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Cobham’s theorem and its extensions

Jason P. BELL
Abstract
Cobham’s theorem says that if k and ¢ are two multiplicatively independent integers and
f(n) is a k- and f-automatic sequence, then f(n) is eventually periodic. We give a summary
of recent work on automatic sequences and their relation to Cobham’s theorem.

1. AuTOMATA AND COBHAM’S THEOREM

To talk about Cobham’s theorem, it is necessary to first talk about automatic sequences. Auto-
matic sequences have been employed in number theory, algebra, computer science, combinatorics,
and other areas. As a result, there are many different ways of thinking about these sequences. We
give a few equivalent formulations and illustrate it with the example of the Thue-Morse sequence.

Definition 1. Let k > 2 be a natural number. A sequence {f(n)}n>o is k-automatic if there is a
finite state automaton which accepts as input the base k expansion of n and outputs f(n).

Cobham [12] gave an equivalent formulation in terms of morphic sequences. Automatic sequences
are a subset of the collection of morphic sequences. We define morphic sequences here.

Let ¥ = {ay,...,aq} be a finite alphabet and let ¢ : ¥* — ¥* be a morphism. We say that a
letter a; € ¥ is mortal if ¢’ (a;) = €, the empty word, for some j > 1. Suppose that ¢(a;) = a1z
for some non-empty word = containing a non-mortal letter. Then we say that ¢ is prolongable on
ai. Then we can form the right infinite word

¢“(a1) = arzp(x)d*(z)- -
Note that the right-infinite word ¢“(a;) is a fixed point of ¢. Words defined in this manner are
called pure morphic words. In general, a word u on a finite alphabet A is morphic if there is a set
map f: X — A such that u = f(w) for some pure morphic word w on X.

In the case that the length of ¢(a1), ..., ¢(aq) are all the same length (uniform) and this common
length is equal to a power of k, the sequence f(n) formed by taking the nth letter of our morphic
word is k-automatic. In fact, Cobham shows that every k-automatic sequence can be formed in this
way. As an example, we consider the 2-automatic Thue-Morse sequence. This sequence is defined
by the rule f(n) = 1 if the number of 1s in the binary expansion of n is odd; otherwise f(n) = 0.
The finite state automaton which generates this sequence is easy to describe (see Allouche and
Shallit [3, p. 153]). We note that this sequence can be described as a morphic sequence by using
the alphabet ¥ = {0, 1} and the morphism ¢ : ¥* — 3* defined by

0+— 01 1~ 10.

Then
¢*“(0) = 0110100110010110. ..

has the property that the nth term of the Thue-Morse sequence is the nth letter (starting with
n = 0) of this morphic word.

Yet another formulation is in terms of k-kernels. Given a sequence {f(n)},>o we define the
k-kernel of this sequence to be all distinct subsequences of the form {f(k%n + b)},>0, where a > 0
and 0 < b < k“. Note that a subsequence in the k-kernel runs over all indices n whose base
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k-expansion have the property that the last a digits are precisely the base k digits of b (with
0 <b< k). A sequence f(n) is k-automatic if and only if its k-kernel is finite [3, Theorem 6.6.2].
We can see this in terms of the Thue-Morse sequence. If f(n) is the Thue-Morse sequence, then
f(2n) = f(n) as the binary expansion of 2n has the same number of 1s as the binary expansion
of n; similarly, f(2n +1) = 1 — f(n). An easy induction argument shows there are exactly two
sequences in the 2-kernel of f(n).
Perhaps the least well-known of equivalent formulations is in terms of matrix semigroups. A
complex sequence f(n) is k-automatic if and only if there exist:
(1) a natural number d,
(2) aset of d x d complex matrices Ay, ..., Ar_1 which generate a finite semigroup,
(3) d x 1 column vectors v and w
such that
fn) =wTA;, - Ay v,
where n = ig + i1k + -+ +4,.k". This linear algebraic formulation of automatic sequences has a lot
of interesting consequences. We recall a famous theorem of Amitsur and Levitzki [7, p. 20].

Theorem 1.1. (Amitsur-Levitzki) Let By, ..., By, be d x d matrices with entries in a commutative
ring. Then
(1.1) > 58n(0)Boq1) -+ Bogm) = 0

oESH

whenever m > 2d.

We can think of a k-automatic sequence f(n) as being a map f : {0,1,...,k — 1}* — A, for
some finite set A, with the property that f(OW) = f(W) for W € {0,1,...,k — 1}*. Here the
correspondence comes from noting that a number n has a base k-expansion which does not begin
with the digit 0. An immediate corollary of the Amitsur-Levitzki theorem is that there exists some
m such that

Z sgn(o)f(Woay - Woimy) = 0
oESy,
for all words Wy,..., W, € {0,1,...,k — 1}*. For more on this, see Berstel and Reutenauer [6]

Cobham’s theorem [11] is one of the most important results in the theory of k-automatic se-
quences. It shows that being automatic with respect to two multiplicatively independent bases
can only occur if the sequence is very nice. Two numbers k and ¢ are multiplicatively independent
if there are no solutions in nonzero integers to the equation k% = ¢°.

Theorem 1.2. (Cobham) Let k and ¢ be two multiplicatively independent integers. If a sequence
f(n) is both k- and £-automatic then it is eventually periodic.

In the next sections, we will talk about some recent extensions involving Cobham’s thoerem.

2. EXTENSIONS WITH MORPHIC SEQUENCES

We note that if ¥ = {ay,...,as} be a finite alphabet and let ¢ : ¥* — ¥* be a morphism. In §1,
we showed how one can construct a morphic word with these data along with a simple substitution.
Let w be a morphic word constructed in this manner. We can construct a d x d incidence matrix
of ¢ in which the (7, j)-entry is the number of occurrences of a; in ¢(a;). The Perron-Frobenius
theorem states that this has a real positive eigenvalue which is also the maximum of the moduli
of all eigenvalues of this matrix. We call this positive eigenvalue a the Perron number of the
morphic word w and say that w is a-substitutive. We note that in the case that ¢(a1),..., ¢d(aq)
all have length k then k is the Perron number of w. Moreover, the sequence is k-automatic. Hansel
suggested the following generalization of Cobham’s theorem.

Conjecture 2.1. (Hansel) Suppose that w is a morphic word that is both a- and [(-substitutive
and a® = 3% has no nonzero solutions in integers (a,b) € Z?. Then w is eventually periodic.

Some earlier work had been done on this conjecture by Fabre [16] and Fagnot [17]. The biggest
results in this area are due to Durand [13, 14]. Durand [13] first showed that Hansel’s conjecture
is true for primitive substitutions. If w is constructed using an alphabet ¥ = {aj,...,aq} and
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morphism ¢ : ¥* — 3* along with a substitution, then we say that w is primitive if the incidence
matrix of ¢ has some power such that it has no nonzero entries. Durand [14] then showed that
Hansel’s conjecture holds for a large class of substitutions that included all known results in the
area.

3. EXTENSIONS WITH k-KERNELS

Allouche and Shallit [2] extended the notion of k-automatic sequences, introducing k-regular
sequences. To define these, we have to use a little commutative algebra.

Let R be a commutative ring. Given a sequence {f(n)}>2, taking values in some R-module, we
create an R-module M ({f(n)}; k) which is defined to be the R-module generated by all sequences
{f(kin+ 7))}, where i > 0 and 0 < j < k'.

Definition 2. Let R be a commutative ring and let k be a positive integer. A sequence is (R, k)-
regular if M ({f(n)}; k) is finitely generated as an R-module.

Since the k-kernel of a sequence {f(n)} spans M({f(n)};k) as an R-module, we see that a
k-automatic sequence with values in R is necessarily (R, k)-regular for any ring R.

Unlike automatic sequences, which only assume finitely many values, regular sequences can as-
sume infinitely many values. For this reason it is unrealistic to assume that the correct analogue of
Cobham’s theorem for regular sequences is that an (R, k)- and (R, £)-regular sequence is eventually
periodic if k£ and ¢ are multiplicatively independent. There is, however, a larger class of sequences
which gives the correct analogue.

Definition 3. Given a commutative ring R and R-module M, we say that a map
fN—=M

satisfies a linear recurrence over R, if there exist a positive integer m and constants c1,...,¢m € R
such that

f(n) = icif(n—i) for n > m.
i=1

If {f(n)} satisfies a linear recurrence over a ring R and assumes only finitely many values, then
{f(n)} is eventually periodic (cf. Everest et al. [15, §3.1]). Furthermore, given an eventually peri-
odic sequence {f(n)} there exist numbers m and N such that {f(n)} satisfies the linear recurrence
f(n+m) = f(n) for n > N. The following result can be proved.

Theorem 3.1. Let R be a commutative ring, let k and £ be multiplicatively independent positive
integers, and let {f(n)} be a sequence which is both (R, k)- and (R, £)-regular. Then {f(n)} satisfies
a linear recurrence over R.

In light of the above remarks, this is indeed a generalization of Cobham’s theorem. In the case
that R = Z, an (R, k)-regular sequence is called k-regular. In this case we get a simple character-
ization of sequences which are both k- and /-regular if k and ¢ are multiplicatively independent.

Theorem 3.2. Let {f(n)} be an integer-valued sequence and let k and £ be two multiplicatively
independent positive integers. Then {f(n)} is both k- and -regular if and only if

> fn)a" e Z[[a]]

is the power series expansion of a rational function whose poles are all roots of unity.

Theorems 3.1 and 3.2 are due to the author [5].
We note that Theorem 3.2 appears as a conjecture in Allouche and Shallit [3, §16.8, item 16.3].
In this form, it is a special case of a conjecture due to van der Poorten. Given a power series

F(z) = Y f(n)a" € Z[]),
n=0
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we say that F(x) is k-Mahler if F(z) satisfies a functional equation of the form

(32) ) = 3 pla)Fa)
=0

k-regular sequences are a special subset of the set of k-Mahler sequences.

Conjecture 3.3. (van der Poorten) Let F(x) be a power series which is both k- and ¢-Mahler.
If k and ¢ are multiplicatively independent then F(x) is the power series expansion of a rational
Sfunction.

Some work has been done on this by various authors [23, 4].

Finally, it is interesting to ask whether we can obtain a generalization of Cobham’s theorem by
replacing finiteness of the k-kernel by some weaker condition. Note that, generically, we expect
a sequence f(n) to have k® distinct subsequences of the form {f(k%n + b)},>0 with 0 < b < k°.
With this in mind, we introduce a function to deal with the growth of the k-kernel.

Definition 4. Given a sequence {f(n)}n>0, we define G(f(n), k;m) to be the number of distinct
subsequences of the form f(k®n +b) with 0 < a < m and 0 < b < k*. We call the function
G(f(n),k;m) the k-growth of f(n) and think of this as a function of m.

As we said earlier, the k-growth, G(f(n), k;m), of f(n) generally grows exponentially as a func-
tion of m. Note that G(f(n), k;m) is eventually constant if and only if f(n) is k-automatic. Note
that the growth could grow subexponentially or polynomially without being eventually constant,
however. With this is mind, we define a new dimension for the sequence f(n).

Definition 5. Given a sequence f(n) we define the k-dimension of f(n) to be

As an example, let k > 2 and consider the sequence f(n) which is defined to be 1 if n = k% for
some natural number a; otherwise f(n) = 0. Then one can easily check that G(f(n),k,m) =m+1
and so Dimg(f(n)) = 1. The definition of k-dimension is inspired by the notion of growth in groups
and algebras. Finiteness of the corresponding dimensions is very important in these contexts. In
particular, see the theorem of Gromov [21, Theorem 11.1]. In light of this, we make the following
conjecture.

Conjecture 3.4. Let f(n) be a sequence taking values in a finite set and let k and £ be two
multiplicatively independent numbers. If Dimg(f(n)) and Dimy(f(n)) are both finite, then f(n) is
eventually periodic.

4. EXTENSIONS WITH HAHN POWER SERIES

One of the beautiful applications of Cobham’s theorem comes from a result of Christol, Kamae,
Mendes France and Rauzy [10]. The motivation for their work comes from a number theoretic
problem concerning the expansion of algebraic numbers in integer bases. It appears at the end of
a paper of Mendes France [22]. It can be stated as follows. Let a = (a,,)>¢ be a binary sequence
and consider the two real numbers

G G
= —_ d = _
a=> o and f=3 =
n>0 n>0
Then, the problem is to show that these numbers are both algebraic if and only if they are both
rational. At first glance, this problem seems contrived, but behind it hides the more fundamental

question of the structure of representations of real numbers in two mutliplicatively independent
integer bases. Unfortunately, problems of this type are extremely difficult.

However, when considering addition and multiplication without carry things become easier. In
particular, Christol, Kamae, Mendeés France and Rauzy [10] gave an analogue of this problem in
terms of power series.
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Theorem 4.1 (Christol et al.). Let p1 and ps be distinct prime numbers and let q1 and qo be
powers of prime p1 and ps respectively. Let (an)n>0 be a sequence with values in a finite set A
with cardinality at most min{qi,q2}. Let i1 and io be two injections from A into Fy, and Fg,
respectively. Then, the formal power series

FO) =Y ir(an)t” €Fyy((t) and g(t) =Y ia(an)t" € Fo (1))

n>0 n>0

are both algebraic (respectively over Fo, (t) and Fy,(t)) if and only if they are rational functions.

As was remarked by Christol et al. [10], Theorem 4.1 is a straightforward consequence of two
important results. On one side, Christol’s theorem [9] describes precisely in terms of automata the
algebraic closure of F,(t) in F,((¢)) (¢ being a power of a prime p). On the other side, one finds
Cobham’s theorem [11] proving that for multiplicatively independent positive integers k and ¢, a
function h : N — [, that is both k- and f-automatic is eventually periodic.

Christol’s theorem gives a very concrete description of the elements of Fy((t)) (¢ a power of
a prime p) that are algebraic over F,(¢); it shows in fact that being an algebraic power series
is equivalent to the sequence of coefficients being p-automatic. As Kedlaya [19] points out, this
result does not give the complete picture, as the field F,((t)) is far from being algebraically closed.
Indeed, for an algebrically closed field K of characteristic 0, the field

U@

is itself algebraically closed and contains in particular the algebraic closure of K(t); but in positive
characteristic, things are rather different. The algebraic closure of F,((¢)) is more complicated,

due to the existence of wildly ramified field extensions. For instance, Chevalley remarked [8] that
+oo

the Artin-Schreier polynomial P — z — 1/t does not split in the field U F,((tY™)).

n=1

It turns out that the appropriate framework to describe the algebraic closure of F,(¢) is provided
by the fields of generalized power series F,,((t?)) introduced by Hahn [18]. This consists of all power
series in which we allow rational exponents (as opposed to just integer exponents). In order to
make this a ring, we insist that our power series have well-ordered support. That is, the set of all
rational numbers « such that t* has a nonzero coefficient in our power series must be a well-ordered
set.

The work of Kedlaya [20] is precisely devoted to a desciption of the algebraic closure of F,(t)
in such fields of generalized power series. For this purpose, Kedlaya introduces the notion of a
p-quasi-automatic function over the rationals. His extension of Christol’s theorem is that if ¢ is a
power of a prime p, then a generalized power series

D M)t € Fy((t9))

a€cQ

is algebraic if and only if the function h : Q — [, is p-quasi-automatic.

Motivated by the work of Kedlaya, Adamczewski and Bell proved an analogue of Cobham’s
theorem for maps that are quasi-automatic with respect to two multiplicatively independent bases

).
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