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Abstract: 

 A total global dominator coloring of a graph 𝐺 is a proper vertex coloring of 𝐺 with respect to which 

every vertex 𝑣 in 𝑉 dominates a color class, not containing 𝑣 and does not dominate another color class. The 

minimum number of colors required in such a coloring of 𝐺 is called the total global dominator chromatic 

number, denoted by 𝜒𝑡𝑔𝑑(𝐺). In this paper, the total global dominator chromatic number of trees and unicyclic 

graphs are explored.  
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Introduction: 

  Let 𝐺 = (𝑉, 𝐸) be a simple connected graph. 

An open neighbourhood of a vertex 𝑣, denoted by 

𝑁(𝑢), is the set of all vertices 𝑢 ∈ 𝑉(𝐺):  𝑢𝑣 ∈
𝐸(𝐺) and a closed neighbourhood of 𝑣, denoted by 

𝑁[𝑣], is 𝑁(𝑢) ∪ {𝑣}. The open (closed) 

neighbourhood of a set 𝐷 is the union of all open 

(closed) neighbourhood of all vertices in 𝐷. The open 

and closed neighbourhood of 𝐷 is denoted by 𝑁(𝐷) 

and 𝑁[𝐷] respectively.  

  A set 𝐷 is called a dominating set of 𝐺 if 

𝑁[𝐷] = 𝑉(𝐺). If 𝑢𝑣 ∈ 𝐸(𝐺), then 𝑢 is called a 

dominator of 𝑣 or 𝑣 is dominated by 𝑢 and vice versa. 

If 𝑁(𝐷) = 𝑉(𝐺), then 𝐷 is called a total dominating 

set of 𝐺. The minimum cardinality of a dominating 

set of 𝐺 is known as its domination number, denoted 

by 𝛾(𝐺) and the minimum cardinality of a total 

dominating set of 𝐺 is its total domination number, 

denoted by 𝛾𝑡(𝐺). If 𝐷 is a dominating set (total 

dominating set) of both 𝐺 and complement of 𝐺, then 

𝐷 is called a global dominating set (total global 

dominating set) of 𝐺 and cardinality of a minimum 

global dominating set (resp. total global dominating 

set) is called the global domination number (resp. 

total global domination number) of 𝐺, denoted by 

𝛾𝑔(𝐺)  (𝑟𝑒𝑠𝑝. 𝛾𝑡𝑔(𝐺)) 1. Many variations of 

domination have been widely studied 2,3. 

  The distance between two vertices 𝑢 and 𝑣 

of a graph 𝐺, denoted by 𝑑(𝑢, 𝑣), is the number of 

edges in a minimal path between  𝑢 and 𝑣. A tree is 

a connected acyclic graph. If two non-adjacent 

vertices in a tree are connected by an edge, then the 

new graph will consist of one (unique) cycle. Such 

graphs are known to be unicyclic graphs. In other 

words, unicyclic graphs are the graphs containing 

exactly one cycle in it. 

  A proper vertex coloring (or a proper 

coloring) of a graph 𝐺 is a mapping from the vertex 

set of 𝐺 to a non-empty set of colors such that 

adjacent vertices receive distinct colors. The 

chromatic number of 𝐺, denoted by 𝜒(𝐺) is the 

minimum number of colors in its proper coloring. 

Unless stated otherwise, all the vertex coloring 

discussed in this paper are proper. 

 

Dominator Coloring of Graphs 

  Coloring and domination in graphs are two 

major areas of research in graph theory. Recently the 

concept dominator coloring, which is a combination 

of domination and coloring, has emerged as a 

promising area for further research.  

  A dominator coloring of 𝐺 is a coloring such 

that every vertex in 𝑉(𝐺) dominates some color class 

and the minimum number of colors used to color 𝐺 
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in this way is called the dominator chromatic number 

of 𝐺, written by 𝜒𝑑(𝐺) 4. A dominator coloring in 

which the open neighbourhood of every vertex 

contains at least one color class, is called a total 

dominator coloring (TD-coloring) and the minimum 

number of colors required for a TD-coloring is called 

the total dominator chromatic number of 𝐺, denoted 

by 𝜒𝑑
𝑡 (𝐺) 5. Further studies on 𝜒𝑑

𝑡 (𝐺) and its 

variations can be found in 6,7. 

  Corresponding to a coloring of a graph 𝐺, a 

color class which is dominated by a vertex is known 

as a dom-color class whereas a color class such that 

no vertex of 𝐺 is adjacent to any vertex in that color 

class is known as an anti-dom-color class of 𝑣. A 

coloring is called a global dominator coloring if each 

vertex 𝑣 ∈ 𝑉(𝐺) has a dom color class and an 

antidom color class. Global dominator chromatic 

number of 𝐺 is the minimum number of colors 

required for a global dominator coloring of 𝐺 and is 

denoted by 𝜒𝑔𝑑(𝐺) 8. A color class is called a proper 

dom-color class of 𝑣 if the 𝑁(𝑣) contains that color 

class. Using this definition, the notion of total global 

dominator coloring (tgd-coloring) has been 

introduced as a coloring for which every vertex has 

proper dom color class and an antidom color class. 

The minimum number of colors used in a tgd-

coloring of 𝐺 is called the total global dominator 

chromatic number of 𝐺 and is denoted by 𝜒𝑡𝑔𝑑(𝐺) 

see 9. Where the relationship between 𝜒𝑡𝑔𝑑(𝐺)  with 

different graph parameters have been studied and 

𝜒𝑡𝑔𝑑 of graphs such as paths, cycles, complete 

multipartite graphs, complement of paths and 

complement of cycles   the For any graph 𝐺 admitting 

tgd-coloring, 𝜒𝑡𝑔𝑑(𝐺) ≥ 4 and 1 ≤ 𝛿(𝐺) ≤ 𝛥(𝐺) ≤

𝑛 − 2.  

  This paper is an 

extension of the study of the parameter 𝜒𝑡𝑔𝑑(𝐺) by 

examining the tgd-coloring for the families of trees 

and unicyclic graphs. For the terminology and 

results of graph theory refer 10, for more about 

domination in graphs refer to 11 and for the 

terminology of graph coloring, see 12.  

Some of the results which are significant and relevant 

in this study are listed below: 

Theorem 1 9 For any graph 𝐺 which admits tgd-

coloring, 𝜒𝑡𝑔𝑑(𝐺) ≤ 𝛾𝑡𝑔(𝐺) + 𝜒(𝐺).  

Observation 1 6 If 𝑇 is a tree of order 𝑛 ≥ 2, then 

𝛾𝑡(𝑇) ≤ 𝜒𝑑
𝑡 (𝑇) ≤ 𝛾𝑡(𝑇) + 2.  

 

Main Results: 
Let’s begin with a general result that links the 

parameters 𝜒𝑡𝑔𝑑(𝐺) and 𝜒𝑑
𝑡 (𝐺) if 𝛿(𝐺) = 1.  

 

Theorem 2 Let 𝛿(𝐺) = 1. Then, 𝜒𝑑
𝑡 (𝐺)  ≤

 𝜒𝑡𝑔𝑑(𝐺)  ≤  𝜒𝑑
𝑡 (𝐺) + 2.  

  

Proof. If 𝐺 admits a tgd-coloring, then 𝜒𝑑
𝑡 (𝐺) ≤

𝜒𝑡𝑔𝑑(𝐺) 2. It remains to prove that 𝜒𝑡𝑔𝑑(𝐺) ≤

𝜒𝑑
𝑡 (𝐺) + 2. 

 Consider a 𝜒𝑑
𝑡 -coloring 𝑐 of 𝐺 such that 𝜒𝑑

𝑡 (𝐺) =
𝑘. From the very definition of TD-coloring it follows 

that every vertex of 𝐺 has a proper dom-color class. 

Since 𝛿(𝐺) = 1, there exists a support vertex, say 𝑣 

in 𝐺. Let 𝑤 be a pendant vertex adjacent to 𝑣 and 𝑢 

be a non-neighbour of 𝑣 in 𝐺. Now define a new 

coloring 𝑐′ such that 𝑐′(𝑣𝑖) = 𝑐(𝑣𝑖) for all 𝑣𝑖 ∈
𝑉(𝐺), except for the vertices 𝑢 and 𝑤 and assign two 

new colors to the vertices 𝑢 and 𝑤. Then it is easy to 

verify tht 𝑐′ is a tgd-coloring of 𝐺. Every vertex of 𝐺 

has a proper dom-color class with respect to the 

coloring 𝑐′ as 𝑐 is a 𝜒𝑑
𝑡 -coloring. Further 𝑤 being a 

pendant vertex having a unique color, {𝑤} acts as an 

anti dom-color class for all vertices of 𝐺 other than 

the vertices 𝑣, 𝑤. Again {𝑢} acts as an anti-dom-color 

class of vertices 𝑣 and 𝑤. Hence 𝑐′ is a tgd-coloring 

of 𝐺, proving that 𝜒𝑡𝑔𝑑(𝐺) ≤ 𝜒𝑑
𝑡 (𝐺) + 2.    □ 

The bounds in the inequality of the above theorem 

are sharp. The examples for both cases are in the 

coming sections.  

Let 𝑠 be the number of support vertices of  𝐺. Then, 

the following theorem establishes a lower bound for 

𝜒𝑡𝑔𝑑(𝐺) in terms of 𝑠. 

 

Theorem 3 If 𝐺 admits tgd-coloring, then 

𝜒𝑡𝑔𝑑(𝐺) ≥ 𝑠 + 1. 

 Proof. The only possible member of a proper dom-

color class of a pendent vertex is its support vertex. 

Therefore, the cardinality of the color class of a 

support vertex is 1. Since there are 𝑠 support vertices 

and cardinality of each of the support vertices is 1, 

𝑠 + 1 colors are needed to color the all the support 

vertices and at least one more color is need to color 

the remaining vertices of 𝐺. That is, 𝜒𝑡𝑔𝑑(𝐺) ≥ 𝑠 +

1.   □ 

 The bound of the above theorem is sharp. It can 

be verified with the help of an example. Consider the 

graph given in Fig. 1, which has four support 

vertices. That is, 𝑠 = 4. If we color the four support 

vertices with 4 different colors and all the remaining 

vertices with a color different from the four colors 

used, then the defined coloring is a tgd-coloring. 

Therefore, 𝜒𝑡𝑔𝑑(𝐺) ≤ 5. By Theorem 3, 𝜒𝑡𝑔𝑑(𝐺) ≥

𝑠 + 1 = 5. From the above two inequalities, 

𝜒𝑡𝑔𝑑(𝐺) = 5 = 𝑠 + 1.  □ 
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Figure 1. A graph 𝑮 with 𝝌𝒕𝒈𝒅(𝑮) = 𝟓 = 𝒔 + 𝟏. 

  

Theorem 4 If 𝐺 is a graph having at least two 

support vertices such that the distance between them 

is at least 3, then 𝜒𝑑
𝑡 (𝐺) = 𝜒𝑡𝑔𝑑(𝐺).  

Proof. Assume that 𝐺 admits a tgd-coloring such that 

𝐺 contains at least two support vertices which are at 

a distance of more than two. Obviously 𝐺 admits a 

𝜒𝑑
𝑡  coloring. Moreover, under any TD-coloring of 𝐺, 

the colors received by the support vertices would be 

unique. Since there exist at least two support vertices 

which are at a distance more than 2, the closed 

neighbourhood of these two vertices will not have a 

common vertex. Therefore, one of these support 

vertices will constitute the anti-dom-color class for 

any vertex of 𝐺. Hence any 𝜒𝑑
𝑡  coloring of 𝐺 will also 

be a tgd coloring.  □ 

The converse of the above theorem is not true. For 

example, consider the path 𝑃5. Here, 𝜒𝑑
𝑡 (𝑃5) =

𝜒𝑡𝑔𝑑(𝑃5) = 4, even though there are no two support 

vertices which are at a distance at least 3. 

 

Trees 

 This section discusses the condition for a tree 𝑇 to 

admit tgd-coloring and determine the values of 𝜒𝑡𝑔𝑑 

of trees in terms of the graph parameters such as 𝜒𝑑
𝑡 , 

𝛾𝑡𝑔, the diameter 𝑑𝑖𝑎𝑚(𝑇), and the number of 

support vertices 𝑠.  

The following result presents a necessary and 

sufficient condition for any tree to admit a tgd-

coloring. 

 

Theorem 5 A tree 𝑇 admits a tgd-coloring if and only 

if 𝑑𝑖𝑎𝑚(𝑇) ≥ 3.  

  

Proof. Let 𝑇 admits a tgd-coloring. If possible, 

assume that 𝑑𝑖𝑎𝑚(𝑇) < 3. In this case the central 

vertex of 𝑇 is adjacent to all other vertices. That 

means the central vertex does not have an anti-dom-

color class, contradicting the assumption that 𝑇 

admits a tgd-coloring. Therefore, 𝑑𝑖𝑎𝑚(𝑇) ≥ 3. 

 Conversely assume that 𝑇 is a tree such that 

𝑑𝑖𝑎𝑚(𝑇) ≥ 3. Assign distinct colors to all vertices 

of 𝑇, which obviously gives rise to a proper dom-

color class to each vertex of 𝑇. Since the 𝑑𝑖𝑎𝑚(𝑇) ≥
3, corresponding to any vertex of 𝑇 there exist at 

least one non-adjacent vertex serving as the anti-

dom-color class. □ 

 In view of Theorem 5, all trees considered for 

further discussion would be trees of diameter at least 

3. The following theorem gives the exact value of 

𝜒𝑡𝑔𝑑 for trees with diameter 3. 

 

Theorem 6 If 𝑑𝑖𝑎𝑚(𝑇) = 3, then 𝜒𝑡𝑔𝑑(𝑇) = 4.  

Proof. Consider a tree 𝑇 of diameter 3. Then by 

Theorem 5, 𝑇 admits a tgd-coloring and hence 

𝜒𝑡𝑔𝑑(𝐺) ≥ 4. Now it remains to show the existance 

of tgd- coloring that requires only four colors. T 

being a tree with diameter 3 contains exactly two 

support vertices. Use two distinct colors to color 

these support vertices. Color the pendant vertices 

adjacent to one of the support vertices with color 3 

and the remaining vertices with color 4, is a tgd-

coloring, thus completing the proof. □ 

Next theorem provides 𝜒𝑡𝑔𝑑 of a tree with diameter 

4 in terms of its number of support vertices. 

   

Theorem 7 If 𝑑𝑖𝑎𝑚(𝑇) = 4, then 𝜒𝑡𝑔𝑑(𝑇) = 𝑠 + 2 

.  

 Proof. Let 𝑑𝑖𝑎𝑚(𝑇) = 4. Note that trees of diameter 

4 can be classified into two types as given in Fig. 2.  

 

 
        Type– 1                        Type -2  

 

Figure 2. Two types of trees with diameter 𝟒. 

 

 The first being trees for which the central vertex 

is not a support vertex. This class of trees may be 

referred to as Type 1. The second type are those trees 

whose central vertex is a support vertex as well. The 

theorem can be proved by considering these two 

cases separately. 

 

Case 1: Let T be a tree of Type-1.  

 In this case the center of 𝑇, say 𝑢, is not a support 

vertex. Then by Theorem 2, 𝜒𝑡𝑔𝑑(𝑇) ≥ 𝑠 + 1. 

It can be claimed that 𝜒𝑡𝑔𝑑(𝑇) ≠ 𝑠 + 1. On the 

contrary, assume that 𝜒𝑡𝑔𝑑(𝑇) = 𝑠 + 1. Then, the 

colors assigned to the support vertices should be 

distinct. Hence there exist only one color that 

remains to color the pendent vertices and the central 

vertex 𝑢 which is not possible as this coloring does 

not yield an anti-dom-color class for 𝑢. Therefore 

𝜒𝑡𝑔𝑑(𝑇) ≥ 𝑠 + 2. Now it remains to show that 𝑇 

admits a tgd-coloring with 𝑠 + 2 colors. Define a 

coloring scheme such that the  𝑠 support vertices are 

colored with 𝑠 different colors and the central vertex 
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𝑢 with a color different from the 𝑠 colors used and 

the remaining vertices with yet another new color. 

This yields a tgd-coloring and hence 𝜒𝑡𝑔𝑑(𝑇) = 𝑠 +

2. 

   

Case 2: Let the tree is of Type-2.  

 In this case, the center of 𝑇, say 𝑢, is a support 

vertex. By Theorem 2, 𝜒𝑡𝑔𝑑(𝑇) ≥ 𝑠 + 1, first show 

that 𝜒𝑡𝑔𝑑(𝑇) ≠ 𝑠 + 1. If possible, assume that 𝑇 is a 

tree with 𝜒𝑡𝑔𝑑(𝑇) = 𝑠 + 1. Since 𝑠 colors required to 

color the support vertices, the remaing all vertices 

should be color with the remaining one color. But it 

is not possible since in this case 𝑢 would not have an 

anti-dom-color class, implies 𝜒𝑡𝑔𝑑(𝑇) ≥ 𝑠 + 2. To 

prove 𝜒𝑡𝑔𝑑(𝑇) = 𝑠 + 2 it is enough to show that 

there exists a tgd-coloring of 𝑇 with 𝑠 + 2 colors. 

Define a coloring of 𝑇 as follows. Color all the 𝑠 

support vertices with 𝑠 different colors, the support 

vertices at 𝑢 with 𝑠 + 1-th color and the remaining 

vertices with 𝑠 + 2-th color, yields a tgd-coloring. □ 

 

Remark 1   The result of Theorem 7 is true for trees 

of diameter 3 as well.  

The following theorem establishes the relationship 

between 𝜒𝑡𝑔𝑑 and 𝜒𝑑
𝑡  for trees with diameter 4. 

 

Theorem 8 Let 𝑇 be a tree with diameter 4. Then,   

    i)  𝜒𝑡𝑔𝑑(𝑇) = 𝜒𝑑
𝑡 (𝑇), if the center of 𝑇 is not a 

support vertex.  

    ii)  𝜒𝑡𝑔𝑑(𝑇) = 𝜒𝑑
𝑡 (𝑇) + 1, if the center of 𝑇 is a 

support vertex.  

 Proof.  This follows from Theorem 7 and the result 

that, 𝜒𝑑
𝑡 (𝑇) = 𝑠 + 2 for trees of Type-1 and, 

𝜒𝑑
𝑡 (𝑇) = 𝑠 + 1 for trees of Type-2 5.  □ 

In view of the above theorem note that, if, the set of 

support vertices of a tree of diameter 4 form an 

independent set, then 𝜒𝑑
𝑡 (𝑇) = 𝜒𝑡𝑔𝑑(𝑇). 

 

Theorem 9 For a tree 𝑇 with diameter more than 4, 

𝜒𝑡𝑔𝑑(𝑇) = 𝜒𝑑
𝑡 (𝑇). 

Proof. Let 𝑇 be a tree with diameter more than 4, 𝑇 

contains at least two support vertices such that the 

distance between them is 3. Therefore, the proof 

follows from Theorem 3.  □ 

In view of the Theorem 9 note that, if, the set of 

support vertices of a tree of diameter 4 form an 

independent set, then 𝜒𝑑
𝑡 (𝑇) = 𝜒𝑡𝑔𝑑(𝑇). And from 

Theorem 2 it obvious that 𝜒𝑑
𝑡 (𝑇) ≤ 𝜒𝑡𝑔𝑑(𝑇) ≤

𝜒𝑑
𝑡 (𝑇) + 2.  □ 

Next theorem is a characterization of trees.  

 

Theorem 10 For a tree 𝜒𝑡𝑔𝑑(𝑇) = 𝜒𝑑
𝑡 (𝑇) + 1 if and 

only if 𝑇 is of diameter 3 or of diameter 4 and the 

center vertex is a support vertex.  

Proof. By Theorem 9, all trees of diameter 5 or above 

𝜒𝑡𝑔𝑑(𝑇) = 𝜒𝑑
𝑡 (𝑇). Hence it remains to consider only 

trees of diameter 3 or 4. For a tree 𝑇 of diameter 3, 

one may get 𝜒𝑡𝑔𝑑(𝑇) = 4 = 𝜒𝑑
𝑡 (𝑇) + 1. Also, if 𝑇 is 

of diameter 4 then by Theorem 7, 𝜒𝑡𝑔𝑑(𝑇) = 𝜒𝑑
𝑡 (𝑇) 

if center of 𝑇 is not a support vertex. Therefore, 

𝜒𝑡𝑔𝑑(𝑇) = 𝜒𝑑
𝑡 (𝑇) + 1 if and only if 𝑇 is of diameter 

3 or of diameter 4 and the center vertex is a support 

vertex.  □ 

In view of the results mentioned above, the following 

inequality is immediate. All trees which admit tgd-

coloring satisfies Theorem 2. From the above results 

it is obvious that the maximum value of 𝜒𝑡𝑔𝑑(𝑇) is 

𝜒𝑑
𝑡 (𝑇) + 1. Therefore, one has the following 

observation.  

 

Observation 2 For a tree 𝑇 with diameter at least 3, 

𝜒𝑑
𝑡 (𝑇) ≤ 𝜒𝑡𝑔𝑑(𝑇) ≤ 𝜒𝑑

𝑡 (𝑇) + 1.  

For trees which admit tgd-coloring, the next theorem 

is a characterization with respect to its support 

vertices.  

 

Theorem 11 For a tree 𝑇, 𝜒𝑡𝑔𝑑(𝑇) = 𝑠 + 1 if and 

only if the following conditions hold.    

   i) 𝑑𝑖𝑎𝑚(𝑇) ≥ 5;  

ii)  If 𝑢 is a support vertex of 𝑇 then there exist 

another support vertex 𝑣 of 𝑇 such that 𝑑(𝑢, 𝑣) = 1; 

and  

    iii) The minimum distance between any two non-

support non-leaf vertices is 2.  

  Proof. Let 𝑇 be a tree with the given three 

conditions. Consider a proper coloring 𝑐 such that all 

the support vertices in 𝑇 receive distinct colors, say 

𝑐1, 𝑐2, … , 𝑐𝑠 and all the remaining vertices receive 

same color, say 𝑐𝑠+1, which is different from all 

𝑐𝑖; 1 ≤ 𝑖 ≤ 𝑠. This coloring is possible, as the 

distance between two non-support vertices is at least 

2. Since 𝜒𝑡𝑔𝑑(𝑇) ≥ 𝑠 + 1, it is enough to prove that 

𝑐 is a tgd-coloring. Let 𝑣 be an arbitrary vertex of 𝑇. 

Then, there exists a support vertex 𝑣′ in 𝑇 that is 

adjacent to 𝑣. That is, {𝑣′} is a proper dom-color class 

of the vertex 𝑣. since 𝑑𝑖𝑎𝑚(𝑇) ≥ 5, there exist two 

support vertices 𝑢 and 𝑢′ in 𝑇 such that 𝑑(𝑢, 𝑢′) ≥ 3. 

Therefore, either {𝑢} or {𝑢′} is an anti-dom color 

class of 𝑣. Therefore, 𝑐 is a tgd-coloring. 

 Conversely, assume that 𝜒𝑡𝑔𝑑(𝑇) = 𝑠 + 1. The 

first condition is immediate from Theorem 6 and 

Theorem 7. Let 𝑢 be a support vertex of 𝑇 which is 

not adjacent to any other support vertex. Therefore, 

the only possible proper dom-color class of 𝑢 is the 

color class of the leaf vertices. Since 𝑑𝑖𝑎𝑚(𝑇) ≥ 5, 

there is at least one leaf which is not adjacent to 𝑢. 

This leads to a contradiction that 𝑢 does not have a 

proper dom-color class. This proves the second 
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condition. If there exist two adjacent non-leaf non-

support vertices, then 𝜒𝑡𝑔𝑑(𝑇) = 𝑠 + 1 as these two 

vertices cannot have the same color. Thus, the third 

condition also holds.  □ 

A caterpillar graph is a tree where the removal of its 

pendent vertices gives a path of order greater than or 

equal to 2. A complete caterpillar graph 𝑇 is a 

caterpillar where 𝑉(𝑇) contains only support vertices 

and pendant vertices. The following result follows 

from Theorem 11. 

 

Remark 2 For any complete caterpillar graph 𝑇 of 

diameter at least 5, 𝜒𝑡𝑔𝑑(𝑇) = 𝑠 + 1.  

The following theorem establishes a relationship 

between 𝜒𝑡𝑔𝑑 and 𝛾𝑡𝑔 of a tree.  

 

Theorem 12 For any tree 𝑇 of order greater than or 

equal to 4, 𝜒𝑡𝑔𝑑(𝑇) ≤ 𝛾𝑡𝑔(𝑇) + 2.  

Proof. Let 𝑇 be a tree of order greater than 3, 𝜒(𝑇) =
2. Therefore, by Theorem 1, 𝜒𝑡𝑔𝑑(𝑇) ≤ 𝛾𝑡𝑔(𝑇) + 2. 

□ 

 

Theorem 13 Let a tree 𝑇 admits tgd-coloring. Then, 

𝛾𝑡(𝑇) ≤ 𝜒𝑡𝑔𝑑(𝑇) ≤ 𝛾𝑡(𝑇) + 2.  

Proof. Assume tree 𝑇 admits tgd-coloring Let 

𝑑𝑖𝑎𝑚(𝑇) ≥ 5. Then 𝜒𝑡𝑔𝑑(𝑇) = 𝜒𝑑
𝑡 (𝑇). Therefore, 

for trees with diameter grater than or equal to 5 the 

result follows from Observation 1. Hence, need to 

consider only trees of diameter 3 and 4. 

If 𝑇 is of diameter 3, 𝛾𝑡(𝑇) = 2 and 𝜒𝑡𝑔𝑑(𝑇) = 4. 

That is, 𝜒𝑡𝑔𝑑(𝑇) = 𝛾𝑡(𝑇) + 2. Next, consider trees 

of diameter 4. Then there are two cases. If 𝑇 is a tree 

of Type-1, then it is seen that 𝛾𝑡(𝑇) = 𝑠 + 1. By 

Theorem 7 𝜒𝑡𝑔𝑑(𝑇) = 𝑠 + 2. Therefore, 𝜒𝑡𝑔𝑑(𝑇) =

𝛾𝑡(𝑇) + 1. If 𝑇 is a tree of Type-2, then  𝛾𝑡(𝑇) = 𝑠. 

By Theorem 7, 𝜒𝑡𝑔𝑑(𝑇) = 𝑠 + 2. Therefore, 

𝜒𝑡𝑔𝑑(𝑇) = 𝛾𝑡(𝑇) + 2. Therefore, 𝛾𝑡(𝑇) ≤

𝜒𝑡𝑔𝑑(𝑇) ≤ 𝛾𝑡(𝑇) + 2.  □ 

From the above proof, examples for trees with 

𝜒𝑡𝑔𝑑(𝑇) ≤ 𝛾𝑡(𝑇) + 1 and 𝜒𝑡𝑔𝑑(𝑇) ≤ 𝛾𝑡(𝑇) + 2 are 

obtained. 𝑃6 is an example for a tree where 

𝜒𝑡𝑔𝑑(𝑇) ≤ 𝛾𝑡(𝑇). 

In 6, Henning characterized trees for which 𝜒𝑑
𝑡 (𝑇) =

𝛾𝑡(𝑇), 𝜒𝑑
𝑡 (𝑇) = 𝛾𝑡(𝑇) + 1 and 𝜒𝑑

𝑡 (𝑇) = 𝛾𝑡(𝑇) + 2. 

As for all trees with diameter greater than 4, 

𝜒𝑡𝑔𝑑(𝑇) = 𝜒𝑑
𝑡 (𝑇), one can characterize all trees of 

diameter greater than 4 for which 𝜒𝑡𝑔𝑑(𝑇) = 𝛾𝑡(𝑇), 

𝜒𝑡𝑔𝑑(𝑇) = 𝛾𝑡(𝑇) + 1 and 𝜒𝑡𝑔𝑑(𝑇) = 𝛾𝑡(𝑇) + 2 by 

replacing 𝜒𝑑
𝑡 (𝑇) by 𝜒𝑡𝑔𝑑(𝑇) in the results 

corresponding in 6. For trees of diameter 3 and 4 can 

seen in Theorem 13. 

  

Unicyclic Graphs 

In this section, let 𝐶 denote the cycle in the unicyclic 

graph 𝐺. If 𝐺 is a unicyclic graph, a vertex 𝑣 lies on 

𝐶 is called an extreme vertex if it is adjacent to a 

vertex of degree at least 2 lying outside 𝐶. It is known 

that the minimum value of 𝜒𝑑
𝑡  and 𝜒𝑡𝑔𝑑 for a graph 

𝐺 are 2 and 4 respectively. In this section, the total 

dominator chromatic number and total global 

dominator chromatic number of unicyclic graphs are 

studied. 

 

Theorem 14 If 𝐺 is a unicyclic graph other than 𝐶4, 

then 𝜒𝑑
𝑡 (𝐺) ≥ 3. Further, 𝜒𝑑

𝑡 (𝐺) = 3 if and only if 𝐺 

is isomorphic to one of the graphs in Fig. 3.  

Proof. Note that the total dominator chromatic 

number of any cycle other than 𝐶4 is more than 2. 

Therefore, the proof of the first part is trivial. Next, 

it is to be proved the necessary and sufficient 

condition for 𝜒𝑑
𝑡 (𝐺) = 3. It is easy to verify that 𝜒𝑑

𝑡  

of each of the graphs in Fig. 3 is 3. So, it remains to 

prove that 𝜒𝑑
𝑡 (𝐺) ≠ 3, for any unicyclic graph which 

is not present in Fig. 3. It is known that 𝜒𝑑
𝑡  of any 

cycle of length other than 3 or 4 is greater than 3. 

Therefore, one must consider unicyclic graphs with 

cycle of length 3 and 4. 

   

Case 1: Let 𝐺 be a unicyclic graph which has a cycle 

𝐶 of length 3. In this case, there exist two types of 

unicyclic graphs, one without extreme vertices and 

the other is with extreme vertices. First, let us assume 

that 𝐺 has an extreme vertex. Therefore, there exists 

a support vertex outside 𝐶. Since the color of a 

support vertex cannot be assigned to any other vertex 

in TD-coloring, another three colors are required to 

color the vertices of the cycle. In this case, 𝜒𝑑
𝑡 (𝐺) ≥

4. If 𝐺 does not have an extreme vertex, then either 

𝐺 is a cycle 𝐶, or the graph obtained by adding 

pendent vertices at the vertices of 𝐶. Here, the 

number of vertices of 𝐶 at which pendent vertices can 

be added such that 𝜒𝑑
𝑡 (𝐺) = 3 is to be determined. It 

can be observed that if pendent vertices are added at 

one or two vertices of 𝐶, then 𝜒𝑑
𝑡 (𝐺) = 3. But, if 

pendent vertices are added at all three vertices of 𝐶, 

then 𝜒𝑑
𝑡 (𝐺) = 5. Therefore, the unicyclic graphs 

which have a cycle of length 3 with 𝜒𝑑
𝑡 (𝐺) = 3 are 

those present in Fig. 3. 

   

Case 2: Let 𝐺 be a unicyclic graph which has a cycle 

𝐶 of length 4. Also, let 𝜒𝑑
𝑡 (𝐺) = 3. Therefore, 𝐺 

should not have an extreme vertex. Because if 𝐺 

contains an extreme vertex there exists a support 

vertex outside the cycle say 𝑢, whose color class is 

solitary. If the remaining vertices of 𝐺 are colored 

with another two colors, then 𝑢 will not have a proper 

dom-color class. Next, it is required to find which of 
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𝐶 can be a support vertex. If pendent vertices are 

added only at a vertex of 𝐶, then 𝜒𝑑
𝑡 (𝐺) = 3. Since 

𝜒𝑑
𝑡 (𝐺) = 3, it is not possible to add pendent vertices 

at any three vertices of 𝐶. Suppose that support 

vertices are added at two adjacent vertices, at least 

two more colors are required to color 𝐺, which leads 

to a contradiction. Let the non-adjacent vertices of 𝐶 

be support vertices. If the two support vertices are 

colored using two distinct colors and the remaining 

vertices with a third color, then the support vertices 

will not have a proper dom color class. That is, 

𝜒𝑑
𝑡 (𝐺) ≥ 3, which is a contradiction. Therefore, a 

unicyclic graphs with a cycle 𝐶 of length 4 with 

𝜒𝑑
𝑡 (𝐺) = 3 is as shown in Fig. 3.   □ 

  

 

 
Figure 3. Unicyclic graphs with 𝝌𝒅

𝒕 = 𝟑 

 

Theorem 15 Let 𝐺 be a unicyclic graph and 𝐶 be the 

cycle in 𝐺. Then under any TD-coloring of 𝐺, every 

vertex not on 𝐶 has an anti dom-color class.  

 Proof. Let the vertices of the cycle 𝐶 in 𝐺 be 

𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑘 , 𝑣1. If 𝐺 does not contain an extreme 

vertex , that is, the vertices outside 𝐶 are pendant 

vertices. Consider a TD- coloring of 𝐺. The color of 

a support vertex is solitary. In any proper coloring of 

𝐶, at least two colors are present. Therefore, at least 

two more colors are used in the TD- coloring of 𝐶 

and one of them act as an anti dom-color class of the 

pendant vertex. That is, all pendant vertices of 𝐺 

have an anti dom-color class. If 𝐺 contains an 

extreme vertex, say 𝑣1. Let 𝑇 be a branch at 𝑣1 and 

consider 𝑤 be a support vertex in 𝑇. Then, the color 

class {𝑤} act as an anti dom-color class of every 

vertex of 𝐺 − 𝐶 not on 𝑇. For vertices in 𝑇 − {𝑣1}, 

color class of 𝑣3 or proper dom-color class of 𝑣3 act 

as an anti dom-color class. This completes the proof. 

□ 

 

Consider unicyclic graphs which are not cycles, 

Theorem 2 hold. Also,  𝐶𝑛 is tgd-colorable if 𝑛 ≥ 4 

and if 𝑛 ≥ 5, 𝜒𝑡𝑔𝑑(𝐺) = 𝜒𝑑
𝑡 (𝐺). For 𝐶4, 𝜒𝑡𝑔𝑑(𝐺) =

𝜒𝑑
𝑡 (𝐺) + 2.  

 

Theorem 16 Let 𝐺 be a unicyclic graph that admits 

tgd-coloring. Then, 𝜒𝑑
𝑡 (𝐺) ≤ 𝜒𝑡𝑔𝑑(𝐺) ≤ 𝜒𝑑

𝑡 (𝐺) +

2.  

Proof. Let 𝐺 be a unicyclic graph that admits tgd-

coloring. If 𝐺 is a unicyclic graph with 𝛿(𝐺) = 1 

then by Theorem 2, 𝜒𝑑
𝑡 (𝐺) ≤ 𝜒𝑡𝑔𝑑(𝐺) ≤ 𝜒𝑑

𝑡 (𝐺) +

2. It remains to prove that cycles also admit this 

bound. It is proved in 9 that 𝜒𝑡𝑔𝑑(𝐺) = 𝜒𝑑
𝑡 (𝐺), where 

𝐺 is a cycle of length at least 5 and for cycle of length 

4, 𝜒𝑡𝑔𝑑(𝐺) = 𝜒𝑑
𝑡 (𝐺) + 2.  □ 

 

Theorem 17 If 𝐺 is a unicyclic graph with a cycle of 

length at least 5, then, 𝜒𝑑
𝑡 (𝐺) ≥ 4. Further, 𝜒𝑑

𝑡 (𝐺) =
4, then the length of the cycle is 5 or 6.  

Proof. As 𝐺 contains a cycle 𝐶 of length more than 

4, the first part of the theorem is clear. Assume that 

𝜒𝑑
𝑡 (𝐺) = 4. It remains to prove that the length of the 

cycle is 5 or 6. Let the length of the cycle be at least 

7. Note that 𝜒𝑑
𝑡 (𝐶) ≥ 5 for cycle 𝐶 of length at least 

7. Therefore, 𝜒𝑑
𝑡 (𝐺) > 4 for unicyclic graphs with 

cycle of length more than 6. That is, the length of the 

cycle is either 5 or 6.            □ 

 

Theorem 18 Let 𝐺 be a unicyclic graph with two or 

more extreme vertices. Then, 𝜒𝑡𝑔𝑑(𝐺) = 𝜒𝑑
𝑡 (𝐺).  

Proof. Let 𝐺 be a unicyclic graph with at least two 

extreme vertices. Then, there exist at least two 

support vertices such that the distance between them 

is at least three. Therefore, by Theorem 4,  𝜒𝑑
𝑡 (𝐺) =

𝜒𝑡𝑔𝑑(𝐺).  □ 

  

Theorem 19 If 𝐺 is a unicyclic graph without 

extreme vertices and 𝜒𝑑
𝑡 (𝐺) ≥ 5, then 𝜒𝑡𝑔𝑑(𝐺) =

𝜒𝑑
𝑡 (𝐺).  

Proof. Let 𝐺 be a unicyclic graph with no extreme 

vertex. Also, let 𝜒𝑑
𝑡 (𝐺) ≥ 5 with respect to the 

coloring 𝐶. To prove 𝐶 is a tgd-coloring, it is required 

to show that all vertices of 𝐺 has an anti dom-color 

class. One may note that each support is solitary. Let 

𝑣 be an arbitrary vertex of 𝐺. If 𝑣 is not a support 

vertex, then 𝑑𝑒𝑔(𝑣) ≤ 2. As 𝜒𝑑
𝑡 (𝐺) ≥ 5, 𝑣 is not 

adjacent to any of the vertices in at least 2 color 

classes. That is, 𝑣 has an anti dom-color class. If 𝑣 is 

a support vertex of 𝐺, then 𝑣 lies on 𝐶 and 𝑣 can be 

adjacent to vertices in at most three color classes. 

Therefore, there exist at least one color class which 

contains no vertex adjacent to 𝑣. That is, 𝑣 has an anti 
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dom-color class with respect to 𝐶. Therefore, 

𝜒𝑡𝑔𝑑(𝐺) = 𝜒𝑑
𝑡 (𝐺).  □ 

 

Conclusion: 
  

In this article, some general results on the total global 

dominator coloring of graphs have been reported and 

following to these, the total global dominator 

coloring of unicyclic graphs have also been 

investigated. This area is much promising for further 

research. Some of the open problems that were 

identified during the study are given below:  

  

    1.  Characterize trees for which   

        (a) 𝜒𝑡𝑔𝑑(𝑇) = 𝛾𝑡𝑔(𝑇). 

        (b) 𝜒𝑡𝑔𝑑(𝑇) = 𝛾𝑡𝑔(𝑇) + 1.  

        (c) 𝜒𝑡𝑔𝑑(𝑇) = 𝛾𝑡𝑔(𝑇) + 2.  

  

    2.  Find an efficient algorithm to determine 𝜒𝑡𝑔𝑑 

of trees.  
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