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1. Introduction

1.1. The multislice

Consider a sequence of positive integers κ = (κ1, . . . , κL) of length L > 2, and set

(1.1) n = κ1 + · · · + κL.

We will refer to the elements of [L] = {1, . . . , L} as colors, and write Ωκ for the
set of [L]−valued sequences in which each color ` ∈ [L] appears exactly κ` times:

Ωκ :=
{
ω = (ω1, . . . , ωn) ∈ [L]n :

n∑
i=1

1(ωi = `) = κ` for each ` ∈ [L]
}
.

This natural combinatorial set is sometimes called a multislice. It provides a
canonical interpretation for the classical multinomial coefficient:

|Ωκ| =
(

n

κ1, . . . , κL

)
.

The symmetric group Sn acts transitively on the multislice in the obvious way, by
permuting coordinates. In particular, transpositions induce a natural local random
walk on Ωκ, which consists in repeatedly picking two positions 1 6 i < j 6 n
uniformly at random and replacing the current state ω ∈ Ωκ with the new state

ωij := (ω1, . . . , ωi−1, ωj, ωi+1, . . . , ωj−1, ωi, ωj+1, . . . , ωn) .

This Markov chain is known as the transposition walk on the multislice, or multi-
urn Bernoulli–Laplace diffusion model with parameter κ. It can also be viewed as a
random walk on the Schreier graph Gκ = (Ωκ, Eκ), whose edge-set is given by

Eκ :=
{
{ω, ω′} ⊆ Ωκ :

n∑
i=1

1(ωi 6=ω′
i) = 2

}
.

Thanks to the degree of freedom in the choice of the parameter κ, the model is
rich enough to encompass several classical special cases, including:

(i) the random walk on the complete graph of order n, when κ = (1, n− 1);
(ii) the k−particle Bernoulli–Laplace diffusion on n sites, when κ = (k, n− k);
(iii) the transposition walk on Sn, corresponding to κ = (1, . . . , 1).
These fundamental examples have been studied in full detail, see in particu-

lar [BD06, DS81, DS87, Goe04, LL11, LY98, Mat88, Sca97, Sch05, Tey20]. In the
general case, however, understanding the precise impact of the parameter κ on
the mixing properties of the graph Gκ was suggested as an open problem several
times [Dia88, DS87, FI19]. Beyond the traditional “mixing times of Markov chains”
perspective, this question was recently shown in [FI19, Fil20, FOW19] to have re-
markable applications to the theory of Boolean functions on the multislice, see
Section 2.1 below for more details. In particular, the present paper was motivated
by a conjecture from [FOW19] regarding the so-called log-Sobolev constant of the
multislice, whose definition will be recalled in the next section.
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A sharp log-Sobolev inequality for the multislice 1145

Remark 1.1 (Coarsening). — There is an obvious partial ordering on our param-
eter space: say that κ′ is coarser than κ if it can be obtained from κ by repeatedly
merging two entries into one. Note that this operation simply amounts to identifying
certain colors, so that the transposition walk on Ωκ′ is a projection of the one on
Ωκ. In particular, the mixing behavior of the chain can only improve as κ becomes
coarser, with the case κ = (1, . . . , 1) of example (iii) being the worst. Our main
result will precisely quantify this qualitative statement.

1.2. Functional inequalities

One of the most powerful ways to quantify the mixing properties of a Markov
chain consists in establishing appropriate functional inequalities for the underlying
Dirichlet form. We shall here only recall the relevant definitions, and refer to the
seminal papers [BT03, DSC96] or the excellent survey [MT06] for a detailed account.
We start by turning the multislice Ωκ into a probability space by equipping it with
the uniform distribution. In particular, we regard functions f : Ωκ → R as random
variables, and write Eκ[f ] for the corresponding expectation:

Eκ[f ] := 1
|Ωκ|

∑
ω ∈Ωκ

f(ω).

The Dirichlet form of our chain is defined for every f, g : Ωκ → R by

(1.2) Eκ (f, g) := 1
2n

∑
16 i< j 6n

Eκ
[(
∇ijf

) (
∇ijg

)]
,

where (∇ijf)(ω) := f(ωij)− f(ω) is the discrete gradient.
Remark 1.2 (Scaling). — We have here chosen to work under the natural continu-

ous-time scaling where each of the
(
n
2

)
possible transpositions occurs at rate 1/n,

so that a coordinate gets refreshed at rate 1. We emphasize that this is a matter of
convention only: switching to discrete time amounts to nothing more that multiplying
the above Dirichlet form by 2/(n− 1).
Since Eκ(f, f) measures the local variation of f along a typical transition of the

chain, it is natural to compare it with the variance Varκ(f) and entropy Entκ(f),
which quantify the global variation of f across the whole state space:

Varκ(f) := Eκ
[
f 2
]
− E2

κ[f ],
Entκ(f) := Eκ [f log f ]− Eκ[f ] logEκ[f ].

All logs appearing in this paper are natural logarithms, and the last definition is of
course restricted to non-negative functions, with the standard convention 0 log 0 = 0.
With this notation at hand, the three classical functional inequalities read as follows:

• The Poincaré inequality holds with constant τ if
(1.3) Varκ(f) 6 τ Eκ(f, f), for all f : Ωκ → R.

• The modified log-Sobolev inequality holds with constant τ if
(1.4) Entκ(f) 6 τ Eκ (f, log f) , for all f : Ωκ → R+.
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1146 J. SALEZ

• The log-Sobolev inequality holds with constant τ if

(1.5) Entκ(f) 6 τ Eκ
(√

f,
√
f
)
, for all f : Ωκ → R+.

The optimal values of τ in these functional inequalities are respectively known as
the (inverse) Poincaré, modified log-Sobolev, and log-Sobolev constants of the chain.
They will be denoted by τrel(κ), τmls(κ) and τls(κ). These fundamental parameters
provide powerful controls on the underlying Markov semi-group, and have tight
connections to mixing times, concentration of measure, small-set expansion, and
hypercontractivity. We again refer to [BT03, DSC96, MT06] for a detailed account,
and to [HP18] for new characterizations. Let us simply note that the statements (1.3),
(1.4), (1.5) are essentially increasing in strength, in the sense that
(1.6) 2τrel(κ) 6 4τmls(κ) 6 τls(κ).
Perhaps surprisingly, the first two quantities turn out to be too rough to capture
the precise impact of κ on the mixing properties of the multislice Ωκ. Specifically,
we note the following dramatic insensitivity result, see Section 3.4 for details.

Lemma 1.3 (Insensitivity of Poincaré and modified log-Sobolev constants). —

τrel(κ) = 1 and τmls(κ) ∈
[1
2 , 1

]
,

regardless of the choice of the parameter κ.

In contrast, the much finer log-Sobolev constant τls(κ) happens to depend on κ in
a non-trivial way, and understanding the exact nature of this dependency is precisely
the aim of the present paper. Before we state our results, let us give a brief account
on this general problem and its broad range of applications.

1.3. Related works

As already mentioned, the multi-urn Bernoulli–Laplace model encompasses various
well-studied special cases. The simplest one is the random walk on the complete
n−vertex graph, obtained with κ = (1, n− 1). This example belongs to the short list
of chains whose log-Sobolev constant is known exactly, see the seminal paper [DSC96]
by Diaconis and Saloff-Coste.

Theorem 1.4 (Random walk on the complete graph, see Theorem A.1 in [DSC96]).

τls(1, n− 1) =


n log(n−1)

n−2 if n > 3
2 if n = 2.

A much richer example is the famous “Random Transposition” walk on the sym-
metric group Sn, which corresponds to the choice κ = (1, . . . , 1). A sharp estimate
on the log-Sobolev constant of this fundamental chain can be deduced from the
detailed representation-theoretic analysis conducted by Diaconis and Shahshahani
in their pioneering work [DS81].
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A sharp log-Sobolev inequality for the multislice 1147

Theorem 1.5 (Random transposition on the symmetric group, see [DS81]). —

log n 6 τls(1, . . . , 1︸ ︷︷ ︸
n times

) 6 4 log n.

Several years later, Lee and Yau found a more direct proof, based on what is
now known as the “martingale method” [LY98]. This approach also allowed them
to determine the order of magnitude of the log-Sobolev constant of the k−particle
Bernoulli–Laplace diffusion on n sites, thereby resolving an open problem raised by
Diaconis and Saloff-Coste in [DSC96].

Theorem 1.6 (Two-urn Bernoulli–Laplace diffusion model, see [LY98, Theo-
rem 5]). — There exists a universal constant ε > 0 such that for all 0 < k < n,

ε log
(

n2

k(n− k)

)
6 τls (k, n− k) 6 2

log 2 log
(

n2

k(n− k)

)
.

The implications of Theorems 1.5-1.6 are too numerous for all to be cited.
A particularly active direction consists in “transferring” these log-Sobolev esti-
mates to models with less symmetry in order to obtain sharp mixing-time bounds,
via the celebrated “comparison method” introduced by Diaconis and Saloff-Coste
[DSC93a, DSC93b]. Recent successful examples include the interchange process
on arbitrary graphs [AK20], or the exclusion process on high-dimensional prod-
uct graphs [HS21]. Beyond Markov chains, the well-known connection between
log-Sobolev inequalities and hypercontractivity provides another extremely fertile
ground for applications in discrete analysis and computer science. We refer to the
book [O’D14, Chapters 9 & 10] for details, and to the recent work [FOW19] for an
impressive list of references from combinatorics, computational learning, property
testing or Boolean functions, where Theorems 1.5-1.6 played a crucial role. Motivated
by these applications, Filmus, O’Donnell and Wu [FOW19] initiated the study of
the log-Sobolev constant τls(κ) for general κ. Their main result is as follows.

Theorem 1.7 (General bound, see [FOW19, Theorem 1]). — For any κ,

τls (κ) 6 2
log 2

L∑
`=1

log
(4n
κ`

)
.

Several remarkable consequences of this estimate can be found in the recent
works [FOW19, Fil20]. A quick comparison with Theorems 1.4, 1.5 and 1.6 shows
that the bound is of the right order of magnitude in the extreme case L = 2, but is
off by a factor of order n at the other extreme, L = n. Regarding what the correct
order of magnitude of τls(κ) should be for all ranges of κ, Filmus, O’Donnell and
Wu proposed the following beautifully simple dependency.

Conjecture 1.8 (See [FOW19, page 3]). — For all values of κ,

τls(κ) � log
(

n

κmin

)
,

where κmin := min{κ1, . . . , κL} and � means equality up to universal pre-factors.
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Note that the right-hand side decreases smoothly from log n down to 0 as κ
becomes coarser and coarser, in agreement with Remark 1.1. To better appreciate this
conjecture, consider the single-site dynamics obtained by projecting the multislice
onto a fixed coordinate i ∈ [n]: under our transposition walk, the variable ωi simply
gets refreshed at unit rate according to the marginal distribution

Pκ (ωi = `) = κ`
n
, ` ∈ [L].

The log-Sobolev constant of this trivial chain is well-known to be

τ triv
ls (κ) = n

n− 2κmin
log

(
n

κmin
− 1

)
� log

(
n

κmin

)
,

see [DSC96, Theorem A.1]. Although our probability space Ωκ is far from being
a product space, the above conjecture asserts that the transposition walk mixes
essentially as well as if the coordinates ω1, . . . , ωn were being refreshed independently.
A brief look at Theorems 1.4, 1.5 and 1.6 will convince the reader that this intuition
is correct in all known special cases.

Acknowledgements

The author warmly thanks Jonathan Hermon for his valuable comments on a
preliminary version of this work.

2. Results

2.1. Main estimate

Our main result is the determination of the log-Sobolev constant τls(κ) for all
values of the parameter κ, up to a (small) universal multiplicative constant.

Theorem 2.1 (Log-Sobolev constant of the multislice). — For all values of κ,

log
(

n

κmin

)
6 τls(κ) 6 4

log 2 log
(

n

κmin

)
.

This confirms Conjecture 1.8. We note that the improvement upon Theorem 1.7 can
be considerable if the dimension L is large. Specifically, the upper bound of Filmus,
O’Donnell and Wu is always super-linear in L, since the convexity of t 7→ t log t yields

(2.1)
L∑
`=1

log
(
n

κ`

)
> L logL,

for any choice of the parameter κ. In contrast, our result shows that
τls(κ) � logL,

as long as the vector κ = (κ1, . . . , κL) is reasonably balanced, in the (weak) sense that
its lowest entry is of the same order as the mean entry. In particular, our estimate
can be readily used to sharpen the dependency in L in the various quantitative
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results that were derived from Theorem 1.7 in [FOW19]. To avoid a lengthy detour
through hypercontractivity, we choose to leave the details to the reader, and to
instead describe two different applications: a sharp quantification of the “small-set
expansion” phenomenon for the multislice, and a general log-Sobolev inequality for
the colored exclusion processes.
Remark 2.2 (Sharpness of constants). — In our lower bound, the pre-factor in

front of the logarithm can not be replaced by any larger universal constant, since

τls(κ) = (1 + o(1)) log
(

n

κmin

)
,

in the special case κ = (1, n− 1), as per Theorem 1.4. Regarding the upper bound,
our pre-factor can not be improved by more than a log 2 factor. Indeed, we will prove

τls(κ) > (4− o(1)) log
(

n

κmin

)
,

in the special case κ = (bn/2c, dn/2e), see (3.14). In fact, the possibly loose log 2
term comes directly from the one appearing in Theorem 1.6, and any improvement
of the latter will immediately imply the same improvement in our upper bound.

2.2. Small-set expansion

Recall that the multislice is naturally equipped with a graph structure by declaring
two vertices ω, ω′ ∈ Ωκ to be adjacent if they differ at exactly two coordinates.
Following standard graph-theoretical notation, we write |∂A| for the edge boundary
of a subset A ⊆ Ωκ, i.e., the set of edges having one end-point in A and the other
outside A. Let us consider the problem of finding a constant ι(κ), as large as possible,
such that the isoperimetric inequality

(2.2) |∂A|
|A|
> ι(κ) log

(
|Ωκ|
|A|

)
,

holds for all non-empty subsets A ⊆ Ωκ. The left-hand side measures the conductance
of A, i.e. the facility for the walk to escape from A, given that it currently lies in
A. The presence of the logarithmic term on the other side constitutes a notable
improvement upon the more standard Cheeger inequality: instead of being constant,
the right-hand side of (2.2) gets larger as the set A gets smaller, thereby capturing
the celebrated small-set expansion phenomenon [FOW19, KKL88, LK99]. Our log-
Sobolev estimate allows us to determine the fundamental quantity ι(κ) for all values
of κ, up to a small universal constant.
Corollary 2.3 (Small-set expansion for the multislice). — The optimal constant

in (2.2) satisfies

(2.3) log 2
4

n

log
(

n
κmin

) 6 ι(κ) 6 n

log
(

n
κmin

) .
The proof will be given in Section 3.3. As in Remark 2.2, the universal constants

appearing in our estimate can not be improved, apart from perhaps removing the
log 2 factor.
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2.3. Colored exclusion process

A far-reaching generalization of the transposition walk on the multislice Ωκ consists
in allowing each of the

(
n
2

)
possible transpositions to occur at a different (possibly

zero) rate. More precisely, we fix a non-negative symmetric array G = (Gij)16 i, j 6n
(which we interpret as a weighted graph) and consider the following weighted version
of the Dirichlet form (1.2):

(2.4) EGκ (f, g) := 1
2

∑
16 i< j 6n

Gij Eκ
[(
∇ijf

) (
∇ijg

)]
.

The canonical setting – to which we shall here stick for simplicity – consists in
taking G to be the transition matrix of the simple random walk on a regular graph,
which we henceforth identify with G. The resulting process is known as the κ−colored
exclusion process on G, see [CLR10]. By varying the parameter κ, we obtain a rich
family of diffusion models on G including:

(1) the simple random walk on G, when κ = (1, n− 1);
(2) the k−particle exclusion process on G, when κ = (k, n− k);
(3) the interchange process on G, when κ = (1, . . . , 1).
Comparing the mixing properties of these three processes constitutes a rich and

active research problem, see [AK20, CLR10, CP19, HP20, Jon12, Mor06, Oli13,
Wil04]. Perhaps the most celebrated result in this direction is the remarkable fact
that their Poincaré constants coincide, as conjectured by Aldous and established by
Caputo, Liggett and Richthammer [CLR10].

Theorem 2.4 (Insensitivity of the Poincaré constant, see [CLR10]). — The
Poincaré constant τrel(κ,G) of the κ−colored exclusion process on G does not
depend on κ. In particular, it equals the Poincaré constant τrel(G) of the simple
random walk on G.

In a sense, this result asserts that the Poincaré constant is too “rough” to capture
the influence of the color profile κ on the mixing properties of the colored exclusion
process. It is thus natural to turn one’s attention to the finer log-Sobolev constant.

Question 2.5. — How does the log-Sobolev constant τls(κ,G) depend upon κ?

Our main result answers this question in the simple mean-field setting, where G
is the complete graph. However, it implies an estimate of τls(κ,G) for arbitrary G,
by means of the celebrated “comparison method” introduced by Diaconis and Saloff-
Coste [DSC93a, DSC93b]. A particularly pleasant observation here is that we do not
even need to build a comparison theory for the colored exclusion process: we can
simply recycle the one that has already been developed for the interchange process.
Specifically, let c(G) be the smallest number such that the functional inequality
(2.5) E(1, ..., 1)(f, f) 6 c(G) EG(1, ..., 1)(f, f),
holds for all f : Ω(1, ..., 1) → R. This fundamental quantity is known as the comparison
constant of the interchange process on G. It was shown in [AK20] that

c(G) . τmix(G),
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where . means inequality up to a universal multiplicative constant, and where
τmix(G) denotes the mixing time of the simple random walk on G. It is in fact
believed that
(2.6) c(G) � τrel(G),
see [HS21, Conjecture 2]. This refinement, inspired by an analogous relation for
the Zero-Range process [HS19c], is already known to hold for several natural fami-
lies of graphs ranging from low-dimensional tori [AK20] to high-dimensional prod-
ucts [HS21]. Those estimates can be combined with our main result to yield a general
log-Sobolev inequality for the colored exclusion process (see Section 3.4 for details):

Corollary 2.6 (Log-Sobolev inequality for colored exclusion). — We have

max
{

2τrel(G), log
(

n

κmin

)}
6 τls (κ,G) 6 4

log 2 c(G) log
(

n

κmin

)
.

To appreciate the sharpness of this general inequality, note that the lower and
upper bounds are of the same order in the following two generic situations:

• For families of graphs with c(G) � 1 (i.e. “well-connected” graphs), we obtain

τls (κ,G) � log
(

n

κmin

)
,

exactly as in the mean-field case. Note that this potentially constitutes a
considerable extension of our main result, since the class of graphs satisfying
c(G) � 1 is believed to contain all expanders, as per (2.6).
• For graphs satisfying the conjecture (2.6), in the regime κmin > εn, we get

τls (κ,G) � τrel(G).
This constitutes a multi-colored generalization of several estimates obtained

for two colors, including [LY98, Theorem 4] on the cycle and [HS21, Corol-
lary 2.6] on the hypercube.

Remark 2.7 (Mixing times). — One of the many interests of those log-Sobolev
estimates is that they provide powerful controls on the strong L∞−mixing time of
the process, see e.g., [MT06]. Let us here just give one concrete example: on the
d−dimensional hypercube, our work implies that the balanced colored exclusion
process with an arbitrarily fixed number L > 2 of colors mixes in time Θ(d2). The
special case L = 2 of this statement had been conjectured several years ago by
Wilson [Wil04], and was settled only recently [HP20].

We end this section with an intriguing possibility, which arises naturally in view
of Theorem 2.4 and of what happens in the mean-field case (Lemma 1.3).

Question 2.8 (Sensitivity of the modified log-Sobolev constant). — Can the
choice of the parameter κ affect τmls(κ,G) by more than a universal multiplicative
constant?

A negative answer would, in particular, substantially improve our current knowl-
edge on the mixing times of the interchange and exclusion processes on general
graphs. We note that, unlike our main result, the estimate on τmls(κ) provided by
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Lemma 1.3 can not be directly transferred to more general graphs, since the modified
log-Sobolev constant is notoriously not amenable to comparison techniques. This
severe drawback constitutes a strong point in favor of log-Sobolev inequalities (as
opposed to their modified versions) for mean-field interacting particle models, and
was one of the motivations for the present work.

3. Proofs

3.1. General strategy

Let us start with an elementary but crucial observation about the multislice.
Remark 3.1 (Recursivity). — If ω is uniformly distributed on Ωκ, then the condi-

tional law of (ω1, . . . , ωi−1, ωi+1, . . . , ωn) given {ωi = `} is uniform on Ωκ′ , where
κ′ = (κ1, . . . , κ`−1, κ` − 1, κ`+1, . . . , κL) .

Such a simple recursive structure suggests the possibility of proving Theorem 2.1 by
induction over the dimension n, using the “chain rule” for entropy (see formula (3.1)
below). This is in fact a classical strategy for establishing functional inequalities,
known as the “martingale method”. Introduced by Lu & Yau [LY93] in the context
of Kawasaki and Glauber dynamics, it has been successfully applied to various in-
teracting particle systems [CP07, Goe04, GQ03, HS19a, LY98, Yau97], as well as
other Markov chains enjoying an appropriate recursive structure [DPPP02, FOW19,
HS19b, JS02, JSTV04]. In particular, this is how Theorem 1.6 was proved. However,
as explained in detail in [FOW19], moving from the special case L = 2 covered
by Theorem 1.6 to the general case studied in Theorem 1.7 significantly compli-
cates the inductive argument, resulting in the loose L logL dependency mentioned
at (2.1). Here we introduce two simple ideas to bypass those complications and prove
Conjecture 1.8:

(i) instead of just a single site, we condition on a whole region being colored
with ` ∈ [L];

(ii) when averaging the contributions from the various colors, we assign more
weight to rare colors, which are the ones which really govern τls(κ). More
precisely, our decomposition (3.4) below gives weight 1− κ`

n
to the `−colored

region, whereas the traditional uniform average over all sites would give it
the weight κ`

n
.

Let us now implement those ideas. We fix an observable f : Ωκ → R+ once and for
all. To lighten notation, we drop the index κ from our expectations, and write simply

Ent(f) := E [f log f ]− E[f ] logE[f ],
for the entropy of f . If Z is a random variable on Ωκ, we define the conditional entropy
of f given Z by simply replacing all expectations with conditional expectations, i.e.

Ent(f |Z) := E[f log f |Z]− E[f |Z] logE[f |Z].
We then have the following elementary “chain rule”:

(3.1) Ent(f) = E [Ent(f |Z)] + Ent (E[f |Z]) .
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The choice Z = ωi is of course natural in light of Remark 3.1, and this was the
one adopted in the proofs of Theorems 1.6 and 1.7. However, as mentioned in (i)
above, we choose here to condition instead on the whole `−colored region

(3.2) ξ` := {i ∈ [n] : ωi = `} .

With Z = ξ`, the formula (3.1) becomes

(3.3) Ent(f) = E [Ent (f |ξ`)] + Ent (E [f |ξ`]) .

Following our second idea (ii), we multiply both sides of this identity by the “unusual”
weight 1 − κ`

n
and then sum over all colors ` ∈ [L]. Recalling (1.1), we obtain the

following formula, which will constitute the basis of our induction:

(3.4) (L− 1) Ent(f) =
L∑
`=1

(
1− κ`

n

)
E [Ent (f |ξ`)]︸ ︷︷ ︸

Σ1

+
L∑
`=1

(
1− κ`

n

)
Ent (E [f |ξ`])︸ ︷︷ ︸

Σ2

.

Our main task will consist in estimating the two terms Σ1 and Σ2 on the right-hand
side, in terms of the log-Sobolev constants of certain lower-dimensional multislices.
More precisely, we let κ\` denote the parameter obtained from κ by removing the
`−th entry, i.e.

κ\` := (κ1, . . . , κ`−1, κ`+1, . . . , κL) ,
and we will prove in the next section that

Σ1 6 (L− 2) max
`∈ [L]

{
τls
(
κ\`
)}
Eκ
(√

f,
√
f
)

;(3.5)

Σ2 6 max
`∈ [L]

{
2
(

1− κ`
n

)
τls (κ`, n− κ`)

}
Eκ
(√

f,
√
f
)
.(3.6)

Plugging those estimates into (3.4) yields a log-Sobolev inequality for Ωκ, thereby
establishing the following recursive estimate.

Proposition 3.2 (Recursive log-Sobolev estimate). — We have

(L− 1)τls (κ) 6 (L− 2) max
`∈ [L]

{
τls
(
κ\`
)}

+ max
`∈ [L]

{
2
(

1− κ`
n

)
τls (κ`, n− κ`)

}
.

From this, the upper bound in Theorem 2.1 follows by an easy induction over the
number L of colors, using the known log-Sobolev estimate for L = 2 (Theorem 1.5).
The details, as well as the proof of the lower bound, are provided in Section 3.3.

3.2. Main recursion

This section is devoted to proving the two technical estimates (3.5) and (3.6) which,
in view of the decomposition (3.4), establish Proposition 3.2.
Proof of the first estimate (3.5). — Conditionally on the `−colored region ξ`,

f may be regarded as a function of the remaining coordinates (ωi : i ∈ [n] \ ξ`),
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which form a uniformly distributed element of Ωκ\` . Consequently, the log-Sobolev
inequality for the multislice Ωκ\` gives

Ent (f |ξ`) 6
τls
(
κ\`
)

2(n− κ`)
∑

16 i< j 6n
E
[(
∇ij

√
f
)2

1(i /∈ ξ`, j /∈ ξ`)

∣∣∣∣∣ξ`
]
.

Note that the event in the indicator can be rewritten as {` /∈ {ωi, ωj}}, and that
we may impose the restriction {ωi 6= ωj} at no cost, since ∇ij

√
f = 0 on the event

{ωi = ωj}. Taking expectations and rearranging, we arrive at(
1− κ`

n

)
E [Ent (f |ξ`)] 6

τls
(
κ\`
)

2n
∑

16 i< j 6n
E
[(
∇ij

√
f
)2

1(ωi 6=ωj)1(` /∈{ωi, ωj})

]
.

Summing over all ` ∈ [L] yields
L∑
`=1

(
1− κ`

n

)
E [Ent (f |ξ`)] 6 (L− 2) max

`∈ [L]

{
τls
(
κ\`
)}
Eκ
(√

f,
√
f
)
,

which is exactly the claim made at (3.5). �

Proof of the second estimate (3.6). — Fix ` ∈ [L], and let us write
(3.7) E [f |ξ`] = F (ξ`) ,
for some non-negative function F = F`. The distribution of ξ` is uniform over all
κ`−element subsets of [n], and this is precisely the stationary distribution of the
occupied set in the κ`−particle Bernoulli–Laplace diffusion model on n sites. When
applied to the function F , the log-Sobolev inequality for this process reads as follows:

(3.8) Ent (E [f |ξ`]) 6
τls (κ`, n− κ`)

2n
∑

16 i< j 6n
E

(√F (ξij` )−√F (ξ`)
)2
 ,

where Aij denotes the set obtained from A by swapping the membership status of i
and j:

Aij :=


A ∪ {j} \ {i} if i ∈ A, j /∈ A
A ∪ {i} \ {j} if i /∈ A, j ∈ A
A else.

Now, fix 1 6 i < j 6 n and a κ`−element set A ⊆ [n]. By definition of F , we have
E [f |ξ` = A] = F (A).

On the other hand, since the involution τ ij : ω 7→ ωij preserves the uniform law on
Ωκ and maps the event {ξ` = A} onto the event {ξ` = Aij}, we have

E
[
f ◦ τ ij

∣∣∣ξ` = A
]

= E
[
f
∣∣∣ξ` = Aij

]
= F

(
Aij

)
.

But Φ: (u, v) 7→ (
√
u−
√
v)2 is convex on R2

+, so Jensen’s inequality yields(√
F (Aij)−

√
F (A)

)2
= Φ

(
E
[
f ◦ τ ij

∣∣∣ξ` = A
]
,E [f |ξ` = A]

)
6 E

[
Φ
(
f ◦ τ ij, f

)∣∣∣ξ` = A
]

= E
[(
∇ij

√
f
)2
∣∣∣∣∣ξ` = A

]
.
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Moreover, we have (√
F (Aij)−

√
F (A)

)2
= 0

when A neither contains i nor j, so(√
F (Aij)−

√
F (A)

)2
6 E

[(
∇ij

√
f
)2
∣∣∣∣∣ξ` = A

] (
1(i∈A) + 1(j ∈A)

)
.

Averaging this inequality over all possible κ`−element sets A ⊆ [n] yields

E

(√F (ξij` )−√F (ξ`)
)2
 6 E

[(
∇ij

√
f
)2 (

1(i∈ ξ`) + 1(j ∈ ξ`)
)]
.

We may now plug this estimate back into (3.8) to arrive at

Ent (E [f |ξ`]) 6
τls (κ`, n− κ`)

2n
∑

16 i< j 6n
E
[(
∇ij

√
f
)2 (

1(ωi=`) + 1(ωj=`)
)]
.

Finally, multiplying by
(
1− κ`

n

)
and summing over all ` ∈ [L] gives

L∑
`=1

(
1− κ`

n

)
Ent (E [f |ξ`]) 6 max

`∈ [L]

{
2
(

1− κ`
n

)
τls (κ`, n− κ`)

}
Eκ
(√

f,
√
f
)
,

which is precisely the claim (3.6). �

3.3. Putting things together

To complete the proof of Theorem 2.1, we only need an estimate on the second
term appearing on the right-hand side of our recursive log-Sobolev inequality. We of
course use Theorem 1.6.

Lemma 3.3 (Two-color estimate). — For any ` ∈ [L], we have(
1− κ`

n

)
τls (κ`, n− κ`) 6

2
log 2 log

(
n

κmin

)
.

Proof. — By Theorem 1.6, we have(
1− κ`

n

)
τls (κ`, n− κ`) 6

2
log 2

(
1− κ`

n

)
log

(
n2

κ`(n− κ`)

)
.

Since the right-hand side is maximized when κ` = κmin, our task boils down to
establishing (

1− κmin
n

)
log

(
n2

κmin(n− κmin)

)
6 log

(
n

κmin

)
.

But this is exactly the special case t = κmin
n

of the inequality
t log t− (1− t) log (1− t) 6 0,

which is valid for all t ∈ [0, 1
2 ]. To see this, note that the left-hand side is a convex

function of t ∈ [0, 1
2 ] (as can be easily checked by differentiating) and that it equals

zero at the two boundary points t = 0 and t = 1
2 . �
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We are now in position to prove our main result.
Proof of the upper bound in Theorem 2.1. — Our aim is to prove that

(3.9) τls(κ) 6 Φ(κ) := 4
log 2 log

(
n

κmin

)
.

We proceed by induction over the dimension L of the parameter κ = (κ1, . . . , κL).
By combining Proposition 3.2 and Lemma 3.3, we have

(3.10) (L− 1)τls(κ) 6 Φ(κ) + (L− 2) max
`∈ [L]

τls
(
κ\`
)
,

which already establishes the claim in the base case L = 2. Now, assume that L > 3
and that the claim already holds for lower values of L. In particular, we know that

τls
(
κ\`
)
6 Φ

(
κ\`
)
,

for all ` ∈ [L]. But Φ(κ\`) 6 Φ(κ), since removing an entry from the parameter κ
can only decrease the value of the sum n = κ1 + · · · + κL and increase the value of
the minimum κmin = min{κ1, . . . , κL}. Consequently, (3.10) gives

(L− 1)τls(κ) 6 Φ(κ) + (L− 2)Φ(κ) = (L− 1)Φ(κ),
and (3.9) is established. �

Our upper bound on τls(κ) implies the lower bound on ι(κ) given in Corollary 2.3,
thanks to the well-known relation between log-Sobolev inequalities and small-set
expansion:

Lemma 3.4 (Log-Sobolev inequality and small-set expansion). — We have
ι(κ)τls(κ) > n.

Proof. — This follows from the definitions of ι(κ), τls(κ), once we observe that

Eκ (1A,1A) = |∂A|
n|Ωκ|

,

Entκ (1A) = |A|
|Ωκ|

log
(
|Ωκ|
|A|

)
,

for any event A ⊆ Ωκ. �

The inequality in Lemma 3.4 is obtained by restricting the definition of the log-
Sobolev inequality to indicator functions, and could therefore be rather loose. How-
ever, it turns out to be sharp in the present case, as we will now see.
Proof of the remaining halves of Theorem 2.1 and Corollary 2.3. — By definition,

we have

(3.11) ι(κ) 6 |∂A|
|A| log

(
|Ωκ|
|A|

) ,
for any non-empty event A ⊆ Ωκ. We fix ` ∈ [L] such that κ` = κmin, and consider
the choice
(3.12) A := {ξ` = {1, . . . , κmin}} ,
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where we recall that ξ` is the `−colored region. Since ξ` is uniformly distributed over
all κmin−element subsets of [n], we have

|A| = |Ωκ|(
n
κmin

) .
On the other hand, from any state inside A, there are precisely κmin(n − κmin)

transpositions that result in a state outside A, and hence
|∂A| = κmin (n− κmin) |A|.

Thus, the inequality (3.11) gives

ι(κ) 6 κmin(n− κmin)
log

(
n
κmin

)(3.13)

6
n

log
(

n
κmin

) ,
where the second line uses the classical binomial estimate

(
n
k

)
> (n

k
)k, valid for all

1 6 k 6 n. This establishes the upper bound in Corollary 2.3, as well as the
lower bound in Theorem 2.1, by Lemma 3.4. Finally, note that in the case κ =
(bn/2c, dn/2e), the estimate (3.13) yields

(3.14) n

ι
(⌊

n
2

⌋
,
⌈
n
2

⌉) > 4 log
(

n

κmin

)
− o(1).

Thus, our bound cannot be improved by more than log 2, as claimed in Remark 2.2.
�

3.4. Coarsening argument

It now remains to prove Lemma 1.3 and Corollary 2.6. Both will rely on the
elementary observation, already alluded to in Remark 1.1, that the multislice Ωκ

is a “coarsened” version of the “free” multislice Ω(1, ..., 1), where (1, . . . , 1) denotes
the all-one vector of length n. To formalize this, let us introduce the projection
Ψ: [n]→ [L] defined by the relation

Ψ(i) = `⇐⇒ i ∈ [κ1 + · · · + κ`−1 + 1, κ1 + · · · + κ`] ,
and extend this definition to sequences by coordinate-wise application:

Ψ(ω1, . . . , ωn) := (Ψ(ω1), . . . , Ψ(ωn)) .
The mapping Ψ “projects” the multislice Ω(1, ..., 1) onto Ωκ in the following sense.

Lemma 3.5 (Coarsening). — For any observable f : Ωκ → R, we have
Eκ [f ] = E(1, ..., 1) [f ◦Ψ] .

Moreover, for any f, g : Ωκ → R and any weighted graph G = (Gij)16i,j6n,
EGκ (f, g) = EG(1, ...,1) (f ◦Ψ, g ◦Ψ) .
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Proof. — By construction, we have |Ψ−1({`})| = κ` for each color ` ∈ [L], and
hence Ψ maps Ω(1, ..., 1) to Ωκ. The first claim asserts that the Ψ−image of the uniform
measure on Ω(1, ..., 1) is the uniform measure on Ωκ, which is nothing more than the
observation that each element of Ωκ admits the same number of pre-images under Ψ
(namely κ1! · · · κL!). The second claim follows from the first and the definition (2.4),
once we note that the commutativity relation

∇ij (f ◦Ψ) =
(
∇ijf

)
◦Ψ,

trivially holds for all 1 6 i < j 6 n and all f : Ωκ → R. �

We can now establish our log-Sobolev estimate for the colored exclusion process.
Proof of Corollary 2.6. — We use Lemma 3.5 and the definitions of τls(κ) and

c(G) to write

Entκ(f) 6 τls(κ)Eκ
(√

f,
√
f
)

= τls(κ)E(1, ..., 1)

(√
f ◦Ψ,

√
f ◦Ψ

)
6 τls(κ)c(G)EG(1, ..., 1)

(√
f ◦Ψ,

√
f ◦Ψ

)
= τls(κ)c(G)EGκ

(√
f,
√
f
)
.

Since f : Ωκ → R+ was arbitrary, we have just proved

τls(κ,G) 6 c(G)τls(κ).

The claimed upper bound now follows from our main estimate. The lower bound

τls(κ,G) > 2τrel(G)

is obtained by combining the general inequality τls(·) > 2τrel(·) with Theorem 2.4.
To prove the other lower bound, we choose the test function f = 1A in the defini-
tion of the log-Sobolev inequality, with A as in (3.12). We have already seen that
|A| = |Ωκ|/

(
n
κmin

)
. Moreover, we now have |∂A| 6 |A|dκmin where d denotes the

degree in G, since moving from A to Ac requires transposing some site in {1, . . . ,
κmin} with one of its d neighbors. We thus obtain

τls(κ,G) >
|A|d log |Ωκ||A|
|∂A|

>
1
κmin

log
(
n

κmin

)
> log

(
n

κmin

)
,

and the proof of Lemma 3.5 is complete. �

Proof of Lemma 1.3. — The statement τrel(κ) = 1 is a (simple) special case of
Theorem 2.4. This immediately implies τmls(κ) > 1

2 , by the general relation (1.6).
To prove the more interesting statement τmls(κ) 6 1, we take an arbitrary function
f : Ωκ → R+ and use Lemma 3.5 to write

Entκ(f) = Ent(1, ..., 1)(f ◦Ψ) 6 τmls(1, . . . , 1)E(1, ..., 1) (f ◦Ψ, log f ◦Ψ)
= τmls(1, . . . , 1)Eκ(f, log f).

This shows that τmls(κ) 6 τmls(1, . . . , 1), and the conclusion follows from the
classical estimate τmls(1, . . . , 1) 6 1, due to Caputo, Dai Pra and Posta [CDPP09,
Theorem 5.1]. �
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