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numerical monoids and Krull monoids
Víctor Blanco, Pedro A. García-Sánchez, and Alfred Geroldinger

Abstract
Arithmetical invariants—such as sets of lengths, catenary and tame degrees—describe the non-

uniqueness of factorizations in atomic monoids.We study these arithmetical invariants by the monoid
of relations and by presentations of the involved monoids. The abstract results will be applied to
numerical monoids and to Krull monoids.

1. Introduction

This is an extended abstract of the paper [2]. Its main results were presented in a talk of the second
author at the Third International Meeting on Integer Valued Polynomials and Problems in Commutative
Algebra, December 2010, Marseilles. We thank the organizers for the kind invitation.

Factorization theory describes the non-uniqueness of factorizations into irreducible elements of atomic
monoids by arithmetical invariants, and it studies the relationship between these arithmetical invariants
and algebraic invariants of the objects under consideration. In abstract semigroup theory, minimal re-
lations and presentations are key tools to describe the algebraic structure of semigroups. Thus, there
should be natural connections between the arithmetical invariants of factorization theory and the pre-
sentations of the semigroup. It were Scott T. Chapman and the second author—together with various
coauthors—who made first steps to unveil these connections and to apply them successfully for further
investigations (see [4, 3]). In the last years there has been a series of papers in this direction. Results have
been carried over from finitely generated monoids to atomic monoids, and they have been extended to a
larger class of invariants (see [8, 15, 13, 14]). Moreover, there was also progress from the computational
point of view. The abstract characterizations in terms of relations gave rise to the development of explicit
algorithms which partly have been implemented in GAP (see [5]).

In this extended abstract we sketch two results from [2]. The first one deals with the catenary degree
and the tame degree, and the second is about unions of sets of lengths.

By a monoid, we mean a commutative cancellative semigroup with unit element. Let S be a monoid,
a ∈ S and a = u1 · . . . · uk a factorization of a into atoms u1, . . . , uk. Then k is called the length of the
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factorization, and L(a) = {k | a has a factorization of length k} ⊂ N is the set of length of a. For units
a ∈ S×, we set L(a) = {0}. We say that S is a BF-monoid if L(a) is finite and non-empty for all a ∈ S.

Throughout, let S be a BF-monoid.

2. Arithmetical invariants and presentations of monoids

We denote by A(S) the set of atoms (irreducible elements) of S, by S× the group of invertible elements,
and by Sred = {aS× | a ∈ S} the associated reduced monoid of S. The free (abelian) monoid Z(S) with
basis A(Sred) is called the factorization monoid of S, the unique homomorphism

π : Z(S)→ Sred satisfying π(u) = u for each u ∈ A(Sred)
is called the factorization homomorphism of S and

∼S = {(x, y) ∈ Z(S)× Z(S) | π(x) = π(y)}
the monoid of relations of S. Clearly, ∼S ⊂ Z(S)× Z(S) is saturated and hence ∼S is a Krull monoid.
Let σ ⊂ ∼S be a subset. Then σ−1 = {(x, y) ∈ σ | (y, x) ∈ σ}, and σ is called a presentation of S if the
congruence generated by σ equals ∼S (equivalently, if (x, y) ∈ Z(S)× Z(S), then (x, y) ∈ ∼S if and only
if there exist z0, . . . , zk ∈ Z(S) such that x = z0, zk = y, and, for all i ∈ [1, k], (zi−1, zi) = (xi−1wi, xiwi)
with wi ∈ Z(S) and (xi−1, xi) ∈ σ ∪ σ−1). A presentation σ is said to be
• minimal if no proper subset of σ generates ∼S (see [16, Chapter 9] for characterizations of minimal
presentations in our setting).

• generic if σ is minimal and for all (x, y) ∈ σ we have supp(xy) = A(Sred).
If S has a generic presentation, then Sred is finitely generated and has no primes.

For a ∈ S, the set Z(a) = π−1(aS×) is the set of factorizations of a. For z, z′ ∈ Z(S), we can write
z = u1 · . . . · ulv1 · . . . · vm and z′ = u1 · . . . · ulw1 · . . . · wn ,

where l, m, n ∈ N0 and u1, . . . , ul, v1, . . . , vm, w1, . . . , wn ∈ A(Sred) are such that
{v1, . . . , vm} ∩ {w1, . . . , wn} = ∅ .

Then d(z, z′) = max{m, n} ∈ N0 is the distance between z and z′. For subsets X,Y ⊂ Z(S), we set
d(X,Y ) = min{d(x, y) | x ∈ X, y ∈ Y } ∈ N0.

For convenience we repeat the definition of the catenary degree c(S) and of the adjacent catenary degree
cadj(S). For the definition of the tame degree t(S) we refer to [2]. For a ∈ S, let c(a) ∈ N0 denote the
smallest N ∈ N0 with the following property: for all z, z′ ∈ Z(a), there exist z0 = z, z1, . . . , zk = z′ ∈ Z(a)
such that d(zi−1, zi) ≤ N for all i ∈ [1, k]. For k ∈ Z, let Zk(a) = {z ∈ Z(a) | |z| = k} denote the set of
factorizations of a having length k, and define

cadj(a) = sup{d
(
Zk(a),Zl(a)

)
| k, l ∈ L(a) are adjacent} .

Then
c(S) = sup{c(b) | b ∈ S} ∈ N0 ∪ {∞} resp. cadj(S) = sup{cadj(b) | b ∈ S} ∈ N0 ∪ {∞}

are the catenary degree of S, resp. the adjacent catenary degree of S.
There is the basic inequality c(S) ≤ t(S), showing that the catenary degree is bounded above by the

tame degree. The following result offers a sufficient condition to enforce equality. Its proof is based on
a new characterization of the ω-invariant ω(S), for which we have c(S) ≤ ω(S) ≤ t(S), and it allows
applications to the monoid of v-invertible v-ideals in a weakly Krull domain (see [2, Theorem 5.6 and
Corollary 5.7]).
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Theorem 2.1. Let S be atomic, P ⊂ S a set of representatives of the set of primes of S and T the set
of all a ∈ S such that p - a for all p ∈ P . Suppose that T =

∐
i∈I Ti, T 6= T× and that there is an i∗ ∈ I

such that Ti∗ has a generic presentation and t(Ti∗) = t(T ). Then c(S) = ω(S) = t(S).

The finiteness of the tame degree is a strong property enforcing the finiteness of the elasticity, of the
ω-invariant and of the catenary degree (for a large class of noetherian domains which are tame, see [12]).
However, its relationship with the adjacent catenary degree is still open. Theorem 5.1 in [11] states that
in a tame monoid S there is a constant M ∈ N with the following property:

For each two adjacent lengths k, l ∈ L(a) ∩ [min L(a) +M, max L(a)−M ] we have
d
(
Zk(a),Zl(a)

)
≤M .

This result is an indication that the following problem could have a positive answer.

Problem 2.2. Does a monoid S with finite tame degree t(S) have finite adjacent catenary degree cadj(S)?

3. Unions of sets of lengths

The structure of sets of lengths and the structure of their unions are a central topic in the theory of
non-unique factorizations (see [10, Section 4.7] for an overview, and [17, 11] for some recent progress).
Let k ∈ N and suppose that S 6= S×. Then

Vk(S) =
⋃

k∈L(a),a∈S

L(a)

denotes the union of sets of lengths containing k. In other words, Vk(S) is set of all m ∈ N for which
there exist u1, . . . , uk, v1, . . . , vm ∈ A(S) with u1 · . . . · uk = v1 · . . . · vm.

If the set of distances ∆(S) is finite, then a mild additional assumption guarantees that the sets Vk(S)
are AAPs (almost arithmetical progressions) for all k ∈ N ([7, Theorem 4.2]). Easy examples show that
even for numerical monoids or for finitely generated Krull monoids unions of sets of lengths need not be
arithmetical progressions. However, if S is a Krull monoid, such that every class contains a prime divisor,
then all unions of sets of lengths are arithmetical progressions with difference 1 ([6],[9, Theorem 3.1.3]).
The question which numerical monoids satisfy an analogue property is still open in general ([1]). The
next result offers a sufficient condition for numerical monoids—which is weaker than all the special cases
studied so far—which guarantees that unions of sets of lengths Vk(S) are arithmetical progressions from
a certain k on (see [2, Theorem 6.6]).

Theorem 3.1. Let S be a numerical monoid with A(S) = {n1, . . . , nt} where t ∈ N, 1 < n1 < . . . < nt,
and d = gcd(n2 − n1, . . . , nt − nt−1). Suppose that the Diophantine equations

(n2 − n1)x2 + . . .+ (nt − n1)xt = dn1 and (nt − n1)y1 + . . .+ (nt − nt−1)yt−1 = dnt

have solutions in the non-negative integers. Then there exists a k∗ ∈ N such that Vk(S) is an arithmetical
progression with difference d for all k ≥ k∗, and

lim
k→∞

|Vk(S)|
k

= 1
d

(nt

n1
− n1

nt

)
.

We pose the following open problem.

Problem 3.2. Characterize the numerical monoids S for which there exists a k∗ ∈ N such that the
unions of sets of lengths Vk(S) are arithmetical progressions for all k ≥ k∗.
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