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Variational properties of the discrete
Hilbert-Einstein functional

Ivan Izmestiev

1. Introducing the functional

1.1. Smooth case. Let M be a smooth compact manifold without boundary. In Riemannian
geometry, the Hilbert-Einstein functional is a function on the space MetM of Riemannian metrics
on M which associates to a metric g the integral of half its scalar curvature:

S : MetM → R, S(g) = 1
2

∫
M

scalg dvolg

If dimM = 2, then we have scalg = 2Kg, where Kg is the Gauss curvature. Hence by the
Gauss-Bonnet theorem

S(g) = 2πχ(M)
is independent of the metric g.

Starting from dimM = 3, the functional S becomes more interesting. Denote

S′h = d

dt

∣∣∣∣
t=0

S(g + th),

where h is the field of symmetric bilinear forms on M .

Theorem 1.1. The first variation of S is given by the formula

S′h = 1
2

∫
M

〈
scalg

2 g − Ricg, h
〉

dvolg

Corollary 1.2. Let dimM ≥ 3.
a) A metric g ∈ MetM is a critical point of S if and only if g is Ricci-flat, i. e. Ricg = 0.
b) Critical points of the restriction of S to the space Met1

M of metrics of unit total volume
are Einstein metrics, i. e. metrics with Ricg = λg.

If dimM = 3, then Einstein metrics are metrics of constant sectional curvature (Euclidean,
hyperbolic or spherical).

See [4, Chapter 4C] for details.

1.2. Discrete case. Let M be a compact 3-manifold without boundary. Fix a triangulation (i. e.
simplicial face-to-face decomposition) T of M and pick a map

` : E(T )→ (0,+∞), e 7→ `e

assigning to every edge e of T a length `e. Consider only those ` for which every tetrahedron of T
can be realized as a Euclidean tetrahedron with the edge lengths `. (This set is non-empty, since
`e = 1 for all e will do.)
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The map ` introduces a Euclidean metric on each tetrahedron of T , and a Euclidean cone-metric
on M . Note that different pairs (T, `) can define the same metric; for example, we may subdivide
the triangulation T and define lengths of new edges appropriately.

The Hilbert-Einstein functional on the space of Euclidean cone-metrics is

S(T, `) =
∑

e∈E(T )

`e(2π − ωe),

where ωe is the total angle around e, see Figure 1.1. Clearly, the value of S depends only on the
metric, not on the choice of the representative (T, `).

ωe

`e

Figure 1.1: Lengths and angles in a 3-dimensional cone-manifold.

Remark 1.3. If dimM = n, then Euclidean cone-metrics on M have cone singularities around
codimension 2 faces of T , and one puts

S(T, `) = cn
∑

dimF=n−2
voln−2(F )(2π − ωF )

for some constant cn. Cheeger, Müller, and Schrader [8] have shown that the discrete Hilbert-
Einstein functional converges to the smooth one if a sequence (T (n), `(n)) of Euclidean cone-metrics
converges to a Riemannian metric g (with respect to the Lipschitz distance between metric spaces)
so that all simplices in (T (n), `(n)) stay sufficiently fat.

It is an open problem to what most general class of metric spaces (including Riemannian man-
ifolds and Euclidean cone-manifolds) the Hilbert-Einstein functional, and more generally, all total
Lipschitz-Killing curvatures can be extended.

The Hilbert-Einstein functional can also be defined for hyperbolic and spherical cone-metrics.
In this case an additional volume term appears, see [14, Sections 4.2-4.4].

1.3. Critical points in the discrete case. Call the quantity κe := 2π − ωe the curvature of a
Euclidean cone-metric at the edge e. Then we have S(T, `) =

∑
e `eκe.

Theorem 1.4. We have ∂S
∂`e

= κe

This is equivalent to the identity
∑
e `edκe = 0, which follows by adding up the Schläfli formula

for all tetrahedra of T . An independent proof was given by the physicist Tullio Regge who intro-
duced the discrete Hilbert-Einstein functional in [18]. In particular, Regge’s argument provides an
elementary proof of the Schläfli formula.

Corollary 1.5. Critical points of the discrete Hilbert-Einstein functional represent flat metrics.

Similarly, critical points of the functional on the space of hyperbolic cone-metrics (see end of
Section 1.2) correspond to hyperbolic metrics without cone singularities.

Corollary 1.5 has two applications:
• Construct a metric of constant curvature by finding a critical point of S .
• Prove rigidity of a space-form by showing non-degeneracy of the corresponding critical
point of S.

It is surely tempting to try to reprove hyperbolization theorem by showing the existence of
critical points of S under suitable topological assumptions on M . Two main difficulties arise here.
One is that the functional is neither convex nor concave, which makes existence of a critical point
difficult to prove. The other is the choice of a triangulation T , since we cannot know in advance the
combinatorial type of a geodesic triangulation. One possible solution is to start with an arbitrary
triangulation and change its combinatorial type while deforming the metric. This is what was
done in our proof of the Alexandrov theorem (Section 3) which can be viewed as a simple case of
geometrization with boundary conditions.
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In the smooth case, Blaschke and Herglotz [5] suggested to use the variational property of the
smooth Hilbert-Einstein functional for solving Weyl’s problem. Yamabe’s work [22] resulted from
an attempt to solve Poincaré’s conjecture using the same variational principle. Most recently, a
geometrization program developing Yamabe’s ideas was proposed by M. Anderson [2, 3].

The second of the above points, the infinitesimal rigidity, is more easily tractable. Variational
properties of the Hilbert-Einstein functional form the basis of Koiso’s proof of the infinitesimal
rigidity of Einstein manifolds under certain assumptions on the eigenvalues of the curvature tensor,
[16]. We used similar ideas in a new proof of the infinitesimal rigidity of convex polyhedra (Section
2) and of a class of non-convex polyhedra (Section 4).

2. Infinitesimal rigidity of convex polyhedra

2.1. The boundary term of the Hilbert-Einstein functional. If the compact manifold M
has a non-empty boundary, then the Hilbert-Einstein functional needs a boundary term, in order
to remain differentiable. In the smooth case, this is

S(g) = 1
2

∫
M

scalg dvolg +
∫
∂M

H dvol∂g ,

where H is the trace of the second fundamental form II. The variational formula becomes

S′h = 1
2

∫
M

〈
scalg

2 g − Ricg, h
〉

dvolg +1
2

∫
∂M

〈Hg − II, h〉dvol∂g

In the discrete case we have

S(T, `) =
∑

e∈Ei(T )

`e(2π − ωe) +
∑

e∈E∂ (T )

`e(π − θe),

where Ei(T ) and E∂(T ) are the sets of interior and boundary edges of T , respectively, and θe is the
dihedral angle at the boundary edge e. The variational formula is obtained again by adding up
the Schläfli formulas for individual simplices:

∂S

∂`e
=
{

2π − ωe, if e ∈ Ei(T )
π − θe, if e ∈ E∂(T )

Remark 2.1. If M ⊂ R3 is a convex body, then both of the above boundary terms appear as the
coefficients at the t2 term in the Steiner formula for M . Another common interpretation of both
is 4π times the mean width (average length of projections to lines) of M . Check ball and cube.

If we keep the metric on the boundary fixed (that is h(X,Y ) = 0 for X,Y ∈ T∂M in the smooth
case, and `e = const for e ∈ E∂(T ) in the discrete case), then the critical points of the functionals
are metrics that are flat inside M and restrict to the given metric on the boundary.

2.2. A proof of the infinitesimal rigidity of a convex polyhedron. Let P ⊂ R3 be a compact
convex polyhedron. For simplicity, assume that all faces of P are triangles. An infinitesimal
isometric deformation of P is an assignment of a vector qi to every vertex pi such that

〈pi − pj , qi − qj〉 = 0 for every edge pipj
which is equivalent to ∂

∂t

∣∣
t=0 ‖pi(t) − pj(t)‖ = 0 with pi(t) = pi + tqi. A polyhedron is called

infinitesimally rigid if every its infinitesimal isometric deformation extends to an infinitesimal
isometry of R3.

We will take another viewpoint: instead of deforming an embedded surface (the boundary of the
polyhedron) we deform the metric inside the polyhedron itself. For this, choose a point a inside P
and subdivide P into triangular pyramids with apex a and faces of P as bases. This results in a
triangulation T of P . Denote by

ri := ‖a− pi‖, `ij := ‖pi − pj‖

the lengths of interior and boundary edges, respectively. We will change ri while keeping `ij fixed
and look what happens with the curvatures κi around the interior edges (at the beginning we have
κi = 0). See Figure 2.1.
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θij

ωi

ri

Figure 2.1: Lengths and angles in the triangulation T of the polyhedron P .
Shaded triangles lie on the boundary; only a part of the triangulation is shown.

Definition 2.2. A deformation (si) of the interior edge lengths (ri) is called curvature-preserving,
if all directional derivatives

dκi
ds

=
∑
j

∂κi
∂rj

sj

vanish. In other words, if

s ∈ ker
(
∂κi
∂rj

)
= ker

(
∂2S

∂ri∂rj

)
Among curvature-preserving deformations there are trivial ones that result from a displacement

of the point a inside P . It is easy to show that they form a 3-dimensional subspace. Also it is
easy to see that the infinitesimal rigidity of P in the original sense is equivalent to the absence of
non-trivial curvature-preserving deformations:

P is infinitesimally rigid ⇔ dim ker
(

∂2S

∂ri∂rj

)
= 3

The following theorem implies that convex polyhedra are infinitesimally rigid.

Theorem 2.3. Let P be a compact convex polyhedron with triangular faces and triangulation T

as described above. Then the second variation
(

∂2S
∂ri∂rj

)
of the discrete Hilbert-Einstein functional

has the signature (+, 0, 0, 0,−, . . . ,−).

The part about the rank of the second variation is proved in [14, Section 3]. The fact that
the positive index is equal to 1 follows from the coincidence of the second variations of S and of
the volume of polar dual [14, Section 4.1], and from the signature of the second variation of the
volume, provided by the second Minkowski inequality for mixed volumes, [12, Appendix].

3. Alexandrov’s theorem

Alexandrov’s theorem [1] states the existence and uniqueness of a compact convex polyhedron in
R3 with a prescribed boundary metric. The intrinsic boundary metric is a Euclidean cone-metric
(since the surface of a polyhedron can be glued from triangles) with singular points of positive
curvature (vertices of the polyhedron). Note that the intrinsic metric does not detect the edges of
a polyhedron.

Theorem 3.1 (A. D. Alexandrov, [1]). Let g be a Euclidean cone-metric on the sphere with
singular points of positive curvature. Then there exists a unique up to congruence compact convex
polyhedron in R3 with g as the intrinsic metric on the boundary. (The polyhedron may also be a
polygon, in which case instead of the intrinsic metric on the boundary two copies of the polygon
glued along pairs of corresponding edges are taken.)
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In [6] a new proof of Alexandrov’s theorem was given, similar in the spirit to the proof of the
infinitesimal rigidity described in Section 2.2.

We start with a certain geodesic triangulation T̄ (0) of the sphere equipped with metric g, with
vertices at the singular points, and an assignment of a positive number ri(0) to every singular
point pi. This allows us to construct a Euclidean cone-manifold P (T̄ (0), r(0)) by gluing together
triangular pyramids with radial edge lengths ri(0) and triangles of T̄0 as bases. Namely, we take
the Delaunay triangulation of (S2, g) as T̄ (0), and put ri(0) = R for all i, with R sufficiently large.
This ensures that pyramids exist and that the “warped polyhedron” P (T̄ (0), r(0)) is convex at the
boundary (i. e. θij(0) ≤ π).

Then we proceed by deforming the lengths ri, thus obtaining a continuous family of warped
polyhedra P (T̄ (t), r(t)). The deformation is chosen so that

• κi(t) = (1− t)κi(0), where κi(t) is the curvature at the edge api in P (T̄ (t), r(t));
• the dihedral angles on the boundary remain ≤ π.

The second condition requires that at certain moments t1 < t2 < . . . the triangulation T̄ (t)
must be changed. The triangulation is determined uniquely (up to “flat edges”, those where the
dihedral angle is π) since the second condition is equivalent to T̄ (t) being the weighted Delaunay
triangulation of (S2, g) with weights r2

i , see [6, Section 2.5].
The existence of a deformation satisfying the first condition follows from the non-degeneracy of

the matrix
(
∂κi

∂rj

)
under certain assumptions [6, Theorem 3.11–Proposition 3.16]. In the limit as

t → 1 we have κi → 0 for all i, thus P (T̄ (1), r(1)) is a compact convex polyhedron with a given
metric on the boundary.

A corresponding numerical algorithm was implemented in a computer program by Stefan Sechel-
mann [19], see Figure 3.1.

Figure 3.1: A screenshot of [19].

4. Infinitesimal rigidity of weakly convex (co)decomposable polyhedra

Infinitesimally flexible non-convex polyhedra exist, see Figure 4.1.
In [15] the infinitesimal rigidity was proved for a wide class of non-convex polyhedra.

Definition 4.1. A non-convex polyhedron is called weakly convex, if its vertices lie in a convex
position: Vert(P ) = Vert(convP ).

A weakly convex polyhedron P is called decomposable if it can be triangulated without adding
new vertices. It is called decomposable and codecomposable if there is a triangulation T of convP
such that Vert(T ) = Vert(P ) and P is a subcomplex of T .
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Figure 4.1: Schoenhardt’s twisted octahedron and Jessen’s orthogonal icosahedron
are infinitesimally flexible.

Both polyhedra on Figure 4.1 are weakly convex but not decomposable.

Theorem 4.2 ([15], Theorem 1.7). Weakly convex decomposable and codecomposable polyhedra
are infinitesimally rigid.

This theorem is a consequence of the following property of the Hilbert-Einstein functional.

Theorem 4.3 ([15], Theorem 1.17). Let T be a triangulation of a convex polyhedron. Denote by
i the number of vertices of T in the interior of the polyhedron and by b the number of vertices in
the interiors of its faces. (The number of vertices on the edges is irrelevant.)

Consider Euclidean cone-metrics inside the polyhedron arising from deformations of the interior
edges of the triangulation. Then the matrix

(4.1)
(
∂κe
∂`f

)
=
(

∂2S

∂`e∂`f

)
where `e, `f denote the lengths of interior edges, has corank 3i+b and exactly i positive eigenvalues.

Corollary 4.4. Let T be a triangulation of a convex polyhedron that uses only vertices of this
polyhedron. Then the matrix (4.1) is negative definite.

Proof of Theorem 4.2. In the triangulation T of convP , take the subcomplex T̄ that triangulates
P . The Hessian matrix of S for T̄ is a principal minor of the Hessian of S for T . Since the latter
is negative definite, so is the former. In particular, it is non-degenerate. Hence it is impossible to
change the lengths of interior edges of T̄ without changing the curvatures in the first order. Thus
P is infinitesimally rigid. �

Remark 4.5. In the smooth case, the space of all infinitesimal deformations of a Riemannian metric
can be decomposed as a direct sum of conformal, trivial, and anti-conformal deformations. The
restriction of the second variation D2S to the space of conformal deformations is positive definite;
trivial deformations don’t change the value of S; and on the space of the anti-conformal defor-
mations D2S is negative definite, provided that the spectrum of the curvature operator satisfies
certain assumptions, [4, Chapters 4G, 12H].

In the discrete case, trivial deformations arise from arbitrary displacements of the interior
vertices and from displacements of vertices inside the faces orthogonally to those faces. This space
has dimension 3i + b. Conformal deformations should correspond in “blowing up” at each vertex
independently, thus their space has dimension i. Thus the signature of D2S as stated in Theorem
4.3 fits very well with what is known in the smooth case.

Among other works dealing with the signature of the second variation of the discrete Hilbert-
Einstein functional let us mention [9, 11].

5. Directions for future research

LetM be a closed hyperbolic 3-manifold with a geodesic triangulation T . Then the infinitesimal
rigidity of M (also known as Calabi-Weil rigidity [20, 7]) is equivalent to dim kerD2S = 3i, where
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i is the number of vertices of T . It should be possible to determine the rank of D2S (or even
better, the signature) by a sort of discrete Bochner method. This would yield a new proof of the
Calabi-Weil theorem. A similar method should work for cone-manifolds. If M is a hyperbolic
cone-manifold, then M is infinitesimally rigid (in the sense that any deformation preserving the
cone-angles is trivial) provided that ωe ≤ 2π around all edges e, [17, 21]; without this assumption
M may be infinitesimally flexible, [13].

For ideal triangulations of hyperbolic manifolds, the functional is concave. This makes cusped
manifolds the first case to try to reprove the hyperbolization theorem.

The functional is concave also for semiideal triangulations, if all finite vertices lie on the bound-
ary. This was used in [10] to prove the existence of a hyperbolic cusp with a given cone-metric on
the boundary. A generalization of this would be realizability of an arbitrary metric with curvature
bounded from below by −1 on the boundary of some hyperbolic cusp. On one hand, this should
follow from the polyhedral case by an approximation argument; on the other hand, it would be
interesting to find a variational proof that uses an extension of the Hilbert-Einstein functional to
more general metric spaces. In particular, this is related to the problem at the end of Remark 1.3.
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