP size of 4096, and 16

heads for each multi-head attention layer, resulting in

approximately 307 million trainable parameters. They are

comparing their models with several other models with the same

settings, most of which follow the fine-tuning schemes in Masked

Auto Encoder (MAE). Their experimental results suggest that their

approach surpasses other state-of-the-art CNN-based models and

achieves more accuracy when trained on a smaller dataset.

Specifically, their model achieves 44.28 mAcc as compared to the

second best-performing RN50-IN which achieves 23.46 mAcc in a

1-shot case, and achieves 86.29 mAcc as compared to RN50-IN,

which achieved 73.53 mAcc in a 20-shot case. It’s worth noticing

that the gap between the accuracies gets shorter as the number of

training images increases.

Similarly, Yasamin B. presents a novel approach in (Borhani

et al., 2022) to real-time crop disease classification using a ViT

(Vision Transformer) architecture. The proposed model utilizes

lightweight ViT models to achieve comparable performance to

convolutional-based models. The evaluation is performed on

three datasets; Wheat Rust Classification dataset, Rice Leaf

Disease dataset and Plant Village. Results indicate that the ViT-

based model outperforms CNNs in terms of accuracy, while still

achieving comparable performance. This approach has significant

implications for real-time crop disease detection as the use of

lightweight models in combination with ViT structure can enable

more efficient and accurate classification.
3.3 Challenges

Despite the progress in computer vision and artificial

intelligence techniques for automated monitoring of crops for

detection and identification of diseases, there are still some

inadequacies. One of the major issues identified in the studies

above is the difference in accuracy between the training and testing

environments. Many existing studies have utilized identical datasets

for both training and testing purposes, which inherently possess

similarities and consequently yield high accuracy rates. For

instance, a study conducted by Mohanty S.P (Mohanty et al.,

2016). included a model that was trained using the Plant Village

dataset, resulting in an impressive accuracy of 99.35%. However,

when those model was tested against images sourced from online

platforms, the accuracy dropped drastically to below 50%. This

disparity highlights the need for a more comprehensive dataset. It is

important to fix these problems to yield better accuracies from deep

learning models. While existing methodologies have shown

promising results with the pre-training data collected in lab

controlled environments, the real-world scenarios pose a

challenge due to variations in conditions. As a result, the models

that are trained to a specific type of dataset tend to struggle when

applied in real-world scenarios. To mitigate this issue, further

construction of a dataset should be considered that contains
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diverse images ranging from lab-controlled environments to real-

world scenarios. This would enable the development of more robust

and adaptable models with improved accuracy across multiple

environments. However, this is a demanding task and requires

substantial resources, both in terms of time and effort.

An additional challenge is related to the stage and severity of the

disease. According to Rumpf (Ioffe and Szegedy, 2015), the accuracy

rate of disease identification fluctuates significantly, ranging between

65% and 95%. This variability primarily arises due to the nature of

diseases, where they exhibit milder symptoms during the initial

stages. As the disease progresses and its severity intensifies, the

symptoms become more distinct, leading to higher accuracy in

identification. The varying accuracy rates can be attributed to the

fact that diseases in their early stages often present subtle or

ambiguous symptoms, making them difficult to discern accurately.

This poses a considerable challenge for automated monitoring

systems that heavily rely on visual cues to identify and classify

diseases. However, as the disease advances and its symptoms

become more distinctive and prominent, resulting in improved

accuracy in its identification. To address this challenge, researchers

and developers need to focus on refining and training models to

recognize the subtle signs and symptoms of diseases in their early

stages. This would involve the collection and integration of datasets

that encompass images representing different stages and severities of

diseases. By incorporating a diverse range of samples into the training

process, models can be trained to effectively identify diseases even

when symptoms are not yet fully developed. By improving the

recognition of subtle symptoms, automated monitoring systems

can enhance their accuracy in disease identification throughout the

entire spectrum of disease progression.

Another issue identified is the presence of diverse leaf shapes in

plants that present a hurdle for image classification models (Xu

et al., 2022) which results in discrepancies in their performance.

One such crucial factor that influences the performance is the size of

the images, which is closely linked to the distance between the

camera and the plant at the time of capturing images. When the

camera is positioned at a greater distance, the resulting images tend

to be smaller in size. This aspect becomes particularly significant

when it comes to disease recognition tasks, as smaller-sized images

may not adequately reveal the diseased areas. As a result, the

performance of the models suffers, leading to decreased accuracy

in identifying and classifying diseases. To address these challenges,

it is essential to develop image classification models that are robust

and adaptable to variations in leaf shapes. Another factor is the

variability in leaf shapes among different plant species that poses a

challenge for image classification models. Each plant species

exhibits unique leaf characteristics, such as variations in size,

contours, and textures, making it more difficult for models to

accurately classify them. As a result, the performance of these

models may vary when confronted with plants that possess

dissimilar leaf shapes. This can be achieved by incorporating

diverse training datasets that encompass a wide range of plant

species with varying leaf shapes and disease stages. Furthermore,

efforts should be made to capture images at optimal distances to

ensure that the resulting images are of sufficient size to accurately

capture and identify diseased areas.
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4 Open research problems and
future directions

In current literature, it has been observed that although most of

the existing CNN models are performing well under controlled

settings, they are failing to produce satisfactory results in real-time

scenarios. To obtain feature vectors from data, it requires systematic

engineering and design expertise to recognize complex patterns in

input data for subsystems.

The utilization of transformers for vision and image processing

is promising but the development in this field is still in its nascent

stages. Future research should prioritize exploring the potential of

transformers and transfer learning as they have demonstrated

encouraging outcomes for specific tasks compared to well-

established CNN models. This is due to the extensive

development that CNN models have undergone over the past

decade, which has largely resolved their optimization challenges.

Future research should focus on creating better disease picture

databases that include photographs of actual harvested crops in the

field. Moreover, the increasing use of intelligent mobile devices

highlights the need for lightweight model designs in potential

research endeavors. Various studies, such as MobileNet and

EfficientNet, are conducted to address this issue, and these

versions are ideal for satisfying the needs of smartphone users

due to their lightweight nature.
5 Conclusions

Deep learning methods have demonstrated significant potential

in precision agriculture and automated disease detection. Our

survey extensively reviewed several prominent databases

specifically designed for deep learning in plant pathology,

analyzing their outcomes and limitations. Furthermore, we

thoroughly discussed both conventional approaches and cutting-

edge technologies employed in plant disease detection. By

examining the limitations of deep learning models, we uncovered

an intriguing trend—these models experience a decrease in

accuracy when transferred between different environments. Based

on our analysis, we firmly conclude that there is a critical need for a

concise dataset to improve the performance and accuracy of deep

learning algorithms.

In addition to addressing dataset-related challenges, it is worth

emphasizing the significance of incorporating transformer-based

models in future research endeavors. As per our survey findings, the

use of transformers has consistently yielded impressive results due

to their capacity to capture intricate details. Moreover, their ability

for few-shot learning offers a potential solution to mitigate the

issues associated with acquiring large datasets that are accurately

annotated. Therefore, we highly recommend that future research

directions prioritize the exploration and integration of transformer-

based models to further enhance the field of plant disease detection.
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Additionally, we advocate for the integration of transformer-based

models as a means to address the challenges associated with

gathering large datasets with accurate annotations. By adopting

these recommendations, researchers can drive the field forward,

leading to more efficient and reliable solutions for plant disease

detection in real-world scenarios.
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