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Abstract. — The study of the geometry of excursion sets of 2D random fields is a question
of interest from both the theoretical and the applied viewpoints. In this paper we are interested
in the relationship between the perimeter (resp. the total curvature, related to the Euler
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factor), whereas the total curvature is not. We illustrate all our results on different examples
of random fields.
Résumé. — L’étude de la géométrie des ensembles d’excursion des champs aléatoires 2D

est une question importante tant d’un point de vue théorique qu’appliqué. Dans cet article
nous nous intéressons à la relation qu’il existe entre le périmètre (resp. la courbure totale,
liée à la caractéristique d’Euler par le théorème de Gauss–Bonnet) des ensembles d’excursion
d’une fonction et de sa discrétisée. Nous utilisons une formulation faible de cette quantité
vue comme une fonction qui à un niveau lui associe le périmètre (resp. la courbure totale) de
l’excursion correspondante. Nous nous intéressons également à un cadre stochastique où les
fonctions sont remplacées par des champs aléatoires. Nous montrons en particulier que, sous
des hypothèses de stationarité et d’isotropie sur le champ aléatoire, en moyenne, le périmètre
est toujours biaisé (avec un facteur 4/π) contrairement à la courbure totale. Nous illustrons
nos résultats sur différents exemples de champs aléatoires.

1. Introduction

Understanding the geometry of excursion sets of random fields is a question that
receives much attention from both the theoretical and the applied point of view
(see [Adl00] for instance). This is partly due to numerous applications in image
processing [Ser82, Wor96] for pattern detection, segmentation or image model un-
derstanding. Moreover, important strong results have been already obtained es-
pecially for smooth Gaussian and related fields [AT07]. This allows to consider
some geometrical characteristics of a given image considered as the realization of
a random field, related to Minkowski functionals in convex geometry [SKM87] or
Lipschitz–Killing curvatures in differential geometry [Thä08]. Roughly speaking, the
considered quantities are the surface area, the perimeter and the Euler character-
istic, i.e. the number of connected components minus the number of holes (also
related to the total curvature), of a black-and-white image obtained by thresholding
a gray-level image at some fixed level, corresponding to an excursion set. There
exists an abundant literature studying these geometrical features, let us cite for
instance [AW09, DBEL17, EL16, KV18, LR19]. Most of these mentioned results rely
on strong assumptions on the smoothness of the underlying random fields.
But when making numerical computations in applications, we rarely have access

to functions defined on a continuous domain U , we rather have access to the function
taken at points on a discrete grid. The main example is the one of digital images
that are made of pixels, where the excursion sets are obtained through discrete sets.
The link between the discrete geometry of a set and its “true” underlying continuous

geometry has of course been already studied a lot in different fields: for instance in
discrete geometry [KSS06, Sva14, Sva15], in systematic sampling [GJ87], in digital
topology [Gra71, Pra07] or in mathematical morphology [Mat75, Ser82]. This list is
far from being exhaustive.
This discretization procedure also induces a switch of functional framework since

piecewise constant functions instead of smooth ones have to be considered. For the
perimeter, the nice functional framework of functions of bounded variation [AFP00]
allows to unify both approaches by considering perimeter as a function of the level
and adopting a weak formulation [BD16].
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In our previous paper [BD20], we have introduced functionals that allow us to give
(weak) formulas not only for the perimeter but also for the total curvature (related
to the Euler Characteristic, by Gauss–Bonnet Theorem) of the excursion sets of a
function defined on an open set of R2. More precisely, the framework is the following.
Let U = (0, T )2 with T > 0, be a square domain of R2. Let f be a real-valued

function defined on R2, and such that for almost every t, the boundary of the
excursion set above level t in U is a piecewise C2 curve that has finite length and
finite total curvature. For t ∈ R, we denote the excursion set of f above the level t by

Ef (t) = {x; f(x) > t} ⊂ R2.

Under suitable assumptions on f , we define the level perimeter integral (LP) and
the level total curvature integral (LTC) of f , as the functional defined for every
h ∈ Cb(R), the space of bounded continuous functions on R, by

LPf (h, U) :=
∫
R
h(t) Per (Ef (t), U) dt

and

LTCf (h, U) :=
∫
R
h(t) TC (∂Ef (t) ∩ U) dt,

where, denoting by H1 the 1-dimensional Hausdorff measure, we have
Per (Ef (t), U) = H1 (∂Ef (t) ∩ U)

and TC is the total curvature of a curve. It is defined, for any piecewise C2 oriented
curve Γ by

TC(Γ) =
∫
κΓ(s) ds+

∑
i

αi,

where κΓ is the signed curvature of Γ defined at regular points, and αi are the turning
angles at the singular points (corners) of Γ. Thanks to the Gauss–Bonnet theorem,
the total curvature of the positively oriented curve ∂Ef(t) is closely related to the
Euler characteristic of Ef (t) (see [DC76, p. 274] for instance). Considering for h the
constant function equal to 1, we will simply denote

LPf (U) := LPf (1, U) and LTCf (U) := LTCf (1, U).
By the coarea formula ([AFP00] or [EG92]), LPf (U) is equal to the total variation
of f in U .
To have all three Minkowski functionals (or Lipschitz Killing curvatures), we could

also define the level area functional as,

LAf (h, U) =
∫
R
h(t)L (Ef (t) ∩ U) dt,

where h now needs also to be integrable, h ∈ L1(R), and L(E) denotes the Lebesgue
measure (area) of a set E. Now, this level area can be written as

LAf (h, U) =
∫
R
h(t)L (Ef (t) ∩ U) dt =

∫
R
h(t)

∫
U

1If(x)> t dx dt

=
∫
U

∫ f(x)

−∞
h(t) dt dx =

∫
U

(H(f(x))−H(−∞)) dx,
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where H is any primitive of h. Here the integral LA that was defined on the levels
t ∈ R has been rewritten as an integral on the domain U . This can also be done for
LP and LTC. More precisely, for the level perimeter, when f ∈ C1(R), we obtain
in [BD16] the following formula, for h ∈ Cb(R),

(1.1) LPf (h, U) =
∫
U
h(f(x)) ‖∇f(x)‖ dx,

and in particular

(1.2) LPf (U) := LPf (1, U) =
∫
U
‖∇f(x)‖ dx,

that is the coarea formula.
For the level total curvature, when f ∈ C2(R), we obtained in [BD20], for h ∈

Cb(R),

(1.3) LTCf (h, U) = −
∫
U
h(f(x))D2f(x).

(
∇f(x)⊥
|∇f(x)| ,

∇f(x)⊥
|∇f(x)|

)
1I|∇f(x)|> 0 dx,

and in particular

(1.4) LTCf (U) := LTCf (1, U) =
∫
U
D2f(x).

(
∇f(x)⊥
|∇f(x)| ,

∇f(x)⊥
|∇f(x)|

)
1I|∇f(x)|> 0 dx,

where if u and v are two vectors of R2, the notation D2f(x).(u, v) stands for
utD2f(x)v where here D2f(x) is seen as a 2× 2 symmetric matrix.
We also obtained explicit formulas when f is no more smooth but piecewise con-

stant on nice sets (it is then called an elementary function) in [BD20, Equation (17)
for LP and (18) for LTC]. We investigate in this paper how this point of view can
be adapted to functions that are piecewise constant on a regular tiling, where the
geometry of the tiling will also play an important role. Despite the fact that such
functions are no more elementary in the sense of our previous paper, this is a natural
framework for numerical computations as soon as one has to consider discretization
of functions. Hence we will consider here two situations. The first one where we have
a tiling of the plane with regular hexagons. The second one, is a more realistic case,
where we have a tiling with squares (pixels). Assuming some regularity of f (C1 or
Lipschitz on R2 for instance), we can use an approximation inequality such as the
one of Proposition 4.1, to show that the level area of a discretized version fε of f
converges to the level area of f , when ε goes to 0. In this paper, we will focus on
what happens for the level perimeter and the level total curvature of a discretized
version fε of f . The geometry of the tiling is important, and in the case of pixels, the
connectivity is not well defined since both 4- and 8-connectivity can be considered.
The two cases will be studied.
Now, the specificity of our approach here is that we follow our “functional” point

of view (through LP and LTC), but also our random field approach, replacing the
deterministic function f by a random one X and considering the expectation of LP
or LTC. This allows us to provide explicit mean formulas in particular when the
random field X is stationary and isotropic.
The paper is organized as follows. In Section 2 we give formulas for the level perime-

ter integral and the level curvature integral of discrete deterministic functions defined
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on else an hexagonal or a square tiling. Then, in Section 3, we derive expressions for
the expectation of these integral in the case of discrete random fields. More precisely,
we are interested in white noise and in positively correlated Gaussian random fields.
Now, another way to obtain discrete functions is to discretize a smooth function (or
random field). This is what we do in Section 4, and we give the limits as the tile
size goes to 0, showing that the level curvature integral behaves well, whereas the
level perimeter integral has a bias that we quantify. We illustrate this with some
numerical experiments. In the Appendix, we have postponed some technical proofs
and also we propose an unbiased way to compute the level perimeter integral.

2. Geometry of discrete functions

2.1. The hexagonal tiling case

Figure 2.1. On the left: Hexagonal tiling restricted to a square domain (0, T )2.
On the right: the domains U (black square), Uε (red rectangle) and U ε (blue
square).

We first introduce some notations for the tiling with hexagons. For θ ∈ R, we
will denote by eθ the unit vector of coordinates (cos θ, sin θ). Let ε > 0 and let us
consider a regular tiling with hexagons of “size” ε where the set of the centers of the
hexagons is given by

Cε =
{
k1
√

3εe0 + k2
√

3εeπ/3 ; k1, k2 ∈ Z
}

=
{
ε
((
k1 + 1

2k2

)√
3, 3

2k2

)
; k1, k2 ∈ Z

}
The distance between the centers of two neighbouring hexagons is

√
3ε, the side

length of the hexagons is ε and the area of each hexagon is 3
√

3
2 ε2. The vertices of

the hexagons are the set of points Vε given by
Vε = Cε +

{
εeπ

6 +nπ3 ; 0 6 n 6 5
}
.

On Figure 2.1, we show such a tiling with regular hexagons. The points of Cε are
plotted with black stars and the points of Vε are the vertices of the hexagons marked
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by small red circles. For z ∈ Cε we will denote by D(z, ε) the (open) hexagon of
center z and size ε. Notice that the distance between a vertex v ∈ Vε and the centers
of its three neighbouring hexagons is equal to ε, that is also the side length of the
hexagons.
Finally we will denote by Eε the set of edges. Each edge is a segment of length

ε between two neighbouring vertices of Vε and we will sometimes identify an edge
w ∈ Eε with its middle point. The set of edges is the union of three sets, depending
on the orientation of the edge, and that are denoted by Eπ/2ε , Eπ/6ε and E−π/6ε . In
order to remove boundary effects, when considering a square domain U = (0, T )2,
we will consider the enlarged domain U ε = (− ε

2 , T + ε
2)× (− ε

2 , T + ε
2) as well as the

restricted domain

Uε =
(

0,
√

3ε
⌊
T√
3ε

⌋)
×
(
ε

2 , 3ε
⌊
T + ε/2

3ε

⌋
− ε

2

)

such that
Uε ⊂ U ⊂ U ε.

This will ensure that no edge (seen as an open segment) of the tiling in Uε intersects
∂Uε, and that each midpoint w ∈ Eε ∩Uε is the middle of two centers in Cε ∩U ε (see
Figure 2.1 right).
To give some order of magnitudes, notice that the cardinality of the different sets

of points are

|Cε ∩ U | '
2

3
√

3
T 2

ε2 , |Eε ∩ U | '
2√
3
T 2

ε2 and |Vε ∩ U | '
4

3
√

3
T 2

ε2 .

These equivalents also hold when we consider Uε or U ε in place of U .
We denote by PCHex

ε (U ε) the set of piecewise constant functions on the hexagonal
tiling in U ε. A function f ∈ PCHex

ε (U ε) can be identified with the finite set of
values {f(y)}y ∈Cε ∩Uε . To have a function that is defined everywhere, we adopt
the convention that the value of f on an edge is equal to the mean value of its
two neighbouring centers, and the value at a vertex is the mean value of its three
neighbouring centers. For f ∈ PCHex

ε (U ε), we denote for each vertex v ∈ Vε, the three
ordered neighbouring values at v by f (1)(v) 6 f (2)(v) 6 f (3)(v). And for each w ∈ Eε,
we denote by f+(w) and f−(w), respectively the maximum and the minimum of the
two values of f on the two sides of w.

Proposition 2.1. — Let f ∈ PCHex
ε (U ε). The function f has a finite total

variation in Uε and for h ∈ Cb(R) and H a primitive of h, the level perimeter integral
of f satisfies

LPf (h, Uε) = ε
∑

w∈Eε ∩Uε

[
H
(
f+(w)

)
−H

(
f−(w)

)]
.

Moreover, the function f is of finite level total curvature integral and the level
total curvature integral of f satisfies

LTCf (h, Uε) = π

3
∑

v ∈Vε ∩Uε

[
H
(
f (3)(v)

)
+H

(
f (1)(v)

)
− 2H

(
f (2)(v)

)]
.
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In particular,

LPf (Uε) = ε
∑

w∈Eε ∩Uε

[
f+(w)− f−(w)

]

and

LTCf (Uε) = π

3
∑

v ∈Vε ∩Uε

[
f (3)(v) + f (1)(v)− 2f (2)(v)

]
.

Proof. — Let us start with the level perimeter integral. Since f ∈ PCHex
ε (U ε), for

any t ∈ R, the excursion set Ef (t) ∩ Uε is a union of hexagons (or parts of hexagons
on the boundary), and an edge w ∈ Eε is part of the boundary of Ef (t) in Uε if and
only if f−(w) < t 6 f+(w). We also recall that all edges in Eε have the same length,
that is equal to ε and that an edge in Uε is entirely contained in Uε. Moreover, since
Uε is bounded, t 7→ Per(Ef (t), Uε) is piecewise constant with compact support and
therefore we have, for h ∈ Cb(R), denoting H a primitive of h,

LPf (h, Uε) =
∫
R
h(t) Per (Ef (t), Uε) dt =

∫
R
h(t)

 ∑
w∈Eε ∩Uε

ε1If−(w)<t6 f+(w)

 dt

= ε
∑

w∈Eε ∩Uε

∫ f+(w)

f−(w)
h(t) dt = ε

∑
w∈Eε ∩Uε

[
H
(
f+(w)

)
−H

(
f−(w)

)]
.

Figure 2.2. The turning angle at a vertex v is else +π
3 if f (2)(v) < t 6 f (3)(v)

(since in that case the set {f > t} is made of one hexagon, see left figure) or
−π

3 if f (1)(v) < t 6 f (2)(v) (since in that case the set {f > t} is made of two
hexagons, see right figure).

For the level total curvature integral the computations are similar. The boundary
of an excursion set Ef (t) in Uε is a curve that is piecewise linear since it is made of
edges in Eε. Its curvature at regular points is then 0, and it has only corner points
at vertices v ∈ Vε, where the turning angle is else π

3 if f (2)(v) < t 6 f (3)(v) or −π
3 if

f (1)(v) < t 6 f (2)(v) (see Figure 2.2). Therefore

TOME 4 (2021)



1302 H. BIERMÉ & A. DESOLNEUX

LTCf (h, Uε) =
∫
R
h(t) TC (∂Ef (t) ∩ Uε) dt

=
∫
R
h(t)

 ∑
v ∈Vε ∩Uε

π

3
(
1If (2)(v)<t6 f (3)(v) − 1If (1)(v)<t6 f (2)(v)

) dt

= π

3
∑

v ∈Vε ∩Uε

∫ f (3)(v)

f (2)(v)
h(t) dt−

∫ f (2)(v)

f (1)(v)
h(t) dt

xš = π

3
∑

v ∈Vε ∩Uε

[
H
(
f (3)(v)

)
+H

(
f (1)(v)

)
− 2H

(
f (2)(v)

)]
. �

2.2. The square tiling case

Figure 2.3. On the left: a tiling with squares restricted to a square domain (0, T )2.
The centers (set Cε) of the squares are the black stars, and the vertices (set Vε)
are the points marked by a red circle. On the right: the domain U (black square)
and Uε (red square).

We now consider the case of a tiling with squares. This is the case used in practice
for digital images since they are defined on (square) pixels (contraction of picture
elements). Let ε > 0 and let us consider a regular tiling with squares of “size” (side
length) ε where the set of the centers of the squares is given by

Cε =
{
k1εe0 + k2εeπ/2 ; k1, k2 ∈ Z

}
= {ε(k1, k2) ; k1, k2 ∈ Z} .

The side length of the squares is ε and the area of each square is ε2. The vertices of
the squares are the set of points Vε given by

Vε = Cε +
{√

2
2 εeπ

4 +nπ2 ; 0 6 n 6 3
}

=
{(
k1 + 1

2

)
εe0 +

(
k2 + 1

2

)
εeπ/2 ; k1, k2 ∈ Z

}
.
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We will denote by Eε the set of edges. Each w ∈ Eε is a segment of length ε that is
else horizontal or vertical. For z ∈ Cε we will denote by D(z, ε) the (open) square of
center z and size ε. Finally, notice that the distance between a vertex v ∈ Vε and
the centers of its four neighbouring squares is equal to ε

√
2/2.

When considering a square domain U = (0, T )2 and ε > 0, we will define here the
restricted domain Uε = (0, εbT

ε
c)2. For the enlarged domain U ε, since we already

have that each midpoint w ∈ Eε ∩ Uε is the middle of two centers in Cε ∩ U (see
Figure 2.3 right), we can simply set U ε = U .
Let us notice that here we have

|Cε ∩ U | '
T 2

ε2 ; |Eε ∩ U | ' 2T
2

ε2 and |Vε ∩ U | '
T 2

ε2 .

The same approximations hold when U is replaced by Uε.
When dealing with a tiling with squares, the definition of connectivity is not unique.

Indeed we can say that two squares are neighbours if they have a common edge (this
is the 4-connectivity), or only as soon as they have a common corner (this is the
8-connectivity). Now, in fact, these two connectivities are “complementary”. Indeed,
if we want a discrete version of the Jordan curve theorem to hold, we have to state
it in the following way ([Ros79]) : the complement of a 4-connected simple closed
discrete curve (sequence of squares) is made of exactly two 8-connected components.
We will denote by PCSq

ε (U) the set of functions f defined on U that are piecewise
constant on the tiling with regular squares of size ε > 0. Such a function can be
simply identified to the finite set of values {f(z)}z ∈Cε ∩U . The value of f along an
edge is taken as being the mean value of its two neighbouring centers, while its value
at a vertex is given by the mean value of its four neighbouring centers. Since we have
to consider two different total curvatures according to the choice of connectivity, we
write TC4(∂Ef (t)∩Uε) and TC8(∂Ef (t)∩Uε) such that, for h a bounded continuous
function,

(2.1) LTCd
f (h, U) =

∫
R
h(t) TCd (∂Ef (t) ∩ U) dt, for d ∈ {4, 8}.

We denote for each vertex v ∈ Vε, the four ordered neighbouring values at v by
f (1)(v) 6 f (2)(v) 6 f (3)(v) 6 f (4)(v). And for each w ∈ Eε, we denote by f+(w) and
f−(w), respectively the maximum and the minimum of the two values of f on the
two sides of w.

Proposition 2.2. — Let f ∈ PCSq
ε (U). The function f has a finite total variation

in Uε and for h ∈ Cb(R) and H a primitive of h, the level perimeter integral of f
satisfies

LPf (h, Uε) = ε
∑

w∈Eε ∩Uε

[
H
(
f+(w)

)
−H

(
f−(w)

)]
.

Moreover, the function f is of finite level total curvature integral and the level
total curvature integrals of f satisfy

LTC4
f (h, Uε) = π

2
∑

v ∈Vε ∩Uε

[
H
(
f (1)(v)

)
+H

(
f (4)(v)

)
−H

(
f (3)(v)

)
−H

(
f (2)(v)

)]
+ π

∑
v ∈Vε ∩Uε

[
H
(
f (3)(v)

)
−H

(
f (2)(v)

)]
1Ic(v) = cross,
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and

LTC8
f (h, Uε) = π

2
∑

v ∈Vε ∩Uε

[
H
(
f (1)(v)

)
+H

(
f (4)(v)

)
−H

(
f (3)(v)

)
−H

(
f (2)(v)

)]
− π

∑
v ∈Vε ∩Uε

[
H
(
f (3)(v)

)
−H

(
f (2)(v)

)]
1Ic(v) = cross,

where c(v) = cross denotes the event that the configuration at v is “a cross ” (meaning
that f (1) and f (2) are achieved at two “opposite” squares (see Figure 2.5)).

Proof. — Let us start with the level perimeter integral. Since f ∈ PCSq
ε (U), for any

t ∈ R, the excursion set Ef (t)∩ Uε is a union of squares, and an edge w ∈ Eε is part
of the boundary of Ef (t) in Uε if and only if f−(w) < t 6 f+(w). We also recall that
all edges in Eε have the same length, that is equal to ε. Since t 7→ Per(Ef (t;Uε)) is
piecewise constant with compact support, we have, for h ∈ Cb(R) and H a primitive
of h,

LPf (h, Uε) =
∫
R
h(t) Per (Ef (t), Uε) dt =

∫
R
h(t)

 ∑
w∈Eε ∩U

ε1If−(w)<t6 f+(w)

 dt

= ε
∑

w∈Eε ∩Uε

∫ f+(w)

f−(w)
h(t) dt = ε

∑
w∈Eε ∩Uε

[
H
(
f+(w)

)
−H

(
f−(w)

)]
.

Figure 2.4. The turning angle at a vertex v is else +π
2 if f (3)(v) < t 6 f (4)(v)

(since in that case the set {f > t} is made of one square, see the left-most figure),
or −π

2 if f (1)(v) < t 6 f (2)(v) (since in that case the set {f > t} is made of three
squares, see the middle figure), or 0 if f (2)(v) < t 6 f (3)(v) and the configuration
at v is not a cross (since in that case the set {f > t} is made of two adjacent
squares, see the right-most figure).

For the level total curvature integral the computations are also similar to the
ones in the case of hexagons. However, we have to consider the two different types
of connectivity. The boundary of an excursion set Ef(t) in Uε is a curve that is
piecewise linear since it is made of edges in Eε. Its curvature at regular points is then
0, and it has only corner points at vertices v ∈ Vε, where the turning angle β is (see
Figure 2.4):

• β = π
2 if f (3)(v) < t 6 f (4)(v) ;

• β = −π
2 if f (1)(v) < t 6 f (2)(v) ;
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Figure 2.5. If f (2)(v) < t 6 f (3)(v) and the configuration at v is a cross (left
figure), the turning angle at a vertex v is π = π/2+π/2 (in 4−connectivity, since
it is equivalent to the “zoom” presented in the middle figure) or −π = −π/2−π/2
(in 8−connectivity, see the “zoom” on the right figure).

• If f (2)(v) < t 6 f (3)(v), then β = 0 if the configuration at v is not a “cross”
(see Figure 2.4), whereas if the configuration at v is a cross (see Figure 2.5),
then β = π in 4−connectivity and β = −π in 8−connectivity.

Therefore,

LTC4
f (h, Uε)

= π

2
∑

v ∈Vε ∩Uε

∫ f (4)(v)

f (3)(v)
h(t) dt−

∫ f (2)(v)

f (1)(v)
h(t) dt+ π

∑
v ∈Vε ∩Uε

1Ic(v) = cross

∫ f (3)(v)

f (2)(v)
h(t) dt

= π

2
∑

v ∈Vε ∩Uε

[
H
(
f (1)(v)

)
+H

(
f (4)(v)

)
−H

(
f (3)(v)

)
−H

(
f (2)(v)

)]
+ π

∑
v ∈Vε ∩U

[
H
(
f (3)(v)

)
−H

(
f (2)(v)

)]
1Ic(v) = cross.

For LTC8
f(h, Uε) the computation is the same, except that the +π in front of the

second sum is changed into −π. �

A convenient way to get rid of the connectivity ambiguity is to consider a kind of
“6-connectivity” by setting

LTC6
f (h, Uε) := 1

2
(
LTC4

f (h, Uε) + LTC8
f (h, Uε)

)
.

Then, the “cross” configuration doesn’t appear anymore in the formula, since, using
the above results, we simply have

LTC6
f (h, Uε) = π

2
∑

v ∈Vε ∩Uε

[
H
(
f (1)(v)

)
+H

(
f (4)(v)

)
−H

(
f (3)(v)

)
−H

(
f (2)(v)

)]
.

Remark 2.3. — Let us note that these formulas are of course linked with numerical
computations of discrete topology. Actually, when considering a set E ⊂ U we can
choose f ∈ PCSq

ε (U) corresponding to its discretization of size ε by taking f(z) = 1
when z ∈ Cε ∩E and f(z) = 0 otherwise. Now, since the values {f(z)}z ∈Cε ∩U are in
{0, 1} and those of f in {0, 1/4, 1/2, 3/4, 1}, one can take h ∈ Cb(R) a non-negative
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function with support in (3/4, 1) such that
∫
R h =

∫ 1
3/4 h = 1. On the one hand, we

clearly have

LTCd
f (h, Uε) =

∫ 1

3/4
TCd (∂Ef (t) ∩ Uε)h(t)dt

= TCd (∂Ef (1) ∩ Uε)
∫ 1

3/4
h(t)dt = TCd (∂Ef (1) ∩ Uε) .

On the other hand, choosing H(t) =
∫ t
−∞ h(t), since f (j)(v) ∈ {0, 1} for 1 6 j 6 4,

one has H(f (j)(v)) = f (j)(v) and

LTCd
f (h, Uε) = π

2
∑

v ∈Vε ∩Uε

[
f (1)(v) + f (4)(v)− f (3)(v)− f (2)(v)

]
± π

∑
v ∈Vε ∩U

[
f (3)(v)− f (2)(v)

]
1Ic(v) = cross.

Moreover, since f (1)(v) 6 . . . 6 f (4)(v), the only v ∈ Vε ∩ Uε that contributes to
the computation of LTCd

f(h, Uε) are those for which f (1)(v) = 0 and f (4)(v) = 1.
Among them we can distinguish three configurations. The first one when f (2)(v) = 0
and f (3)(v) = 1, only contributes to the second sum for cross events with +1; the
other ones contribute only to the first sum with +1 when f (2)(v) = f (3)(v) = 0 and
with −1 when f (2)(v) = f (3)(v) = 1. Hence it is enough to count the number of
such configurations. By the Gauss–Bonnet theorem, since the Euler characteristic
corresponds to the total curvature divided by 2π, this coincides with the algorithms
proposed for computing the Euler characteristic of discrete sets as for example
the function bweuler in Matlab [Gra71, Pra07] with respect to the two different
connectivities.

3. The mean geometry of discrete random fields

In this section we introduce (Ω,A,P) a complete probability space and replace
f by X ∈ PCHex

ε (U ε) or X ∈ PCSq
ε (U ε) defined through the real random variables

{X(z)}z ∈Cε ∩Uε . Then LP and LTC are now real random variables and we will focus
on their mean values given by expectations when they can be defined.

3.1. Perimeter and total curvature of a white noise

In this first part we investigate the case of a white noise obtained choosing
{X(z)}z ∈Cε ∩Uε independent identically distributed real random variables of com-
mon distribution function F . We will note XHex ∈ PCHex

ε (U ε) and XSq ∈ PCSq
ε (U ε)

according to the tiling when considering LTC.
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Proposition 3.1. — Assume that the X(z), z ∈ Cε ∩U ε are independent identi-
cally distributed on R with distribution function F . Then, for h ∈ Cb(R)∩L1(R), for
both the hexagonal and the square tiling case, LP and LTC have finite expectation
and we have

E (LPX (h, Uε)) = 2ε |Eε ∩ Uε|
∫
R
h(t)F (t)(1− F (t)) dt.

In the hexagonal case, we have

E (LTCXHex (h, Uε)) = 2π
∣∣∣VHex
ε ∩ Uε

∣∣∣ ∫
R
h(t)F (t)(1− F (t))

(
F (t)− 1

2

)
dt,

while in the square case we have

E
(
LTC4, 8

XSq(h, Uε)
)

= 2π
∣∣∣VSq
ε ∩ Uε

∣∣∣ ∫
R
h(t)F (t)(1− F (t))

[
(2F (t)− 1)± (1− F (t))F (t)

]
dt,

where we have the sign + for LTC4 and the sign − for LTC8.

Proof. — Note that choosing h ∈ Cb(R) ∩ L1(R) ensures that we can choose a
bounded primitive function H in such a way that H(X(z)) are bounded random
variables and therefore they all have finite expectation. It ensures that LP and LTC
have finite expectation as finite sums of such variables. Now, since the X(z), z ∈ Cε,
are independent identically distributed on R with distribution function F , we have
for any w ∈ Eε, (X−(w), X+(w)) d= (min(X1, X2),max(X1, X2)) where X1 and X2
are independent and follow the distribution F . Therefore,

E (LPX(h, Uε)) = ε |Eε ∩ Uε| E
(
H (max (X1, X2))−H (min (X1, X2))

)
.

Hence we have to compute

E (H(X2, 2)−H(X1, 2)) ,

where we use the notations of [AN01], meaning that X1, n 6 . . . 6 Xn, n are the or-
dered observations of X1, . . . , Xn, for n > 2. We will denote by Fk, n the distribution
function of Xk, n. In this setting, we have that for 1 6 k 6 n,

Fk, n(t) = IF (t)(k, n− k + 1), with Ix(k, n− k + 1) =
n∑

m=k

(
n

m

)
xm(1− x)n−m,

where Fk, n(t) = P(Xk, n 6 t). Now, we can write by Fubini Theorem, since h ∈ L1(R),

E (H(X2, 2)−H(X1, 2)) =
∫
R
h(t)E

(
1I t<X2, 2 − 1I t<X1, 2

)
dt

=
∫
R
h(t) (1− F2, 2(t))− (1− F2, 1(t)) dt

=
∫
R
h(t)2F (t)(1− F (t)) dt,

and this completes the proof of the formula for the level total perimeter.
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For the level total curvature, the computation is very similar, except that for the
hexagonal tiling we have now three independent random variables X1, X2 and X3
of the same distribution F , and we consider their max, min and median. We have

E (LTCXHex(h, Uε)) = π

3
∣∣∣VHex
ε ∩ Uε

∣∣∣E(H (X3, 3) +H (X1, 3)− 2H (X2, 3)
)
.

Now, as above we can write

E
(
H (X3, 3) +H (X1, 3)− 2H (X2, 3)

)
=
∫
R
h(t)E

(
1I t<X3, 3 + 1I t<X1, 3 − 21I t<X2, 3

)
dt

=
∫
R
h(t) (2F2, 3(t)− F3, 3(t)− F1, 3(t)) dt

= 3
∫
R
h(t)(1− F (t))F (t)(2F (t)− 1) dt

and this completes the proof of the formula for the level total curvature integral.
Finally for the square tiling we have now four independent random variables X1, X2,
X3 and X4 of the same law F to order. We have

E
(
H (X1, 4) +H (X4, 4)−H (X2, 4)−H (X3, 4)

)
=
∫
R
h(t)

(
F2, 4(t) + F3, 4(t)− F1, 4(t)− F4, 4(t)

)
dt

= 4
∫
R
h(t)

(
F (t)3(1− F (t))− F (t)(1− F (t))3

)
dt

= 4
∫
R
h(t)F (t)(1− F (t))(2F (t)− 1) dt.

Now, for any vertex v we also have 1Ic(v) = cross
d= 1Icross1IX2, 4 6 t<X3, 4 with

E
(
1Icross1IX2, 4 6 t<X3, 4

∣∣∣X2, 4, X3, 4
)

= 1
31IX2, 4 6 t<X3, 4 ,

since there are 2 configurations over 6 possible ones to get a cross. Thus

E
( (
H (X3, 4)−H (X2, 4)

)
1Icross

)
= 1

3

∫
R
h(t) (F2, 4(t)− F2, 3(t)) dt

= 2
∫
R
h(t)F (t)2(1− F (t))2 dt.

Finally, we get

E
(
LTC4

XSq(h, Uε)
)

= 2π
∣∣∣VSq
ε ∩ Uε

∣∣∣ ∫
R
h(t)F (t)(1− F (t))

[
(2F (t)− 1) + (1− F (t))F (t)

]
dt,

and

E
(
LTC8

XSq(h, Uε)
)

= 2π
∣∣∣VSq
ε ∩ Uε

∣∣∣ ∫
R
h(t)F (t)(1− F (t))

[
(2F (t)− 1)− (1− F (t))F (t)

]
dt. �

Notice that, as a consequence, we get

E
(
LTC6

XSq(h, Uε)
)

= 4π
∣∣∣VSq
ε ∩ Uε

∣∣∣ ∫
R
h(t)F (t)(1− F (t))

(
F (t)− 1

2

)
dt,
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Figure 3.1. First line: Left, a sample of a white noise with uniform distribution
of size 200 × 200 pixels; and right, excursion set for the level t = 1

2(3 −
√

5).
Second line: excursion sets for the levels t = 1

2 (left) and 1
2(−1 +

√
5) (right).

which is, up to a constant factor that depends on the geometry of the tiling (angles
between the edges and number of vertices), the same as E(LTCXHex(h, Uε)).
Let us also remark that choosing a distribution F such that F (1− F ) ∈ L1(R) we

can deduce that, for almost every t ∈ R,

E (Per(EX(t), Uε)) = 2ε |Eε ∩ Uε|F (t)(1− F (t)),

and similarly for the mean values of total curvatures. We insist on the fact that
this holds for almost every t. Actually, considering a Bernoulli noise of parameter
p ∈ (0, 1), the distribution function Fp has two jumps at t = 0 and t = 1 and
F−p (t)(1 − F−p (t)) has to be used instead of Fp(t)(1 − Fp(t)) to compute the mean
perimeter of the excursion set at these jumps values. We illustrate these results in
the case of tiling with squares on Figures 3.1 and 3.2. Here we consider the square
domain U = (0, 1)2 and ε = 1/200. The random field is a white noise with uniform
distribution on [0, 1] of size 200× 200 pixels, i.e. here F is continuous with F (t) = 0
for t < 0, F (t) = 1 for t > 1 and F (t) = t for t ∈ [0, 1] in such a way that
F (1− F ) ∈ L1(R).
This example leads us to two remarks. The first one is that the empirical curves

on one large sample are very close to the theoretical mean values, suggesting that
the variances of LPX and LTCX are very small. Computing these variances is doable
in theory and it would be an interesting direction for future investigations. The
second remark is the question of knowing if there is a relationship between the
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Figure 3.2. On the left, the perimeter of white noise with uniform distribution:
empirical values (plotted with stars) and theoretical curve of the mean perimeter
given by t 7→ 4

ε2 t(1−t). On the right, the total curvature: empirical values (plotted
with stars) and theoretical mean total curvatures given by t 7→ 2π

ε2 t(1−t)[(2t−1)±
(1− t)t].

values where t 7→ E(TCd(∂EX(t, Uε)))) crosses 0 and percolation thresholds. Indeed
in the hexagonal case, the percolation threshold is pc = 0.5 and this is also the
value tc at which t 7→ 2π

ε2 t(1 − t)(2t − 1) crosses 0. And in the square case, the
percolation threshold is pc ' 0.593 and tc = 1

2 + 1−
√

5
2 ' 0.618 is the positive zero of

t 7→ E(TC4(∂EX(t), Uε)), hence it seems that |pc − tc| is “small”, and studying this
fact to know if it can be generalized would be interesting.

3.2. Perimeter and total curvature of positively correlated Gaussian
fields

It is more difficult to get explicit computations when considering non-independent
random variables without adding assumptions on their distribution. In this section
we consider the discretization of a standard centered Gaussian stationary field X =
(X(x))x∈R2 , that is also positively correlated, with covariance function ρ, meaning
that Cov(X(x), X(y)) = ρ(x− y) > 0 with ρ(0) = 1. Note that the case where the
variance of X(x), given by σ2 := ρ(0), is not equal to 1 can easily be deduced from
this one considering X/σ. For ε > 0 we consider the discretization of X given by the
set of the values (X(z))z ∈Cε . The main quantities of interest will be
(3.1) βθ(ε) := Var (X(εeθ)−X(0)) = 2 (1− ρ(εeθ)) , for eθ ∈ S1.

Note that the behavior of βθ(ε) is linked with the regularity of the field. Actually,
mean square regularity is related to sample paths continuity for Gaussian fields
(see [AT07] for instance). Adding stationarity, one can deduce directional regularity
from the behavior of βθ(ε) when ε tends to zero. For instance, when there exists
α ∈ (0, 1] and λ2α(θ) > 0 such that ε−2αβθ(ε) → λ2α(θ) as ε goes to 0, one can
find a modification of X such that, for x ∈ R2, t ∈ R 7→ X(x + teθ) is almost
surely α′-Hölder continuous for any α′ < α (we refer the interested reader to [Bie19,
Part 2]). Let us also emphasize that when X is a.s. C1 one has ε−2βθ(ε) → λ2(θ),
where λ2(θ) = Var(∂θX(0)), with ∂θX the partial derivative of X in the direction eθ.
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When the field X is isotropic this value does not depend on θ and the common value
denoted as λ2 is usually called second spectral moment.
In the following Theorem 3.2 we focus on asymptotics for mean LP and LTC

obtained for the discretization of X on a tiling as ε goes to zero. Our results are
mainly based on ordered statistics of order 2 for LP, 3 for LTC in the hexagonal
tiling case and 4 for LTC in the square tiling case. Even with a Gaussian distribution,
there are few results available in our dependent setting and we need to impose extra
assumptions on the dependency given by the covariance function. In particular we
are working with positively correlated variables meaning that ρ is a non-negative
function. Moreover, we will need the following assumptions:
(A1) there exists α ∈ (0, 1] and real numbers λ2α(θ) > 0 such that

ε−2αβθ(ε) −→
ε→ 0

λ2α(θ),

for any edge orientation eθ of the tiling.
(A2) Assumption (A1) holds and ρ(εeθ) = ρ(εeπ/2) for any edge orientation eθ of

the tiling, hence we write λ2α the common value of λ2α(θ).
(A3) Assumption (A2) holds for the square tiling and ρ(εeπ/2)−ρ(ε(e0 +eπ/2)) > 0

and 1− 2ρ(εeπ/2) + ρ(ε(e0 + eπ/2)) > 0 with

ε−2α
(
1− 2ρ(εeπ/2) + ρ(ε(e0 + eπ/2))

)
−→
ε→ 0

0.

Theorem 3.2. — We consider the discretization Xε of a centered stationary
standard Gaussian and positively correlated random field X. Let h ∈ Cb(R)∩L1(R).
Then, under (A1),(√

3ε
)(1−α)

E
(
LPXHex

ε
(h, Uε)

)
−→
ε→ 0
L(U)× 2

π

(
1
3

3∑
i=1

√
λ2α(θi)

)∫
R
h(t)e−t2/2dt,

with {θi; 1 6 i 6 3} = {π/2,±π/6}, while

ε(1−α)E
(
LPXSq

ε
(h, Uε)

)
−→ L(U)× 2

π

(
1
2

2∑
i=1

√
λ2α(θi)

)∫
R
h(t)e−t2/2dt,

with {θ1, θ2} = {0, π/2}.
Moreover, under (A2),(√

3ε
)2(1−α)

E
(
LTCXHex

ε
(h, Uε)

)
−→
ε→ 0
L(U)× 1√

2π
λ2α

∫
R
h(t)te−t2/2dt.

Finally, under (A3), then

ε2(1−α)E
(
LTC6

XSq
ε

(h, Uε)
)
−→
ε→0
L(U)× 1√

2π
λ2α

∫
R
h(t)te−t2/2dt,

where we recall that LTC6 := 1
2(LTC4 + LTC8).

The proof of this theorem is technical and it is postponed to Appendix A.1

Remark 3.3. — When X is assumed to be a.s. C3 and isotropic, we have for all
t ∈ R,
E (Per(EX(t), U)) = 2L(U)C∗1(X, t) and E (TC(∂EX(t) ∩ U)) = 2πL(U)C∗0(X, t),
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where C∗1 and C∗0 are the Lipschitz–Killing curvatures densities (see [BDBDE19]),
given by

C∗1(X, t) = 1
4

√
λ2e

−t2/2 and C∗0(X, t) = (2π)−3/2λ2te
−t2/2,

where λ2 denotes the spectral moment of X corresponding to Var(∂1X(0))
= Var(∂2X(0)) by isotropy. Since

Var (∂jX(0)) = lim
ε→0

Var
(
X(εeθj)−X(0)

ε

)
= lim

ε→0
ε−2βθj(ε), for θ1 = 0 and θ2 = π

2 ,

the field X will satisfy (A1) with α = 1 and λ2α(θ) = λ2 for any orientation θ by
isotropy, as soon as ρ is non-negative in order to ensure the positive dependence
assumption. Hence, since it also satisfies (A2) by isotropy, by Theorem 3.2 we obtain
for any h ∈ Cb(R) ∩ L1(R),

E
(
LPXHex

ε
(h, Uε)

)
−→
ε→ 0

4
π
× E(LPX(h, U))

and E
(
LTCXHex

ε
(h, Uε)

)
−→
ε→ 0

E(LTCX(h, U)),

with
E (LPX(h, U)) =

∫
R
h(t)E (Per(EX(t), U)) dt

and E (LTCX(h, U)) =
∫
R
h(t)E (TC(∂EX(t) ∩ U)) dt.

It follows that we have a weak-convergence

E
(
Per

(
EXHex

ε
(t), Uε

))
⇀
ε→ 0

4
π
× E (Per(EX(t), U))

and E
(
TC

(
∂EXHex

ε
(t) ∩ Uε

))
⇀
ε→0

E (TC(∂EX(t) ∩ U)) .

Now, if we assume moreover that ρ(x) = ρ̃(‖x‖2) with ρ̃ a non-negative function
that is C2 on a neighbourhood of 0 and such that ρ̃′(0) < 0 and ρ̃′′(0) > 0 we easily
check, using Taylor formula, the additional assumptions for the square tiling and
also obtain the weak-convergence

E
(
Per

(
EXSq

ε
(t), Uε

))
⇀
ε→ 0

4
π
× E (Per (EX(t), U))

and E
(
TC6

(
∂EXSq

ε
(t) ∩ Uε

))
⇀
ε→ 0

E (TC (∂EX(t) ∩ U)) .

An example of such a field is given choosing ρ̃(r) = e−κ
2r, for some κ > 0, such that

λ2 = 2κ2. Note that the over-estimation for the perimeter, as remarked in [BDBDE19,
Figure 1], is now corrected with the multiplication by 4

π
for the theoretical value.

This is illustrated in Figure 3.3 where we have chosen ρ(x) = e−κ
2‖x‖2 for κ = 100,

U = (0, 1)2 and ε = 2−10 (that could also correspond to (0, 100)2, κ = 1 and
ε = 100× 2−10).
We can also illustrate Theorem 3.2 with some fractional fields that are not C1

anymore. Let us take for example the covariance function ρ(x) = e−κ
2α‖x‖2α for

α ∈ (0, 1). For such a covariance function, the results on the hexagonal tiling will
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hold with λ2α(θ) = 2κ2α. However even if we have ρ(εeπ/2) − ρ(ε(e0 + eπ/2) > 0
we get 1 − 2ρ(εeπ/2) + ρ(ε(e0 + eπ/2)) = (2α − 2)ε2α(κ2α + o(1)). Hence the square
tiling assumption for the total curvature (A3) fails in this case. Choosing instead an
anisotropic covariance function given by ρ(x) = e−κ

2α(x2α
1 +x2α

2 ) for x = (x1, x2) ∈ R2,
is enough to check all needed assumptions (A1), (A2) and (A3). We illustrate
this for the square tiling with α = 0.5 on Figures 3.4 and 3.5. Here we consider
U = (0, 1)2, κ = 100 and ε = 2−10 (that could also correspond to U = (0, 100)2,
κ = 1 and ε = 100× 2−10).
We also illustrate the resolution effect on Figure 3.6 where we still consider

U = (0, 1)2 given with a maximal resolution (minimal ε) εmin = 2−10 for 210 × 210

pixels and discretize the field for intermediate resolution ε = 2−k, for k ∈ {6, 7, 8}
and α = 0.5. Finally, Figure 3.7 presents in log-log scale the dependency of the
computation of the total variation LPXε(U) =

∫
R Per(EXε(t), U)dt (computed by a

Riemann sum for empirical values) compared to the theoretical values given with
the normalized spectral moment ε2αλ2α or considering the non asymptotic spectral
moment given by β0(ε) = 2(1 − exp(−(κε)α). Actually, if we could take h = 1 in
Theorem 3.2, we should observe LPXε(U) ∼ 2

√
2λ2α
π ε−(1−α) = 2

√
2
πε
−1√ε2αλ2α. We

can observe the 1 − α slope for log-log scale in Figure 3.7 but it seems also that
E(LPXε(U)) ∼ 2

√
2
πε
−1√β0(ε) gives a better estimate for smaller resolution. For

total curvature, we compute similarly the Riemann sum of the absolute empirical
values and we denote LaTCX(U) =

∫
R |TC(∂EX(t)∩U)|dt. Now the slopes are given

by 2(1−α) and similarly, a better match is obtained choosing β0(ε) instead of ε2αλ2α
in the theoretical formula.

Figure 3.3. Smooth isotropic correlated Gaussian field. Left: Perimeter, empirical
values plotted with red stars and theoretical curves of the mean perimeter given
by t 7→ 2

π

√
λ2e−t

2/2 in blue and t 7→ 2
π

√
ε−2β0(ε)e−t2/2 in green. Right: Total

curvature TC6 = 1
2(TC4 + TC8), empirical values plotted with red stars and

theoretical mean total curvatures given by t 7→ 1√
2πλ2te

−t2/2 in blue and t 7→
1√
2πε
−2β0(ε)te−t2/2 in green.
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Figure 3.4. First line: Left, a sample of a fractional correlated standard Gaussian
field of size 210 × 210 pixels for α = 0.5; and right, excursion set for the level
t = −1. Second line: excursion sets for the levels t = 0 (left) and 1 (right).

Figure 3.5. Fractional correlated Gaussian field for α = 0.5. Left: Perimeter,
empirical values (red stars) and theoretical curves of the mean perimeter given by
t 7→ ε−(1−α) 2

π

√
λ2αe−t

2/2 in blue and t 7→ 2
π

√
ε−2β0(ε)e−t2/2 in green. Right: Total

curvature TC6 = 1
2(TC4 + TC8), empirical values (red stars) and theoretical

mean total curvatures given by t 7→ ε−2(1−α) 1√
2πλ2αte

−t2/2 in blue and t 7→
1√
2πε
−2β0(ε)te−t2/2 in green.
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(a) ε = 2−8 (b) ε = 2−7 (c) ε = 2−6

Figure 3.6. A sample of a fractional correlated standard Gaussian field of size
210 × 210 pixels for α = 0.5 and different resolutions ε.

Figure 3.7. Log-log plots of TV and LTaC for fractional correlated standard
Gaussian fields of size 212 × 212 pixels for α varying between 0.1 (in blue) and
0.9 (in red), as functions of the resolution ε. Empirical values are plotted with
stars and theoretical ones are plotted with dashed curves for ε2αλ2α and with
continuous curves for β0(ε).

4. Discretization of smooth functions

In this section, we will study the limits of LPfε and LTCfε as the size ε of the
tiling goes to 0, when f is a smooth function. In particular, we would like to know
if the limits coincide with LPf and LTCf . For this aim, let U = (0, T )2 with T > 0
and we recall first the main formulas obtained in our previous paper [BD20] for a
smooth (C2) function f on R2, given by (1.1) and (1.3), for h ∈ Cb(R).
When h is also assumed to be C1 on R, denoting by H a primitive of h, a simple

computation leads to, for any vector e ∈ R2,

D2(H ◦ f)(x).(e, e) = h′(f(x)) 〈∇f(x), e〉2 + h(f(x))D2f(x).(e, e),

where 〈·, ·〉 is the Euclidean scalar product on R2. Using this formula with e = ∇f(x)⊥
|∇f(x)| ,

we get,
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LTCf (h, U) = −
∫
U
D2(H ◦ f)(x).

(
∇f(x)⊥
|∇f(x)| ,

∇f(x)⊥
|∇f(x)|

)
1I|∇ (H◦f) (x)|> 0 dx

= LTCH ◦ f (1, U) = LTCH ◦ f (U).

Hence we are reduced back to the case h = 1. In a similar way, decomposing a
bounded continuous function h into h = h1 − h2, where h1 = h + 2‖h‖∞ and
h2 = 2‖h‖∞ are both positive continuous and bounded functions, we get that

LPf (h, U) = LPH1◦f (U)− LPH2◦f (U).

Observe that we also have LPf(h, Uε) = LPH1◦f(Uε) − LPH2◦f(Uε), when f ∈
PCHex

ε (U ε) or f ∈ PCSq
ε (U ε). Since we can proceed similarly for the level total

curvature we will focus on the case where h = 1 in the following.
Usually, to infer an approximation error between the integral of a function and its

discretized version, one uses an approximation inequality like the Koksma–Hlawka
inequality [PS15]. Now here we will need a similar result that is given by the following
proposition.

Proposition 4.1 (Approximation Inequality). — LetW be a rectangular domain
in R2. Let g be a bounded, Lipschitz function defined on R2. Let us consider a regular
tiling with a shape Hε (that can be an hexagon, a square or a rhomb) of “size” ε. Let
aε = L(Hε) be the area of Hε and let dε be the diameter of Hε (that is the maximal
distance between two points of Hε). Let Cε be the set of centers of the tiles. Then

∣∣∣∣∣∣aε
∑

y ∈Cε ∩W
g(y)−

∫
W
g(x) dx

∣∣∣∣∣∣
6 dε

(
L(W ) Lip(g) + 2H1(∂W ) sup |g|

)
+ d2

ε Lip(g)L
(
H1(∂W ) + 4dε

)
.

Let A ⊂ W be an open or closed subset of W . Then the cardinality of Cε ∩ A is
bounded:

|Cε ∩ A| 6
1
aε
L (A⊕B(0, dε)) ,

where B(0, dε) is the ball of center 0 and radius dε, and ⊕ denotes the Minkowski
sum, defined by A⊕B := {x+ y ; x ∈ A and y ∈ B}.

Proof. — Let us start with the first part of the proposition. We notice that

aε
∑

y ∈Cε ∩W
g(y) =

∑
y ∈Cε ∩W

∫
Hε
g(y) dz.
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Let Wε := (Cε ∩W )⊕Hε. It satisfies Wε ⊂ W ⊕B(0, dε). Let Wε∆W = (W\Wε) ∪
(Wε\W ) denotes the symmetric difference between W and Wε. Then we have∣∣∣∣∣∣aε

∑
y ∈Cε ∩W

g(y)−
∫
W
g(x) dx

∣∣∣∣∣∣
6

∣∣∣∣∣∣aε
∑

y ∈Cε ∩W
g(y)−

∫
Wε

g(x) dx

∣∣∣∣∣∣+
∣∣∣∣∫
Wε

g(x) dx−
∫
W
g(x) dx

∣∣∣∣
6

∑
y ∈Cε ∩W

∫
Hε
|g(y)− g(y + z)| dz + L (Wε∆W ) sup |g|

6 Lip(g)dεL(Wε) + 2dεH1(∂W ) sup |g|.

Bounding L(Wε) by L(W ) + dεH1(∂W ) + 4d2
ε, we have the result.

For the second part of the proposition, we first notice that

L (∪y ∈Cε ∩A(y ⊕Hε)) =
∑

y ∈Cε ∩A
L(y ⊕Hε) = aε |Cε ∩ A| .

Now, since ∪y ∈Cε ∩A(y ⊕ Hε) is included in A ⊕ B(0, dε), we have the announced
inequality. �

Notations

When f is a C2 function on U ⊂ R2, we will use the notations

∇f(x) =
(
∂1f(x)
∂2f(x)

)
and D2f(x) =

(
∂11f(x) ∂12f(x)
∂21f(x) ∂22f(x)

)
,

for the partial derivatives of f at point x ∈ U .

4.1. Limits as the hexagon’s size goes to 0

Let U = (0, T )2 be a fixed domain. Let ε0 > 0, and let us consider a tiling with
regular hexagons of size ε ∈ (0, ε0]. Let f be a C2 function defined on U ε0 . We then
consider a discretized version fε ∈ PCHex

ε (U ε) of f defined by

(4.1) for a.e. x ∈ U ε, fε(x) =
∑

z ∈Cε ∩Uε
f(z)1ID(z, ε)(x),

where the D(z, ε) are the hexagonal tiles, and the boundary conditions are defined
as in Section 2.1. The formulas for LPfε(Uε) and LTCfε(Uε) were given in Proposi-
tion 2.1. We are interested in their limits as ε goes to 0, and the links with LPf (U)
(Equation (1.2)) and LTCf (U) (Equation (1.4)).
We first define

(4.2) L̃P
Hex

f (U) = 2
3

∫
U

(
|〈∇f(x), e0〉|+

∣∣∣〈∇f(x), eπ/3
〉∣∣∣+ ∣∣∣〈∇f(x), e2π/3

〉∣∣∣) dx,
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and

(4.3) L̃TC
Hex

f (U)

= π

3
√

3

∫
U

(3
2∂22f(x)− 1

2∂11f(x)
) (

1IC1(∇f(x))− 21IC0(∇f(x))
)
dx,

where C0 := {z ∈ R2 r {0}; arg(z) or arg(−z) ∈ [−π/6, π/6]} and C1 := {z ∈
R2 r {0}; arg(z) or arg(−z) ∈ (π/6, 5π/6)} = R2 r C0.

Theorem 4.2. — Let f be a function defined on U and assume that f is C2 on
U ε0 with ‖∇f‖∞ := maxUε0 ‖∇f‖ < +∞ and ‖D2f‖∞ := maxUε0 ‖D2f‖ < +∞.
For ε ∈ (0, ε0], let fε be the discretized version of f on U ε. Then,∣∣∣∣LPfε(Uε)− L̃P

Hex

f (U)
∣∣∣∣ 6 εC

Hex

LP
(f, U) .

where

C
Hex

LP
(f, U) 6 C

(
L(U) +H1(∂U)

) (
‖∇f‖∞ +

∥∥∥D2f
∥∥∥
∞

)
,

C being a numerical constant independent of everything.
If moreover f is C3 on U ε0 with ‖D3f‖∞ := maxUε0 ‖D3f‖ < +∞, let us introduce

the set

Oε(f, U) =
{
x ∈ U ;

∣∣∣∣∣
√

3
2 |∂2f(x)| − 1

2 |∂1f(x)|
∣∣∣∣∣ < 3ε

∥∥∥D2f
∥∥∥
∞

}
.

Then, there exists a constant CHex

LTC
(f, U) such that∣∣∣∣LTCfε(Uε)− L̃TC

Hex
f (U)

∣∣∣∣ 6 εC
Hex

LTC
(f, U) + C

∥∥∥D2f
∥∥∥
∞
L(O2ε(f, U)),

where

C
Hex

LTC
(f, U) 6 C

(
L(U) +H1(∂U)

) (∥∥∥D2f
∥∥∥
∞

+
∥∥∥D3f

∥∥∥
∞

)
.

Proof. — We detail here the result concerning the level perimeter integral of fε, as
ε goes to 0. We assume that fε is the discretized version of a C2 function f defined
on U ε0 with Uε ⊂ U ⊂ U ε ⊂ U ε0 for ε 6 ε0. We have by Proposition 2.1 that

LPfε(Uε) = ε
∑

w∈Eε ∩Uε

[
f+(w)− f−(w)

]
.

Let w ∈ Eε be an edge, that is the boundary between two neighbouring hexagons,
and let zw be the center of the right-most hexagon (i.e. among the two hexagon
centers, zw is the one that has the largest first coordinate). The center of the other
hexagon is then zw + ε

√
3e⊥w , where ew is the unit length vector oriented as the edge

w, and e⊥w is its π
2 -rotation. See also Figure 4.1 left. Then

f+(w)− f−(w) =
∣∣∣f (zw + ε

√
3e⊥w

)
− f(zw)

∣∣∣
= ε
√

3
∣∣∣〈∇f(zw), e⊥w

〉∣∣∣+ r1(zw, ε),
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Figure 4.1. Left: Each edge w is the boundary between two neighbouring
hexagons, and we denote by zw the center of the right-most hexagon. Right:
A vertical edge w, and its two associated vertices w+ and w−. Given the gradient
∇f(w), one can find the ordered values of f .

where |r1(zw, ε)| 6 3
2ε

2‖D2f‖∞. Now, each center z ∈ Cε is the zw of three different
w, with respective normal orientation e⊥w equal to e2π/3, eπ = −e0 and e4π/3 = −eπ/3.
Therefore, we can rewrite

LPfε(Uε)

= ε
∑

w∈Eε ∩Uε

(
ε
√

3
∣∣∣〈∇f(zw), e⊥w

〉∣∣∣+ r1(zw, ε)
)

= ε2√3
∑

z ∈Cε ∩U

(
|〈∇f(z), e0〉|+

∣∣∣〈∇f(z), eπ/3
〉∣∣∣+ ∣∣∣〈∇f(z), e2π/3

〉∣∣∣)+ r2(ε),

with |r2(ε)| 6 Cε (L(U)‖D2f‖∞ +H1(∂U)‖∇f‖∞), using the fact that |Cε ∩ U |
6 CL(U)ε−2. Then, since the area of each hexagon D(z, ε) is equal to aε = 3

√
3

2 ε2,
by Proposition 4.1, we finally get

LPfε(Uε)

= 2
3ε

2 3
√

3
2

∑
z ∈Cε ∩U

(
|〈∇f(z), e0〉|+

∣∣∣〈∇f(z), eπ/3
〉∣∣∣+ ∣∣∣〈∇f(z), e2π/3

〉∣∣∣)+ r2(ε)

= 2
3

∫
U

(
|〈∇f(x), e0〉|+

∣∣∣〈∇f(x), eπ/3
〉∣∣∣+ ∣∣∣〈∇f(x), e2π/3

〉∣∣∣) dx+ r3(ε),

with |r3(ε)| 6 εC
Hex

LP
(f, U), where

C
Hex

LP
(f, U) 6 C

(
L(U)

∥∥∥D2f
∥∥∥
∞

+H1(∂U)‖∇f‖∞
)
.

This ends the proof for the level perimeter integral.
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The proof for LTC also relies on Taylor formulas but now of order 2 instead of
1 and needs a clever grouping of vertices (see Figure 4.1 right). The details are
postponed to Appendix A.2. �

4.2. Limit as the square’s size ε goes to 0

Again, let U = (0, T )2 be a fixed domain. Let ε0 > 0, and let us now consider a
tiling with squares of size ε ∈ (0, ε0]. Let f be a C2 function defined on U ε0 . We
then consider a discretized version fε ∈ PCSq

ε (U ε) of f defined by
(4.4) for a.e. x ∈ U ε, fε(x) =

∑
z ∈Cε ∩Uε

f(z)1ID(z, ε)(x),

where the D(z, ε) are the square tiles, and the boundary conditions are defined as
in Section 2.2. The formulas for LPfε(Uε) and LTCfε(Uε) were given in Proposi-
tion 2.2. We are interested in their limits as ε goes to 0, and the links with LPf (U)
(Equation (1.2)) and LTCf (U) (Equation (1.4)).
We first define

L̃P
Sq

f (U) =
∫
U

(
|〈∇f(x), e0〉|+

∣∣∣〈∇f(x), eπ/2
〉∣∣∣) dx(4.5)

and

L̃TC
Sq

f (U) = π

2

∫
U
∂12f(x)

[
1I∇ f(x)∈Q+ − 1I∇ f(x)∈Q−

]
dx,(4.6)

where here Q+ = {z = (z1, z2) ∈ R2; z1z2 > 0} and Q− = {z = (z1, z2) ∈
R2; z1z2 < 0}.

Theorem 4.3. — Let f be a function defined on U and assume that f is C2 on
U ε0 with ‖∇f‖∞ := maxUε0 ‖∇f‖ < +∞ and ‖D2f‖∞ := maxUε0 ‖D2f‖ < +∞.
For ε ∈ (0, ε0], let fε be the square discretized version of f on U ε. Then,∣∣∣∣LPfε(Uε)− L̃P

Sq

f (U)
∣∣∣∣ 6 εC

Sq

LP
(f, U) .

where
C

Sq

LP
(f, U) 6 C

(
L(U) +H1(∂U)

) (
‖∇f‖∞ +

∥∥∥D2f
∥∥∥
∞

)
,

C being a numerical constant independent of everything.
If moreover f is C3 on U ε0 with ‖D3f‖∞ := maxUε0 ‖D3f‖ < +∞, let us introduce

the set
Uε(f, U) =

{
x ∈ U ; |∂1f(x)| < ε

∥∥∥D2f
∥∥∥
∞

or |∂2f(x)| < ε
∥∥∥D2f

∥∥∥
∞

}
.

Then, there exists a constant CSq

LTC
(f, U) such that for d ∈ {4, 6, 8},∣∣∣∣LTCd

fε(Uε)− L̃TC
Sq
f (U)

∣∣∣∣ 6 εC
Sq

LTC
(f, U) + C

∥∥∥D2f
∥∥∥
∞
L (U3ε(f, U)) ,

where
C

Sq

LTC
(f, U) 6 C

(
L(U) +H1(∂U)

) (∥∥∥D2f
∥∥∥
∞

+
∥∥∥D3f

∥∥∥
∞

)
.
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Figure 4.2. Left: Each edge w is the boundary between two neighbouring squares,
and we denote by zw the center of the left-most (if the edge is vertical) or bottom-
most (if the edge is horizontal) square. Right: A vertex v, and its four associated
centers. Given the gradient ∇f(v), one can find the ordered values of f .

Proof. — Let us consider the level perimeter integral of fε, as ε goes to 0, with
fε the square discretized version of a C2 function f defined on U ε0 . The compu-
tations here will be very similar to the ones in the hexagonal case. We have, by
Proposition 2.2, that

LPfε(U) = ε
∑

w∈Eε ∩U

[
f+(w)− f−(w)

]
.

Let w ∈ Eε be an edge, that is the boundary between two neighbouring squares,
and let zw be the center of the left-most (if the edge is vertical), or bottom-most (if
the edge is horizontal) square. The center of the other square is then zw + εe⊥w . See
Figure 4.2 left. Then

f+(w)− f−(w) =
∣∣∣f (zw + εe⊥w

)
− f(zw)

∣∣∣
= ε

∣∣∣〈∇f(zw), e⊥w
〉∣∣∣+ r1(zw, ε),

where |r1(zw, ε)| 6 ε2‖D2f‖∞, by Taylor formula. Now, each center z ∈ Cε is the
zw of two different w, with respective normal orientation e⊥w equal to e0 and eπ/2.
Therefore, we can rewrite

LPfε(Uε) = ε2 ∑
w∈Eε ∩Uε

(∣∣∣〈∇f(zw), e⊥w
〉∣∣∣+ r1(zw, ε)

)
= ε2 ∑

z ∈Cε ∩Uε

(
|〈∇f(z), e0〉|+

∣∣∣〈∇f(z), eπ/2
〉∣∣∣)+ r2(ε),

with |r2(ε)| 6 Cε (L(U)‖D2f‖∞ +H1(∂U)‖∇f‖∞), using the fact that |Cε ∩ U |
6 CL(U)ε−2. Then, since the area of each square D(z, ε) is equal to aε = ε2,
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by Proposition 4.1, we finally get
LPfε(Uε) = ε2 ∑

z ∈Cε ∩Uε

(
|〈∇f(z), e0〉|+

∣∣∣〈∇f(z), eπ/2
〉∣∣∣ |)+ r2(ε)

=
∫
U

(
|〈∇f(x), e0〉|+

∣∣∣〈∇f(x), eπ/2
〉∣∣∣) dx+ r3(ε),

with |r3(ε)| 6 εC
Sq

LP
(f, U), where CSq

LP
(f, U) 6 C (L(U)‖D2f‖∞ +H1(∂U)‖∇f‖∞).

This ends the proof for the level perimeter integral.
The proof for LTC is similar but more technical, and it is postponed to Appen-

dix A.3. �

4.3. Discretizing a smooth random field

In this section, we will see what happens to the mean level perimeter integral and
to the mean level total curvature integral of a discretized smooth stationary random
field, in both the hexagonal tiling and the square tiling cases. Roughly speaking, we
will see that the perimeter is always biased, whereas the total curvature is not, under
an additional isotropy assumption.
In all this section, as previously, we consider a fixed domain U = (0, T )2.
Proposition 4.4. — Let X be a stationary C2 random field on R2 such that

‖∇X‖∞ = max
Uε0
‖∇X‖ and

∥∥∥D2X
∥∥∥
∞

= max
Uε0

∥∥∥D2X
∥∥∥

have finite expectations for some ε0 > 0. Then LPX(U), L̃P
Hex

X (U) and L̃P
Sq

X (U) are
in L1(Ω).
Let us consider the discretization Xε ∈ PCHex

ε (Uε) as in (4.1), respectively Xε ∈
PCSq

ε (Uε) as in (4.4). Then LPXε(Uε) converges to L̃P
Hex

X (U), respectively to L̃P
Sq

X (U),
in L1(Ω), as ε goes to 0.
Moreover,

2
√

3
3 E(LPX(U)) 6 E

(
L̃P

Hex

X (U)
)
6

4
3E (LPX(U)) ,

respectively

E(LPX(U)) 6 E
(

L̃P
Sq

X (U)
)
6
√

2E (LPX(U)) .

Under the additional assumption that X is isotropic we have

E
(

L̃P
Hex

X (U)
)

= E
(

L̃P
Sq

X (U)
)

= 4
π
E (LPX(U)) .

To give some hints on the numerical values: 2
√

3
3 ' 1.15, 4

3 ' 1.33,
√

2 ' 1.41
and 4

π
' 1.27. This shows that, whatever the field, whatever the smallness of the

hexagons, there is always a bias when approximating the level perimeter integral
of the field X by the one of its discretized version on an hexagonal tiling. There is
also a bias on a square tiling, except if the smooth field X has a gradient that is
everywhere aligned with e0 or eπ

2
. The strongest bias is obtained when the gradient
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is everywhere aligned with the diagonal directions eπ
4
or e−π4 . These last remarks are

consequences of the proofs below.

Proof. — Under our assumptions it is clear that LPXε(Uε),LPX(U), L̃P
Hex

X (U) and
L̃P

Sq

X (U) are in L1(Ω). Moreover we also have that CHex
LP (X,U) and CSq

LP(X,U) are
in L1(Ω) so that the convergence results hold taking expectation from Theorems 4.2
and 4.3. According to the beginning of Section 4, by Fubini theorem and the station-
arity of X, we have

E (LPX(U)) =
∫
U
E (‖∇X(x)‖) dx = L(U)E (‖∇X(0)‖) ,

whereas we have

E
(

L̃P
Hex

X (U)
)

= 2
3L(U)E

(
|〈∇X(0), e0〉|+

∣∣∣〈∇X(0), eπ
3

〉∣∣∣+ ∣∣∣〈∇X(0), e 2π
3

〉∣∣∣)
and E

(
L̃P

Sq

X (U)
)

= L(U)E
((
|〈∇X(0), e0〉|+

∣∣∣〈∇X(0), eπ
2

〉∣∣∣)) .
Now, a simple computation shows that for any θ ∈ R, we have

√
3 6 | cos θ|+

∣∣∣∣cos
(
θ − π

3

)∣∣∣∣+ ∣∣∣∣cos
(
θ − 2π

3

)∣∣∣∣ 6 2.

Therefore
2
√

3
3 E (LPX(U)) 6 E

(
L̃P

Hex

X (U)
)
6

4
3E (LPX(U)) .

In the case of a tiling with squares, since for any θ ∈ R we have

1 6 | cos θ|+ | sin θ| 6
√

2,

we obtain

E (LPX(U)) 6 E
(

L̃P
Sq

X (U)
)
6
√

2E (LPX(U)) .

When the smooth stationary random field X is moreover isotropic, ∇X is rota-
tionally invariant and, according to [BB99, Proposition 4.10], its gradient direction
∇X(x)/‖∇X(x)‖ is independent from ‖∇X(x)‖ and uniform on S1. Thus we get,
for any θ ∈ [0, 2π),

E
(
|〈∇X(0), eθ〉|

)
= E (‖∇X(0)‖)

∫ 2π

0
|cos (ϕ− θ)| 1

2πdϕ = 2
π
E (‖∇X(0)‖) .

This shows that in the isotropic case

E
(

L̃P
Hex

X (U)
)

= E
(

L̃P
Sq

X (U)
)

= 4
π
E (LPX(U)) ,

and since 4
π
> 1, there is always a bias. �
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Remark 4.5. — Assuming moreover that E(‖∇X‖2
∞) < +∞, for any h : R→ R

bounded C1 function with derivative h′ ∈ Cb(R), and denoting by H a primitive of
h, then the random field H ◦X will satisfy the assumptions of Proposition 4.4. By
linearity this allows us to state the convergence results for LPXε(h, Uε) and obtain
in the isotropic case the weak convergence

E (Per(EXε(t), Uε)) ⇀
4
π
E (Per(EX(t), U)) ,

as remarked in the Gaussian setting of Section 3.2. This is illustrated on Figure 3.3
and it explains why computing perimeters from discrete images is not easy. However,
solutions exist to obtain non-biased estimates of the level perimeter integrals from
pixelated images, and we propose such a solution in the Appendix B. The idea
behind the unbiased estimation of the perimeter given in the Appendix B in the
square tilling framework is to linearly interpolate the function inside each dual
square and approximate the boundary of each level set by a polygonal line where
now segments are not only horizontal or vertical (as for the discretized function).
We show in the Appendix why this linear interpolate provides unbiased estimates
of the level perimeter integral. See also Figure 4.3, where we used a non-Gaussian
smooth isotropic shot noise field as considered in [BD20].

For the level total curvature, things are different: there is no bias. Intuitively
this can be explained by the fact that the total curvature is related to the Euler
characteristic that counts the number of connected components and the number of
holes, and these numbers remain (almost) the same when the function is discretized
on very small hexagons or squares.

Proposition 4.6. — Let X be a stationary C3 random field on R2 such that

‖∇X‖∞ = max
Uε0
‖∇X‖,

∥∥∥D2X
∥∥∥
∞

= max
Uε0

∥∥∥D2X
∥∥∥ and

∥∥∥D3X
∥∥∥
∞

= max
Uε0

∥∥∥D3X
∥∥∥

have finite expectations for some ε0 > 0. Then LTCX(U), L̃TC
Hex

X (U) and L̃TC
Sq

X (U)
are in L1(Ω).
Let us consider the discretization Xε ∈ PCHex

ε (Uε) as in (4.1), respectively Xε ∈
PCSq

ε (Uε) as in (4.4). Assume that P(〈∇X(0), eθ〉 = 0) = 0 for θ ∈ {π3 ,
2π
3 }, resp. for

θ ∈ {0, π2}. Then, LTCXε(Uε), resp. LTCd
Xε(Uε) for any d ∈ {4, 6, 8}, converges to

L̃TC
Hex

X (U) in L1(Ω), resp. to L̃TC
Sq

X (U), as ε goes to 0.
Moreover, under the additional assumption that X is isotropic

E
(

L̃TC
Hex

X (U)
)

= E
(

L̃TC
Sq

X (U)
)

= E (LTCX(U)) .

Proof. — We begin with the proof of the square tiling discretization. Under our
assumptions it is clear that LTCX(U),LTCd

Xε(Uε) and L̃TC
Sq

X (U) are in L1(Ω). More-
over we also have CSq

LTC(X,U) in L1(Ω) and since L(Uε(X,U)) is bounded by L(U)
we can take the expectation in the a.s. inequality stated in Theorem 4.3. Now we
have by Fubini theorem and stationarity,

E (L(Uε(X,U))) = L(U)P
(
|∂1X(0)| < ε

∥∥∥D2X
∥∥∥
∞

or |∂2X(0)| < ε
∥∥∥D2X

∥∥∥
∞

)
.
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But for j = 1, 2,

P
(
|∂jX(0)| < ε

∥∥∥D2X
∥∥∥
∞

)
6 P

(
|∂jX(0)| < ε1/2

)
+ P

(∥∥∥D2X
∥∥∥
∞
> ε−1/2

)
6 P

(
|∂jX(0)| < ε1/2

)
+ ε1/2E

(∥∥∥D2X
∥∥∥
∞

)
by Markov inequality. Since limε→0 P(|∂jX(0)| < ε1/2) = P(∂jX(0) = 0) = 0 by
assumption, we can conclude that L(Uε(X,U)) converges to 0 in L1(Ω) and thus in
probability. Hence ‖D2X‖∞L(Uε(X,U)) converges to 0 in probability and since the
variables {‖D2X‖∞L(Uε(X,U)); ε ∈ (0, ε0]} are uniformly integrable (because they
are uniformly bounded by L(U)‖D2X‖∞) we also have that ‖D2X‖∞L(Uε(X,U))
converges to 0 in L1(Ω). According to Theorem 4.3 this implies that LTCd

Xε(Uε)
converges to L̃TC

Sq

X (U) in L1(Ω). Moreover by stationarity we obtain

E
(

L̃TC
Sq

X (U)
)

= L(U)× π

2E
(
∂12X(0)

(
1I∇X(0)∈Q+ − 1I∇X(0)∈Q+

))
.

Now let us assume also that X is isotropic and remark that our assumption implies
that ∇X(0) 6= 0 a.s. Hence let us define Θ as the argument of the gradient ∇X(0)
and write

E
(

L̃TC
Sq

X (U)
)

= L(U)× π

2E (∂12X(0)g(Θ)) ,

where g is the π periodic function piecewise C1 defined by g(θ) = 1 if θ ∈ (0, π/2),
g(θ) = −1 if θ ∈ (π/2, π) and g(θ) = 0 if θ ∈ {0, π2}. Then, using the Fourier series
of g and the isotropy of X, we can show (see the Appendix A.4) that

E
(

L̃TC
Sq

X (U)
)

= L(U)× π

2E (∂12X(0)g(Θ))

= −L(U)E
D2X(0) ·

(
∇X(0)⊥,∇X(0)⊥

)
‖∇X(0)‖2


= E (LTCX(U)) .

Now let us consider the hexagonal tiling case. The first part follows similarly using
Theorem 4.2, once we have remarked that

Oε(X,U)

⊂
{
x ∈ U ;

∣∣∣〈X(x), eπ/3
〉∣∣∣ < 3ε

∥∥∥D2X
∥∥∥
∞

or
∣∣∣〈X(x), e2π/3

〉∣∣∣ < 3ε
∥∥∥D2X

∥∥∥
∞

}
.

Then, by stationarity we obtain

E
(

L̃TC
Hex

X (U)
)

= L(U)× π

3
√

3
E
([3

2∂22X(0)− 1
2∂11X(0)

] (
1I∇X(0)∈C1 − 21I∇X(0)∈C0

))
.
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Assuming moreover thatX is isotropic, again our assumption implies that∇X(0) 6=
0 a.s. As previously we define Θ as the argument of the gradient ∇X(0) and write

E
(

L̃TC
Hex

X (U)
)

= L(U)× π

3
√

3
E
([3

2∂22X(0)− 1
2∂11X(0)

]
g(Θ)

)
,

where g is now the π-periodic function define on [−π/6, 5π/6] by g = 1I(π/6, 5π/6)
− 21I(−π/6, π/6). Here again, using the Fourier series of g and the isotropy of X (see
the technical details in the Appendix A.4), we can show that

E
(

L̃TC
Hex

X (U)
)

= E (LTCX(U)) . �

Let us remark that assuming moreover that E(‖∇X‖3
∞) < +∞ and E(‖D2X‖2

∞)
< +∞, for any h : R→ R bounded C2 function with h′ and h′′ bounded, denoting
by H a primitive of h, the random field H ◦ X will also satisfies assumptions of
Proposition 4.6 as soon as P(h(X(0)) = 0) = 0. By linearity this allows us to
state the convergence results for LTCd

Xε(h, Uε) and obtain in the isotropic case the
weak-convergence (according to the set of admissible test functions h)

E
(
TCd (∂EXε(t) ∩ Uε)

)
⇀ E (TC(∂EX(t) ∩ U)) ,

as remarked in the Gaussian setting. It explains that there is no bias on the level
total curvature when discretizing a smooth isotropic stationary random field. This is
illustrated on Figure 3.3 for a Gaussian field and on Figure 4.3 for a smooth isotropic
shot noise field. This last figure also shows the robustness of TC with respect to the
scales of resolution.

Remark 4.7. — Let us notice that by the formula for LTCXε in Proposition 2.1,
we have in the hexagonal tiling case,

LTCXε(Uε) = π

3
∑

v ∈Vε ∩Uε

[
X(3)(v) +X(1)(v)− 2X(2)(v)

]
.

We see that it involves X(2)(v), that is the median value around v. In the square
tiling case, there are two median values given by X(2)(v) and X(3)(v). Hence we have
here shown an interesting link between median value and curvature since, as ε goes
to 0, the limit of LTCXε(Uε) is, in expectation, the curvature of the smooth function
X. This link was already well-known in the field of mathematical image processing
where the median filter, a commonly used filtering method for images, converges
(when iterated) to the so-called mean curvature motion (see [Cao03] for instance).
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Figure 4.3. Top line: on the left, a sample on (0, 1)2 of a smooth shot noise random
field X with Gaussian kernel [BD20] on a digital image of size 4000×4000 pixels,
i.e. field Xε with here ε = 1/4000. On the right, same field X but now discretized
on a 62× 62 pixels grid. It corresponds to a “scale” s = 6, since 62 = b4000/2sc
with s = 6. Bottom line: on the left, the perimeter of the excursion sets of Xε

as a function of the level t (in abscissa) - only values of t multiples of .5 have
been used, hence the plot is a polygonal curve - for different scales s (different
colors). The plain curve is the perimeter as defined for discretized fields, the
dashed curve is the unbiased perimeter computed as in Appendix B, and the
dotted curve is 4/π times the unbiased perimeter. It fits quite well the plain
curve, illustrating Proposition 4.4. On the bottom right, the total curvature TC6

of the excursion sets of Xε as a function of the level t (in abscissa) - again, only
values of t multiples of .5 have been used, hence the plot is a polygonal curve -
for different scales s (different colors). As intuitively expected, and except for
the coarsest scale s = 6, whatever the size of the discretization, the values of the
total curvature remain almost the same.
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Appendix A. Detailed technical proofs

A.1. Proof of Theorem 3.2

We will first need the following result that can be found in [Ton90, p. 139]: when
(X1, . . . , Xn) is a centered exchangeable Gaussian vector with positive correlation,
meaning that Cov(Xi, Xj) = 1 if i = j and Cov(Xi, Xj) = ρ ∈ [0, 1) if i 6= j one has

(X1, . . . , Xn) d=
(√

ρZ0 +
√

1− ρZ1, . . . ,
√
ρZ0 +

√
1− ρZn

)
,

where Z0, . . . , Zn are i.i.d. standard Gaussian random variables. It then follows that,
since h ∈ L1(R),

E (H(X2, 2)−H(X1, 2))

=
∫
R
h(t)E

(
1I t<√ρZ0 +

√
1−ρZ2, 2 − 1I t<√ρZ0 +

√
1−ρZ1, 2

)
dt

=
∫
R
h(t)E

(
Φ
(
t−
√

1− ρZ1, 2√
ρ

)
− Φ

(
t−
√

1− ρZ2, 2√
ρ

))
dt,

where Φ denotes the distribution function of the standard Gaussian random variable
and Z1, 2 < Z2, 2 are the ordered statistics of the i.i.d. variables Z1, Z2.
We consider

E (H(X2, 2(ρε))−H (X1, 2(ρε))

=
∫
R
h(t)E

(
Φ
(
t−
√

1− ρεZ1, 2√
ρε

)
− Φ

(
t−
√

1− ρεZ2, 2√
ρε

))
dt,

where ρε = ρ(
√

3εeθ) with θ ∈ {π/2,±π/6} for hexagonal tiling or ρε = ρ(εeθ) with
θ ∈ {0, π/2} for square tiling corresponding to the edge orientations and the distance
between centers.
By Taylor Formula,

Φ
(
t−
√

1− ρεZi, 2√
ρε

)
= Φ

(
t
√
ρε

)
−
√

1− ρεZi, 2√
ρε

Φ′
(

t
√
ρε

)
+O

(
ε2α
)
,

where |O(ε2α)| 6 Cε2α(|Z1|+ |Z2|)2e−t
2/4 for some numerical constant C that may

change from one line to another one. Hence,

E
(

Φ
(
t−
√

1− ρεZ1, 2√
ρε

)
− Φ

(
t−
√

1− ρεZ2, 2√
ρε

))

=
√

1− ρε
ρε

Φ′
(

t
√
ρε

)
E (Z1, 2 − Z2, 2) +O

(
ε2α
)
,

with |O(ε2α)| 6 Cε2αe−t
2/4 and E(Z1, 2 − Z2, 2) = 2√

π
by [AN01, p. 96]. Hence

E
(

Φ
(
t−
√

1− ρεZ1, 2√
ρε

)
− Φ

(
t−
√

1− ρεZ2, 2√
ρε

))
=
√

1− ρε
2√
π
ϕ(t) +O

(
ε2α
)
,

where ϕ(t) = 1√
2πe
−t2/2. Now, we have to separate the tiling cases.
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First assume that we are in the hexagonal tiling case. Then we write

E
(
LPXHex

ε
(h, Uε)

)
= ε

3∑
i=1
|Eθiε ∩ Uε| × E

(
H
(
X2, 2

(
ρ
(√

3εeθi
)) )
−H

(
X1, 2

(
ρ
(√

3εeθi
)) ))

,

for {θ1, θ2, θ3} = {π/2,±π/6}. But |Eθiε ∩Uε| = |Cε∩Uε| ∼ ε−2 2
3
√

3L(U) for 1 6 i 6 3,
and by (A1),

√
1− ρε =

√
1− ρ

(√
3εeθi

)
=
√
βθi

(√
3ε
)
∼
(√

3ε
)α√λ2α(θi)

2 .

It follows that

ε(1−α)E
(
LPXHex

ε
(h, Uε)

)
−→ 4

π
L(U)3

α−1
2 × 1

3

3∑
i=1

√
λ2α(θi)

2

∫
R
h(t)
√
πϕ(t)dt.

On the other hand, for the square tiling case,

E
(
LPXSq

ε
(h, Uε)

)
= ε

2∑
i=1
|Eθiε ∩ Uε| × E

(
H(X2, 2(ρ(εeθi))

)
−H

(
X1, 2(ρ(εeθi))

)
,

with {θ1, θ2} = {0, π/2}, and |Eθiε ∩ Uε| = |Cε ∩ Uε| ∼ ε−2L(U) for i = 1, 2, with
by (A1) √

1− ρ(εeθi) =
√
βθi(ε) ∼ εα

√
λ2α(θi)

2 .

It follows that

ε(1−α)E
(
LPXSq

ε
(h, Uε)

)
−→ 4

π
L(U)×

1
2

2∑
i=1

√
λ2α(θi)

2

∫
R
h(t)
√
πϕ(t)dt.

Now, let us consider the level total curvature where we assume moreover that
ρ(εeθ) = ρ(εeπ/2) for any edge orientation and denote λ2α the common value in view
of (A2).
Under this assumption, in the hexagonal tiling, the three values to order form an

exchangeable vector and

E
(
LTCXHex

ε
(h, U)

)
= π

3 |Vε ∩ Uε|E
(
H(X1, 3(ρε)) +H(X3, 3(ρε))− 2H(X2, 3(ρε))

)
,

with, similarly to previously,

E
(
H(X1, 3(ρε)) +H(X3, 3(ρε))− 2H(X2, 3(ρε))

)
=
∫
R
h(t)E

(
2Φ

(
t−
√

1− ρεZ2, 3√
ρε

)
− Φ

(
t−
√

1− ρεZ1, 3√
ρε

)

−Φ
(
t−
√

1− ρεZ1, 3√
ρε

))
dt,
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where Z1, 3 < Z2, 3 < Z3, 3 are the ordered statistics of the i.i.d. variables Z1, Z2, Z3.
Then by Taylor Formula at order 2,

Φ
(
t−
√

1− ρεZi, 3√
ρε

)

= Φ
(

t
√
ρε

)
−
√

1− ρεZi, 3√
ρε

Φ′
(

t
√
ρε

)
+ Φ′′

(
t
√
ρε

)
1− ρε
ρε

Z2
i, 3 +O

(
ε3α
)
,

where |O(ε3α)| 6 Cε3α(|Z1| + |Z2| + |Z3|)3|e−t2/4 for some numerical constant C.
Therefore

E
(

2Φ
(
t−
√

1− ρεZ2, 3√
ρ

)
− Φ

(
t−
√

1− ρZ1, 3√
ρ

)
− Φ

(
t−
√

1− ρZ1, 3√
ρ

))

= Φ′
(
t
√
ρ

)
×
√

1− ρ
ρ

E (2Z2, 3 − Z1, 3 − Z3, 3)

+ 1
2Φ′′

(
t
√
ρ

)
1− ρ
ρ

E
(
2Z2

2, 3 − Z2
1, 3 − Z2

3, 3

)
+O

(
ε3α
)
,

where |O(ε3α)| 6 Cε3αe−t
2/4. But E(2Z2, 3 − Z1, 3 − Z3, 3) = 0 (see [AN01, p. 101])

and

E
(
2Z2

2, 3 − Z2
1, 3 − Z2

3, 3

)
= 2

((
1−
√

3
π

)
−
(

1 +
√

3
2π

))
= −3

√
3

π
.

Hence

E
(

2Φ
(
t−
√

1− ρεZ2, 3√
ρ

)
− Φ

(
t−
√

1− ρZ1, 3√
ρ

)
− Φ

(
t−
√

1− ρZ1, 3√
ρ

))

∼ −1
2Φ′′(t)31+α√3

π

λ2α

2 ε2α,

and since |Vε ∩ Uε| ∼ 2|Cε ∩ Uε| ∼ ε−2 4
3
√

3L(U), we get

ε2(1−α)E
(
LTCXHex

ε
(h, U)

)
−→ 3α−1
√

2π
λ2α

∫
R
h(t)te−t2/2dt.

Things are more complicated for the square tiling case and we only consider LTC6

:= 1
2(LTC4 + LTC8). By stationarity we obtain

E
(
LTC6

XSq
ε

(h, Uε)
)

= π

2 |Vε ∩ Uε|E
(
H (X1, 4(ρε)) +H (X4, 4(ρε))−H (X2, 4(ρε))−H (X3, 4(ρε))

)
,

where (Xi, 4(ρε))16 i6 4 denotes the ordered statistics of

(X1, X2, X3, X4) :=
(
X(0), X(εe0), X(εeπ/2), X(ε(e0 + eπ/2))

)
.
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Since we assume that ρ(εe0) = ρ(εeπ/2) := ρε, (X1, X2, X3, X4) has a covariance
matrix given by 

1 ρε ρε ρ̃ε
ρε 1 ρ̃ε ρε
ρε ρ̃ε 1 ρε
ρ̃ε 1 ρε ρε

 ,
where ρ̃ε = ρ(ε(e0+eπ/2)). It follows that (X1, X2, X3, X4) is no more an exchangeable
vector but under (A3) we can write

(X1, X2, X3, X4)
d=
(√

ρεZ0 +
√
ρε − ρ̃εW1,

√
ρεZ0 +

√
ρε − ρ̃εW2,

√
ρεZ0

+
√
ρε − ρ̃εW3,

√
ρεZ0 +

√
ρε − ρ̃εW4

)
,

where (W1,W2,W3,W4) equals in distribution toY5 +
√

1− 2ρε + ρ̃ε
ρε − ρ̃ε

Y1, Y6 +
√

1− 2ρε + ρ̃ε
ρε − ρ̃ε

Y2,−Y6

+
√

1− 2ρε + ρ̃ε
ρε − ρ̃ε

Y3,−Y5 +
√

1− 2ρε + ρ̃ε
ρε − ρ̃ε

Y4

,
with Z0, Y1, . . . , Y6 i.i.d. standard Gaussian variables. Hence, introducing δ1 = δ4
= −1 and δ2 = δ3 = 1,

E
(
H (X1, 4(ρε)) +H (X4, 4(ρε))−H (X2, 4(ρε))−H (X3, 4(ρε))

)
=
∫
R
h(t)E

 4∑
j=1

δjΦ
(
t−
√
ρε − ρ̃εWj, 4√
ρε

) dt.
Again by Taylor formula we get

E

 4∑
j=1

δjΦ
(
t−
√
ρε − ρ̃εWj, 4√
ρε

) = Φ′
(

t
√
ρε

)
×
√
ρε − ρ̃ε
ρε

E

 4∑
j=1

δjWj, 4


+ 1

2Φ′′
(

t
√
ρε

)
ρε − ρ̃ε
ρε

E

 4∑
j=1

δjW
2
j, 4

+O
(
ε3α
)
,

with |O(ε3α)| 6 Ce3αe−t
2/4. But (W1,W2,W3,W4) d= (−W1,−W2,−W3,−W4) im-

plies that

(W1, 4,W2, 4,W3, 4,W4, 4) d= (−W4, 4,−W3, 4,−W2, 4,−W1, 4)
so that

E (W2, 4 +W3, 4 −W1, 4 −W4, 4) = 0
and

E
(
W 2

2, 4 +W 2
3, 4 −W 2

1, 4 −W 2
4, 4

)
= 2E

(
W 2

2, 4 −W 2
1, 4

)
.
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But
E
(
W 2

2, 4 −W 2
1, 4

)
=

∑
σ ∈S4

E
((
W 2
σ(2) −W 2

σ(1)

)
1IWσ(1) 6Wσ(2) 6Wσ(3) 6Wσ(4)

)
and since we assume that

√
1−2ρε+ρ̃ε
ρε−ρ̃ε −→ 0

E
((
W 2
σ(2) −W 2

σ(1)

)
1IWσ(1) 6Wσ(2) 6Wσ(3) 6Wσ(4)

)
−→ E

((
Z2
σ(2) − Z2

σ(1)

)
1IZσ(1) 6Zσ(2) 6Zσ(3) 6Zσ(4)

)
,

where we introduced (Z1, Z2, Z3, Z4) := (Y5, Y6,−Y6,−Y5). It follows that if {σ(1),
σ(2)} = {1, 4} or {2, 3} then Zσ(2) = −Zσ(1) and

E
((
Z2
σ(2) − Z2

σ(1)

)
1IZσ(1) 6Zσ(2) 6Zσ(3) 6Zσ(4)

)
= 0.

So assume that {σ(1), σ(2)} 6= {1, 4} and 6= {2, 3}. Then Zσ(1) and Zσ(2) are
i.i.d. standard Gaussian variables. Moreover, Zσ(3) = −Zσ(1) or Zσ(3) = −Zσ(2).
If Zσ(3) = −Zσ(1) then Zσ(4) = −Zσ(2) and 1IZσ(1) 6Zσ(2) 6Zσ(3) 6Zσ(4) = 0 and again

E
((
Z2
σ(2) − Z2

σ(1)

)
1IZσ(1) 6Zσ(2) 6Zσ(3) 6Zσ(4)

)
= 0.

It only remains the case where Zσ(3) = −Zσ(2) and Zσ(4) = −Zσ(1) and

E
((
Z2
σ(2) − Z2

σ(1)

)
1IZσ(1) 6Zσ(2) 6Zσ(3) 6Zσ(4)

)
=
∫
R2

(
y2 − x2

)
1Iy>x1Iy6 0

1
2πe

−x
2+y2

2 dxdy

= − 1
2π

∫ 2π

0
cos(2θ)1Isin(θ)> cos (θ)1Isin(θ)6 0 dθ

∫ +∞

0
r3e−r

2/2dr

= − 1
π

∫ 5π/4

π
cos(2θ)dθ

= − 1
2π .

Note that the number of such permutations is equal to 8 (4 choices for σ(1) and 2
choices for σ(2)). We therefore deduce that

E
(
W 2

2, 4 −W 2
1, 4

)
−→ − 4

π
.

By (A3) we have ρε − ρ̃ε = 1− ρε + o(ε2α) = λ2α
2 ε2α + o(ε2α) and

E

 4∑
j=1

δjΦ
(
t−
√
ρε − ρ̃εWj, 4√
ρε

) = − 2
π

Φ′′(t)λ2αε
2α + o

(
ε2α
)
.

Hence we obtain
ε2(1−α)E

(
LTC6

XSq
ε

(h, Uε)
)

= π

2 ε
2 |Vε ∩ Uε| ε−2αE

(
H (X1, 4(ρε)) +H (X4, 4(ρε))−H (X2, 4(ρε))−H (X3, 4(ρε))

)
−→ 1√

2π
λ2α

∫
R
h(t)te−t2/2dt,
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since |Vε ∩ Uε| ∼ |Cε ∩ Uε| ∼ L(U)ε−2.

A.2. Technical details for the proof of Theorem 4.2

Let us consider the level total curvature integral of fε. Let us first remark that
the set Vε of vertices can be divided into two subsets: the subset V+

ε of vertices v+
that are on the top of a vertical edge, and the subset V−ε of vertices v− that are
on the bottom of a vertical edge. Recall that each vertical edge is identified with
its midpoint w ∈ Eπ/2ε in such a way that w + ε

2eπ/2 ∈ V
+
ε and the centers of its

three neigbouring hexagons are given by w + 3
2εeπ/2, w −

√
3

2 εe0 and w +
√

3
2 εe0,

while w− ε
2eπ/2 ∈ V

−
ε and the centers of its three neigbouring hexagons are given by

w − 3
2εeπ/2, w −

√
3

2 εe0 and w +
√

3
2 εe0. See also Figure 4.1 right. Note that for each

v+ ∈ V+
ε ∩ Uε one has v+ − εeπ/2 ∈ V−ε ∩ Uε. Hence, we can write

LTCfε(Uε) = π

3
∑

v ∈Vε ∩Uε

[
f (3)(v) + f (1)(v)− 2f (2)(v)

]
= π

3
∑

w∈Eπ/2
ε ∩Uε

g̃(w),

where for w ∈ Eπ/2ε we have defined

g̃(w) :=
[
f (3)(w+) + f (1)(w+)− 2f (2)(w+)

]
+
[
f (3)(w−) + f (1)(w−)− 2f (2)(w−)

]
,

with{
f (1)(w+), f (2)(w+), f (3)(w+)

}
=
{
f
(
w + 3

2εeπ/2
)
, f

(
w +

√
3

2 εe0

)
, f

(
w −

√
3

2 εe0

)}

{
f (1)(w−), f (2)(w−), f (3)(w−)

}
=
{
f
(
w − 3

2εeπ/2
)
, f

(
w +

√
3

2 εe0

)
, f

(
w −

√
3

2 εe0

)}
.

Using Taylor formula, we have

f
(
w + 3

2εeπ/2
)

= f(w) +
√

3ε
2

(√
3∂2f(w) + 3

√
3

4 ε∂22f(w) + ε2r1(w, ε)
)

f

(
w +

√
3

2 εe0

)
= f(w) +

√
3ε
2

(
∂1f(w) +

√
3

4 ε∂11f(w) + ε2r2(w, ε)
)

f

(
w −

√
3

2 εe0

)
= f(w) +

√
3ε
2

(
−∂1f(w) +

√
3

4 ε∂11f(w) + ε2r3(w, ε)
)

f
(
w − 3

2εeπ/2
)

= f(w) +
√

3ε
2

(
−
√

3∂2f(w) + 3
√

3
4 ε∂22f(w) + ε2r4(w, ε)

)
,
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with |ri(w, ε)| 6 3
√

3
4 ‖D

3f‖∞, for all 1 6 i 6 4. In the following, we assume that ε
is chosen small enough, such that ε‖D3f‖∞ 6 ‖D2f‖∞.
In order to compare the different values of f(w + ·), we have to distinguish two

cases.

Case 1. — assume that w /∈ Oε(U, f), where

Oε(U, f) :=
{
x ∈ U ;

∣∣∣∣∣12 |∂1f(x)| −
√

3
2 |∂2f(x)|

∣∣∣∣∣ < 3ε
∥∥∥D2f

∥∥∥
∞

}
.

Now, in a first sub-case, let us assume that |
√

3∂2f(w)| − |∂1f(w)| > 6ε‖D2f‖∞ and
note that it implies that ∇f(w) ∈ C1. Then for i = 1, 4, and j = 2, 3,

√
3 |∂2f(w)|+ εr̃i(w, ε) > |∂1f(w)|+ εr̃j(w, ε),

where r̃i(w, ε) = 3
√

3
4 ∂22f(w)− ε|ri(w, ε)| and r̃j(w) =

√
3

4 ∂11f(w) + ε|rj(w, ε)| satis-
fying |r̃k(w, ε)| 6 3

√
3

2 ‖D
2f‖∞ < 3‖D2f‖∞ for 1 6 k 6 4. It follows that

{
f (2)(w+), f (2)(w−)

}
=
{
f

(
w +

√
3

2 εe0

)
, f

(
w −

√
3

2 εe0

)}

and

g̃(w) =
√

3ε
2

(
3
√

3
2 ε∂22f(w) +

√
3

2 ε∂11f(w) + ε2
4∑
i=1

ri(w, ε)

− 2
(√

3
2 ε∂11f(w) + ε2

(
r2(w, ε) + r3(w, ε)

)))

= 3ε2

2

(3
2∂22f(w)− 1

2∂11f(w) + ε
(
r1(w, ε) + r4(w, ε)− r2(w, ε)− r3(w, ε)

))
= 3ε2

2
(
g(w) + ε

(
r1(w, ε) + r4(w, ε)− r2(w, ε)− r3(w, ε)

))
,

where

g(w) :=
(3

2∂22f(w)− 1
2∂11f(w)

) (
1IC1(∇f(w))− 21IC0(∇f(w))

)
.

In the second sub-case, let us assume that w is such that |∂1f(w)| − |
√

3∂2f(w)|
> 6ε‖D2f‖∞, which implies that w ∈ C0. Hence for i = 1, 4, and j = 2, 3,

√
3 |∂2f(w)|+ εr̃i(w, ε) < |∂1f(w)|+ εr̃j(w, ε),
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where r̃i(w, ε) = 3
√

3
4 ∂22f(w) + ε|ri(w, ε)| and r̃j(w, ε) =

√
3

4 ∂11f(w)− ε|rj(w, ε)|. It
follows that {f (2)(w+), f (2)(w−)} = {f(w + 3

2εeπ/2), f(w − 3
2εeπ/2)} and

g̃(w) =
√

3ε
2

(√
3ε∂11f(w) + 2ε2(r2(w, ε) + r3(w, ε))

− 2
(

3
√

3
2 ε∂22f(w) + ε2(r1(w, ε) + r4(w, ε))

))

= 3ε2

2
(
∂11f(w)− 3∂22f(w) + 2ε(r2(w, ε) + r3(w, ε)− r1(w, ε)− r4(w, ε))

)
= 3ε2

2
(
g(w) + 2ε(r2(w, ε) + r3(w, ε)− r1(w, ε)− r4(w, ε))

)
.

Case 2. — We consider now the case where w ∈ Oε(U, f). Let us first remark that
when |∂1f(w)| 6 12ε‖D2f‖∞, we directly get

|g̃(w)| 6 60
√

3ε2‖D2f‖∞.
Otherwise, when |∂1f(w)| > 12ε‖D2f‖∞, we may identify the different ordered
values, and obtain a similar bound. Let us sketch how it works by assuming for
instance that ∂if(w) > 0 for i = 1, 2. It follows that |

√
3∂2f(w) − ∂1f(w)| 6

6ε‖D2f‖∞ such that f (1)(w+) = f(w−
√

3
2 εe0) and therefore f (3)(w−) = f(w+

√
3

2 εe0).
Hence we can write

f (1)(w+) + f (3)(w+)− 2f (2)(w+)

=
(
f

(
w −

√
3

2 εe0

)
− f (3)(w+)

)
+ 2

(
f (3)(w+)− f (2)(w+)

)
and

f (1)(w−) + f (3)(w−)− 2f (2)(w−)

=
(
f

(
w +

√
3

2 εe0

)
− f (1)(w−)

)
+ 2

(
f (1)(w−)− f (2)(w−)

)
,

with {
f (2)(w+), f (3)(w+)

}
=
{
f

(
w +

√
3

2 εe0

)
, f
(
w + 3

2εeπ/2
)}

and {
f (1)(w−), f (2)(w−)

}
=
{
f

(
w −

√
3

2 εe0

)
, f
(
w − 3

2εeπ/2
)}

.

Therefore,

g̃(w) =
(
f

(
w +

√
3

2 εe0

)
− f (3)(w+) + 2(f (3)(w+)− f (2)(w+)

)

+
(
f

(
w −

√
3

2 εe0

)
− f (1)(w−) + 2(f (1)(w−)− f (2)(w−)

)
,
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so that
|g̃(w)| 6 3

√
3ε
(∣∣∣√3∂2f(w)− ∂1f(w)

∣∣∣+ 3
√

3ε
∥∥∥D2f

∥∥∥
∞

)
6 36

√
3ε2

∥∥∥D2f
∥∥∥
∞
.

To conclude, we use the two parts of Proposition 4.1 with a tiling with rhombi of
centers w ∈ Eπ/2 and area 3

√
3

2 ε2, and therefore we can find a numerical constant
C > 0 such that for all 0 6 ε 6 ε0 such that ε‖D3f‖∞ 6 ‖D2f‖∞, then∣∣∣∣LTCfε(Uε)− L̃TC

Hex
f (U)

∣∣∣∣
6 Cε

(∥∥∥D2f
∥∥∥
∞

+
∥∥∥D3f

∥∥∥
∞

) (
L(U) +H1(U)

)
+ C

∥∥∥D2f
∥∥∥
∞
L (Oε(U, f)⊕B(0, 3ε)) .

Now, since Oε(U, f) is defined as the set of x ∈ U such that ||∂1f(x)| − |
√

3∂2f(x)||
< 6ε‖D2f‖∞, by Taylor formula we have that, if x ∈ Oε(U, f) and y ∈ B(0, 3ε) then,
||∂1f(x+ y)| − |

√
3∂2f(x+ y)|| < 12ε‖D2f‖∞. Therefore,

Oε(U, f)⊕B(0, 3ε) ⊂ O2ε(U, f),
and this concludes the proof of Theorem 4.2. �

A.3. Technical details for the proof of Theorem 4.3

Let us consider the average level total curvature given by

LTC6
fε(Uε) := π

2
∑

v ∈Vε ∩Uε

[
f (1)
ε (v) + f (4)

ε (v)− f (3)
ε (v)− f (2)

ε (v)
]
,

and the “residual” given by
Rfε(Uε) := π

∑
v ∈Vε ∩Uε

[
f (3)
ε (v)− f (2)

ε (v)
]

1Ic(v) = cross.

Then, by Proposition 2.2 we have
LTC4

fε(Uε) = LTC6
fε(Uε) +Rfε(Uε) and LTC8

fε(Uε) = LTC6
fε(Uε)−Rfε(Uε).

For v ∈ Vε ∩ U , let us denote
g̃(v) := f (1)

ε (v) + f (4)
ε (v)− f (3)

ε (v)− f (2)
ε (v),

with {f (1)
ε (v), f (2)

ε (v), f (3)
ε (v), f (4)

ε (v)} being the increasing ordered values of the set
{f(v + ε

√
2

2 eαk), k = 0, 1, 2, 3}, where eαk = ±
√

2
2 e0 ±

√
2

2 eπ/2.
Now, writing the Taylor expansion of f at v, we have for k = 0, 1, 2, 3,

(A.1) f

(
v + ε

√
2

2 eαk

)
= f(v) + ε

2
(
± ∂1f(v)± ∂2f(v)

)
+ ε2rk(v, ε),

where |rk(v, ε)| 6 1
4‖D

2f‖∞, and where the ± signs are (+,+) when k = 0,
(−,+) when k = 1, (−,−) when k = 2 and (+,−) when k = 3. See also Figure 4.2
right.
Let Uε(f, U) be the set of points x ∈ U such that |∂1f(x)| < ε‖D2f‖∞ or |∂2f(x)|

< ε‖D2f‖∞. As for the hexagonal framework, for v ∈ Vε ∩U , we consider two cases.

ANNALES HENRI LEBESGUE



The effect of discretization 1337

Case 1. — Assume that v /∈ Uε(f, U). We thus have that |∂1f(v)| > ε‖D2f‖∞
and |∂2f(v)| > ε‖D2f‖∞, and therefore the ordered values can be identified with
in particular {f (1)

ε (v), f (4)
ε (v)} = {f(v + ε

√
2

2 eαk), k = 0, 2} if ∇f(v) ∈ Q+, while
{f (1)

ε (v), f (4)
ε (v)} = {f(v + ε

√
2

2 eαk), k = 1, 3} if ∇f(v) ∈ Q−. Since eαk+2 = −eαk for
k = 0, 1, f (1)

ε (v) and f (4)
ε (v) are achieved at two opposite squares and we have that

the configuration at v is not a cross (recall the definition of a cross configuration in
Proposition 2.2), and that

g̃(v) = f

(
v + ε

√
2

2 eαkv

)
+ f

(
v − ε

√
2

2 eαkv

)

− f
(
v + ε

√
2

2 eαkv+1

)
− f

(
v − ε

√
2

2 eαkv+1

)

= ε2

2
[
D2f(v).

(
eαkv , eαkv

)
−D2f(v).

(
eαkv+1 , eαkv+1

)]
+ ε3r̃(v),

= ε2g(v) + ε3r̃(v),

where we introduce g(v) = ∂12f(v)(1I∇f(v)∈Q+ − 1I∇f(v)∈Q−) and |r̃(v)| 6 ‖D3f‖∞.

Case 2. — Assume now that the vertex v ∈ Uε(f, U), and therefore min(|∂1f(v)|,
|∂2f(v)|) < ε‖D2f‖∞. If we also have that max(|∂1f(v)|, |∂2f(v)|) < 3ε‖D2f‖∞,
then we directly have, from Equation (A.1), that

|g̃(v)| 6 16ε2
∥∥∥D2f

∥∥∥
∞

and
∣∣∣f (3)
ε (v)− f (2)

ε (v)
∣∣∣ 6 8ε2

∥∥∥D2f
∥∥∥
∞
.

But now, if max(|∂1f(v)|, |∂2f(v)|) > 3ε‖D2f‖∞, to see how it works, without
loss of generality, we may assume for instance that ∂1f(v) > 3ε‖D2f‖∞ while
|∂2f(v)| < ε‖D2f‖∞. Then, using the Taylor expansion of Equation (A.1), we have
that {f (3)

ε (v), f (4)
ε (v)} = {f(v) + ε

2∂1f(v) + ε2r̃j(v, ε); j = 3, 4} and {f (1)
ε (v), f (2)

ε (v)}
= {f(v) − ε

2∂1f(v) + ε2r̃j(v, ε); j = 1, 2}, with |r̃j(v, ε)| 6 ‖D2f‖∞. Therefore, we
have that in that case, the configuration at v is not a cross and that

|g̃(v)| 6 4ε
∥∥∥D2f

∥∥∥
∞
.

To summarize, we have on the one hand

|Rfε(Uε)|

= π

∣∣∣∣∣∣
∑

v ∈Vε ∩Uε

[
f (3)
ε (v)− f (2)

ε (v)
]

1Ic(v) = cross

∣∣∣∣∣∣ 6 8πε2
∥∥∥D2f

∥∥∥
∞
|Vε ∩ Uε ∩ Uε(f, U)| .

And thus by the second part of Proposition 4.1 used in the framework of the tiling
with squares of side length ε (and thus diameter dε =

√
2ε), we get that there exists

a constant C such that

|Rfε(Uε)| 6 C
∥∥∥D2f

∥∥∥
∞
L
(
Uε(f, U)⊕B

(
0,
√

2ε
))
6 C

∥∥∥D2f
∥∥∥
∞
L (U3ε(f, U)) ,
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since from the definition of Uε(f, U) we have that Uε(f, U)⊕B(0,
√

2ε) ⊂ U3ε(f, U).
On the other hand, using g(v) = ∂12f(v)(1I∇ f(v)∈Q+ − 1I∇ f(v)∈Q−), we get

2
π

LTC6
fε(Uε) =

∑
v ∈Vε ∩Uε

g̃(v)

=
∑

v ∈Vε ∩Uε
ε2g(v) +

∑
v ∈Vε ∩Uε (f,U)

(
g̃(v)− ε2g(v)

)
+

∑
v ∈Vε ∩Uε (f, U)c

ε3r̃(v).

Using now the two parts of Proposition 4.1, and the different estimations obtained
above, we have the announced result, that is for d ∈ {4, 6, 8},∣∣∣∣LTCd

fε(Uε)−
π

2

∫
U
g(x) dx

∣∣∣∣ 6 εC
Sq

LTC
(f, U) + C

∥∥∥D2f
∥∥∥
∞
L (U3ε(f, U)) ,

where

C
Sq

LTC
(f, U) 6 C

(
L(U) +H1(∂U)

) (∥∥∥D2f
∥∥∥
∞

+
∥∥∥D3f

∥∥∥
∞

)
. �

A.4. Technical details for the proof of Proposition 4.6

• In the square tiling case:
We define Θ as the argument of the gradient ∇X(0) and we write

E
(

L̃TC
Sq

X (U)
)

= L(U)× π

2E (∂12X(0)g(Θ)) ,

where g is the π-periodic piecewise C1 function defined by g(θ) = 1 if θ ∈ (0, π/2),
g(θ) = −1 if θ ∈ (π/2, π) and g(θ) = 0 if θ ∈ {0, π2}. Now, as in [BD20, the
proof of Theorem 2], let us introduce the complex variables J = ‖∇X(0)‖eiΘ and
K = 1

4(∂22X(0)− ∂11X(0)− 2i∂12X(0)) so that
π

2E (∂12X(0)g(Θ)) = π=
(
E
(
Kg(Θ)

))
,

where = denotes the imaginary part of a complex number and K is the com-
plex conjugate of K. According to Dirichlet theorem, since for θ ∈ {0, π2} we
have defined g(θ) = 1

2(g(θ+) + g(θ−)), it follows that the partial Fourier series
of g given by SN(g)(θ) = ∑

|n|6N cn(g)ein θ, for N > 1 and θ ∈ [0, 2π], with
cn(g) = 1

2π
∫ 2π

0 g(θ)e−in θdθ, satisfy

∀ θ ∈ [0, 2π], SN(g)(θ) −→
N→+∞

g(θ).

Therefore, the Fejer sum σN(g) = 1
N

∑N−1
n=0 Sn(g) also converges pointwise towards g

with |σN(g)(θ)| 6 ‖g‖∞ = 1 for all N > 1 so that by Lebesgue theorem we have

E
(
Kg(Θ)

)
= lim

N→+∞
E
(
KσN(g)(Θ)

)
= lim

N→+∞

∑
|n|6N

(
1− |n|

N

)
cn(g)E

(
KeinΘ

)
.
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Under the additional assumption that X is isotropic, for any θ ∈ [0, 2π] we have

(J,K) d=
(
eiθJ, e2iθK

)
,

that implies that E
(
KeinΘ

)
= 0, for all n 6= 2. Then

E
(
Kg(Θ)

)
= c2(g)α2(1),

where, following notation of [BD20], we have α2(1) = E(Ke2iΘ). Now a simple
computation yields that c2(g) = −2i

π
and therefore

π

2E (∂12X(0)g(Θ)) = −2<(α2(1)).

But since E(∂jjX(0)) = 0 by stationarity of X, we exactly have also

−2<(α2(1)) = −E
D2X(0) ·

(
∇X(0)⊥,∇X(0)⊥

)
‖∇X(0)‖2

 = E(LTCX(U))
L(U) ,

following the proof of [BD20, Theorem 2] and using the fact that 1I‖∇X(0‖>0
= 1 a.s. with our assumptions.
• In the hexagonal tiling case:
As previously we define Θ as the argument of the gradient ∇X(0) and write

E
(

L̃TC
Hex

X (U)
)

= L(U)× π

3
√

3
E
([3

2∂22X(0)− 1
2∂11X(0)

]
g(Θ)

)
,

where g is the π-periodic function defined on [−π/6, 5π/6] by g = 1I(π/6, 5π/6) −
21I(−π/6, π/6).
Since X is isotropic we have for any angle θ, and rotation matrix Rθ, the following

equality in distribution(
D2X(0),∇X(0)

)
d=
(
RθD

2X(0)R−θ, Rθ∇X(0)
)
.

A first rotation of angle −π/6 yields

E
([3

2∂22X(0)− 1
2∂11X(0)

]
g(Θ)

)
= E

([
−
√

3∂12X(0) + ∂22X(0)
]
g1(Θ)

)
,

with g1(θ) = g(θ − π/6). A second rotation of angle π/6 yields

E
([3

2∂22X(0)− 1
2∂11X(0)

]
g(Θ)

)
= E

([√
3∂12X(0) + ∂22X(0)

]
g2(Θ)

)
,

with g2(θ) = g(θ + π/6). A third rotation of angle π/2 yields

E
([3

2∂22X(0)− 1
2∂11X(0)

]
g(Θ)

)
= E

([3
2∂11X(0)− 1

2∂22X(0)
]
g3(Θ)

)
,

with g3(θ) = g(θ − π/2). But note that we have g1 − g2 = 3g4 for

g4 =
(
1I(2π/3, π) − 1I(0, π/3)

)

TOME 4 (2021)



1340 H. BIERMÉ & A. DESOLNEUX

on [0, π), and g1 + g2 − 1
2g3 = −3

2g3 such that

E
([3

2∂22X(0)− 1
2∂11X(0)

]
g(Θ)

)
= −
√

3E
(
∂12X(0)g4(Θ)

)
− 1

2E
(

[∂22X(0)− ∂11X(0)] g3(Θ)
)
.

Since for any θ, {Θ = θ} ⊂ {〈∇X(0), eθ+π/2〉 = 0}, our assumptions imply Θ 6= θ
a.s. so that

E (∂12X(0)g4(Θ)) = E (∂12X(0)g̃4(Θ)) ,

and E ([∂22X(0)− ∂11X(0)]g3(Θ)) = E
(
[∂22X(0)− ∂11X(0)]g̃3(Θ)

)
,

where we set g̃k = gk on (0, π/3) ∪ (π/3, 2π/3) ∪ (2π/3, π) and g̃k(θ) = 1
2(gk(θ+) +

gk(θ−)) for θ ∈ {0, π/3, 2π/3} and extend it by π-periodicity. But, as previously

E (∂12X(0)g̃4(Θ)) = 2=E
(
Kg̃4(Θ)

)
= 2= (c2(g̃4)α2(1)) ,

and
E
(
[∂22X(0)− ∂11X(0)]g̃3(Θ)

)
= 4<E

(
Kg̃3(Θ)

)
= 4< (c2(g̃3)α2(1)) ,

with c2(g̃3) = 3
√

3
2π and c2(g̃4) = 3i

2π . Then
√

3E (∂12X(0)g4(Θ)) = 2
√

3 3
2π<(α2(1)) = 3

√
3

π
<(α2(1)),

and
1
2E
(
[∂22X(0)− ∂11X(0)]g̃3(Θ)

)
= 23

√
3

2π <(α2(1)) = 3
√

3
π
<(α2(1)),

so that
E
([3

2∂22X(0)− 1
2∂11X(0)

]
g(Θ)

)
= −3

√
3

π
× 2<(α2(1)),

and we conclude again that

E
(

L̃TC
Hex

X (U)
)

= L(U)×
(
− 2<(α2(1))

)
= E (LTCX(U)) .

Appendix B. Unbiased computation of the perimeter

We address here the following question: consider a function f defined on U , but
that we know only at the points x ∈ CSq

ε , the centers of the squares of a square
lattice of size ε. Given a value t, how can we compute in an unbiased way the
perimeter of the excursion set {f > t} in U ? In the previous sections, we saw that
if we compute the perimeter of fε, the function that is piecewise constant on the
squares of the tilling, we have a bias in the perimeter (with a multiplicative factor
4/π in the isotropic case). Now instead of considering fε and its perimeter, that will
be made of small edges of length ε that are always else vertical or horizontal, we
can consider a “linear” approximation of f in each dual square. More precisely: let
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v ∈ Vε be a vertex. It is then the center of a dual square (of side length also equal
to ε), and where the four ordered values at the four vertices of this dual square are
assumed to be such that f (1)(v) < f (2)(v) < f (3)(v) < f (4)(v). Assume that f is
smooth (at least C2), that ε is small enough, and that v is a “generic” vertex (no
cross configuration), and let z1, z2, z3 and z4 denote the 4 ordered centers). Then for
t ∈ R, the boundary of the excursion set {f > t} will go through the dual square
if and only if f (1)(v) < t 6 f (4)(v). Then in that case it can be approximated by a
small segment given by (see Figure B.1):

• If f (1)(v) < t 6 f (2)(v), the small segment is [A1B1] where A1 is the point on
[z1z2] given by

A1 = f (2)(v)− t
f (2)(v)− f (1)(v)z1 + t− f (1)(v)

f (2)(v)− f (1)(v)z2,

and B1 is the point on [z1z3] given by

B1 = f (3)(v)− t
f (3)(v)− f (1)(v)z1 + t− f (1)(v)

f (3)(v)− f (1)(v)z3.

The length of this segment is

Lε1, f (v, t) = ε
(
t− f (1)(v)

)√√√√ 1
(f (2)(v)− f (1)(v))2 + 1

(f (3)(v)− f (1)(v))2 .

• If f (2)(v) < t 6 f (3)(v), the small segment is [A2B2] where A2 is the point on
[z2z4] given by

A2 = f (4)(v)− t
f (4)(v)− f (2)(v)z2 + t− f (2)(v)

f (4)(v)− f (2)(v)z4,

and B2 is the point on [z1z3] given by

B3 = f (3)(v)− t
f (3)(v)− f (1)(v)z1 + t− f (1)(v)

f (3)(v)− f (1)(v)z3.

The length of this segment is

Lε2,f (v, t)

= ε

√√√√1 + ((t− f (1)(v)) (f (4)(v)− f (2)(v))− (t− f (2)(v)) (f (3)(v)− f (1)(v)))2

(f (3)(v)− f (1)(v))2 (f (4)(v)− f (2)(v))2 .

• If f (3)(v) < t 6 f (4)(v), the small segment is [A3B3] where A3 is the point on
[z2z4] given by

A3 = f (4)(v)− t
f (4)(v)− f (2)(v)z2 + t− f (2)(v)

f (4)(v)− f (2)(v)z4

and B3 is the point on [z3z4] given by

B3 = f (4)(v)− t
f (4)(v)− f (3)(v)z3 + t− f (3)(v)

f (4)(v)− f (3)(v)z4.
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The length of this segment is

Lε3, f (v, t) = ε
(
f (4)(v)− t

)√√√√ 1
(f (4)(v)− f (3)(v))2 + 1

(f (4)(v)− f (2)(v))2 .

Figure B.1. In each dual square, we compute the length of the segment that is
the linear approximation of the level line {f = t}.

Define
Lεf (t, U) :=

∑
v ∈VSq

ε ∩U

3∑
j=1

Lεj, f (v, t)1If (j) (v)<t6 f (j+1)(v).

The following proposition shows that this way of computing the perimeter is unbiased.
Proposition B.1. — Let f be a C2 function defined on U ε0 , for some ε0 > 0, such

that min(|∂1f(x)|, |∂2f(x)|) < max(|∂1f(x)|, |∂2f(x)|) for all x ∈ U ε0 . For h ∈ Cb(R),
let us define the level unbiased perimeter integral as

LuPε
f (h, U) :=

∫
R
h(f(t))Lεf (t, U) dt.

Then LuPε
f (h, U) converges to LPf (h, U) as ε goes to 0.

Proof. — By the coarea formula, since f is C2, we have

LPf (h, U) =
∫
R
h(t) Per (Ef (t), U) dt =

∫
U
h(f(x)) ‖∇f(x)‖ dx.

Using the definition of LuPε
f (h, U), we can write

LuPε
f (h, U) =

∫
h(f(t))Lεf (t, U) dt

=
∑

v ∈VSq
ε ∩U

3∑
j=1

∫
h(t)Lεj, f (v, t)1If (j) (v)<t6 f (j+1) (v) dt.

The four values f (k)(v), k = 1, 2, 3, 4 are given by {f(v + ε
√

2
2 eαk)} where the eαk

are the unit vectors ±
√

2
2 e0 ±

√
2

2 eπ2 . Therefore, using a first order Taylor expansion
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and denoting δ1(v) := min(|∂1f(v)|, |∂2f(v)|), resp. δ2(v) := max(|∂1f(v)|, |∂2f(v)|),
since we assume δ1(v) < δ2(v), we can write

f (1)(v) = f(v)− ε1
2 (δ1(v) + δ2(v)) + r1(v, ε),

f (2)(v) = f(v) + ε
1
2 (δ1(v)− δ2(v)) + r2(v, ε),

f (3)(v) = f(v)− ε1
2 (δ1(v)− δ2(v)) + r3(v, ε),

f (4)(v) = f(v) + ε
1
2 (δ1(v) + δ2(v)) + r4(v, ε),

where |rk(v, ε)| 6 ε2‖D2f‖ for all k, with ‖D2f‖ := Supx∈U ‖D2f(x)‖ < +∞. Then,
we have∫

R
h(t)Lε1, f (v, t)1If (1) (v)6 t6 f (2) (v) dt = h(f(v)) + ε2

2
δ1(v)
δ2(v)

√
δ1(v)2 + δ2(v)2 + r̃1(v, ε),

where |r̃1(v, ε)| 6 Cf, h, Uε
3, with Cf, h, U a constant that depends on f , h and U but

not on ε. In the following such a constant will be simply denoted C.
To compute the second integral, we first notice that ∀ t ∈ [f (2)(v), f (3)(v)], we have

Lε2, f (v, t) = ε

δ2(v)
√
δ1(v)2 + δ2(v)2 + r′2(v, ε),

with |r′2(v, t, ε)| 6 Cε2. Therefore we obtain∫
R
h(t)Lε2, f (v, t)1If (2) (v)6 t6 f (3) (v) dt

= h(f(v)) + ε2
(

1− δ1(v)
δ2(v)

)√
δ1(v)2 + δ2(v)2 + r̃2(v, ε),

where |r̃2(v, ε)| 6 Cε3.
The third integral is computed in a way analogous to the first one, and we get the

same approximation, namely∫
R
h(t)Lε3, f (v, t)1If (3) (v)6 t6 f (4) (v) dt = h(f(v)) + ε2

2
δ1(v)
δ2(v)

√
δ1(v)2 + δ2(v)2 + r̃3(v, ε),

where |r̃3(v, ε)| 6 Cf, h, Uε
3.

Summing these three estimates and noticing that
√
δ1(v)2 + δ2(v)2 = ‖∇f(v)‖, we

obtain
LuPε

f (h, U) =
∑

v ∈VSq
ε ∩U

ε2h(f(v)) ‖∇f(v)‖+ r̃(ε),

that converges to LPf (h, U) as ε goes to 0 thanks to Proposition 4.1. �
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