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A Lagrangian Neighbourhood Theorem for shifted
symplectic derived schemes *)

Dowminic Joyckt (U AND PAVEL SAFRONOV (2)

ABSTRACT. — Pantev, Toén, Vaquié and Vezzosi [19] defined k-shifted symplectic
derived schemes and stacks X for k € Z, and Lagrangians f : L — X in them. They
have important applications to Calabi—Yau geometry and quantization. Bussi, Brav
and Joyce [7] and Bouaziz and Grojnowski [5] proved “Darboux Theorems” giving
explicit Zariski or étale local models for k-shifted symplectic derived schemes X for
k < 0 presenting them as twisted shifted cotangent bundles.

We prove a “Lagrangian Neighbourhood Theorem” which gives explicit Zariski
or étale local models for Lagrangians f : L — X in k-shifted symplectic derived
schemes X for k < 0, relative to the “Darboux form” local models of [7] for X. That
is, locally such Lagrangians can be presented as twisted shifted conormal bundles.
We also give a partial result when k£ = 0.

We expect our results will have future applications to shifted Poisson geom-
etry [12], and to defining “Fukaya categories” of complex or algebraic symplectic
manifolds, and to the categorification of Donaldson-Thomas theory of Calabi—Yau
3-folds and “Cohomological Hall Algebras”.

RESUME. — Pantev, Toén, Vaquié et Vezzosi [19] ont défini des schémas et des
champs dérivés symplectiques k-décalés X pour k € Z, et des Lagrangiens f : L — X
en eux. Ils ont des applications importantes pour la géometrie Calabi-Yau et la
quantification. Bussi, Brav et Joyce [7] et Bouaziz et Grojnowski [5] ont prouvé des
« théoremes de Darboux » donnant des modales locaux précis Zariski ou étale pour
les schémas dérivés symplectiques k-décalés X pour k < 0, les présentant comme
des fibrés cotangent décalés tordus.

Nous prouvons un « théoréme de voisinage Lagrangien » donnant des modéles
locaux précis Zariski ou étale pour les Lagrangiens f : L — X dans les schémas
dérivés symplectiques k-décalés X pour k < 0, par rapport a la « forme Darboux »
de Bussi—Brav—Joyce pour X. C’est-a-dire, localement, ces Lagrangiens peuvent étre
présentés sous forme de fibrés conormaux décalés tordus. Nous donnons aussi un
résultat partiel lorsque k = 0.
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Nous espérons que nos résultats auront de futures applications a la géométrie
de Poisson k-décalée de [12], a la définition de « catégories de Fukaya » de varié-
tés symplectiques complexes ou algébriques, a la catégorification de la théorie de
Donaldson—Thomas des variétés de Calabi—Yau de dimension 3, et au « Algebres de
Hall Cohomologiques ».

1. Introduction

Using Toén and Vezzosi’s theory of Derived Algebraic Geometry [23, 24,
25, 27, 26], Pantev, Toén, Vaquié and Vezzosi [19] defined k-shifted symplectic
structures wx on a derived scheme or stack X, for k € Z. If X is a derived
scheme and wx a 0-shifted symplectic structure, then X = X is a smooth
classical scheme and wyx € H°(A2T*X) a classical symplectic structure on
X. They proved that if Y is a Calabi—Yau m-fold then derived moduli stacks
M of (complexes of) coherent sheaves on Y have natural (2 — m)-shifted
symplectic structures wag.

Pantev et al. [19] also defined Lagrangians f : L — X in a k-shifted
symplectic derived stack (X,wx ), and showed that fibre products L x x M
of Lagrangians f : L — X, g : M — X are (k — 1)-shifted symplectic.
Calaque [11] proved that if X is a Fano (m + 1)-fold and ¥ C X a smooth
anticanonical divisor, so that Y is a Calabi—Yau m-fold, and £, M are de-
rived moduli stacks of (complexes of) coherent sheaves on X, Y with derived
restriction morphism f : £ — M, then L is Lagrangian in the (2 — m)-
shifted symplectic (M, wpaq).

Recently, Calaque, Pantev, Toén, Vaquié and Vezzosi [12] have also de-
veloped a related theory of k-shifted Poisson structures mx on a derived
scheme or stack X, for k € Z, and coisotropics f : C — X in (X,7x).
They prove [12, Th. 3.2.4] that the spaces of k-shifted symplectic structures
wx and nondegenerate k-shifted Poisson structures 7x on X are equivalent.
Costello-Rozenblyum and Pridham [21] have also announced similar results.

For a symplectic manifold (X, w), the classical Darboux Theorem chooses
local coordinates (z1,...,Zn,Y1,...,Yn) on X with w = 27:1 darz;dary;-
Bussi, Brav and Joyce [7, Th. 5.18] proved a “k-shifted symplectic Dar-
boux Theorem”, which for a k-shifted symplectic derived K-scheme (X, wx)
with k& < 0 chooses a cdga A®, a Zariski open inclusion ¢ : Spec A® —
X, and coordinates xé,yf_i € A* with i*(wx) ~ (w°0,0,...) for W° =
Do ddRm;—ddRyf_i. (Actually, all this only holds for k¥ £ 2 mod 4, and for

= 2 mod 4 there is a more complicated expression also involving coordi-
nates zf/ %)
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This was the foundation for a series of papers [2, 3, 4, 9, 8, 6, 7, 10,
13] concerning generalizations of Donaldson—Thomas theory for Calabi—Yau
3- and 4-folds, involving perverse sheaves, motives, and new enumerative
invariants. It can also be used as part of a proof that k-shifted symplectic
derived schemes carry nondegenerate k-shifted Poisson structures, though
this was not used in [12, 21].

Given a Lagrangian L — X in a symplectic manifold (X, w), the classical
Lagrangian Neighbourhood Theorem describes L, X, w in local coordinates.

The purpose of this paper is to prove a “k-shifted symplectic Lagrangian
Neighbourhood Theorem”, Theorem 3.7 below, which given a Lagrangian f :
L — X in a k-shifted symplectic derived K-scheme (X,wx) for k < 0, and
a “Darboux form” local description i : Spec A®* — X, xj-,yffi € A*, W0 =
D dde;—-ddRyf_i for (X,wx) as in [7], chooses a cdga B®, coordinates
5;-, uj—,v}“_l_i _ .
cdga morphism « : A* — B® with E; = a(x}) in a homotopy commutative
diagram

€ B®, a Zariski open inclusion j : Spec B®* — X, and a

Spec B* — L
\LSpeca fi/ (11)
SpecA®* —* > X,

such that the pullback 7 (hr) of the Lagrangian structure hy on f : L — X
to Spec a : Spec B®* — Spec A® using (1.1) has 5 (hr) ~ (h°,0,0,...) with
ho =37, daruidarvf "' 7" (Actually, all this only holds for k # 3 mod 4,
and for k = 3(km(1))(}24 there is a more complicated expression also involving

coordinates w; .) Theorem 3.11 also gives a partial result for & = 0.

Bouaziz and Grojnowski [5] proved their own k-shifted symplectic Dar-
boux Theorem independently of [7], showing that a k-shifted symplectic
derived K-scheme (X ,wx) for k < 0 is (at least for £ # 2 mod 4) étale lo-
cally equivalent to a twisted k-shifted cotangent bundle T;[k]Y, where Y is
an affine derived K-scheme, and t € (’)I;?Ll with dt = 0 is used to “twist” the
k-shifted cotangent bundle T*[k]Y . Remark 2.15 below relates their picture
to that of [7].

In Remark 3.4 we interpret our “k-shifted Lagrangian Neighbourhood
Theorem” in the style of Bouaziz and Grojnowski [5], by saying that if f :
L — X is Lagrangian in a k-shifted symplectic (X,wx) for k < 0, and X is
locally modelled on T;[k]Y, then f : L — X is (at least for k # 3 mod 4)
locally modelled on the inclusion morphism N7 ,[k](Z/Y") — T} [k]Y, where
N* [k(Z]Y) is the twisted k-shifted conormal bundle of a morphism of

w/t
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affine derived K-schemes g : Z — Y, and u € O% with du = —g*(t) is used
to “twist” N*[k](Z/Y).

If the k-shifted symplectic derived K-scheme (X,wx) is a point
(SpecK,0) then Lagrangians f : L — X are just (k — 1)-shifted symplec-
tic derived K-schemes (L,wr,). In this case, our Lagrangian Neighbourhood
Theorem reduces to the Darboux Theorem of [7]. So the proof in Section 4 is
a generalization of that in [7, §5.6], and runs parallel to [7] at several points.

Like the Darboux Theorem of [5, 7], our Lagrangian Neighbourhood The-
orem should have important applications. For example, it gives local mod-
els for moduli schemes of coherent sheaves on Fano (m + 1)-folds X with
restriction morphisms to moduli schemes of coherent sheaves on a Calabi—-
Yau anticanonical hypersurface Y C X. We briefly discuss some conjectures
which we hope our theorem will help to prove.

CONJECTURE 1.1. — Let (X,wx) be a (—1)-shifted symplectic derived
C-scheme with an “orientation”. Then Bussi, Brav, Dupont, Joyce, and Szen-
drdi [6, Cor. 6.11] construct a natural perverse sheaf P .. on X = to(X),
such that if (X ,wx ) is locally modelled on a critical locus Crit(® : U — A'),
then PTX—,WX is locally modelled on the perverse sheaf of vanishing cycles
PVis-

Suppose f : L — X is a Lagrangian, with an “orientation” relative to
that of X, and f is proper. Then we can define a natural element g, in
the hypercohomology HVdimL(Pkwx). These \g, satisfy certain composition
laws for composition of Lagrangian correspondences.

The first author has an outline of a proof of Conjecture 1.1.

As suggested in [6, Rem. 6.15], we would like to define a “Fukaya cat-
egory” F(S) of (derived) complex or algebraic Lagrangians L — S in a
complex or algebraic symplectic manifold (S, w) of dimension 2n, such that
if L, M are oriented Lagrangians in S then the morphisms L — M in F(5)
are Hom™ (L, M) = H"""(P3 ), where P} 5, is the perverse sheaf on the
—1-shifted symplectic X = L xg M described above.

As in Ben-Bassat [2], if L, M, N are (derived) Lagrangians in (S,w),
then Y = L xg M xg N — (L xg M) x (M xs N) x (N xg L) is La-
grangian in —1-shifted symplectic. The hypercohomology class Ay asso-
ciated to this in Conjecture 1.1 is what we need to define composition
Hom* (M, N) x Hom*(L, M) — Hom™(L, N) of morphisms in the “Fukaya
category” F(S). Amorim and Ben-Bassat [1] discuss this proposal and Con-
jecture 1.1 in detail.
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A stacky version of Conjecture 1.1 is what we need to define multiplication
in a “Cohomological Hall Algebra” associated to a Calabi—Yau 3-fold in the
sense of Kontsevich-Soibelman [15], defined using the perverse sheaves on
Calabi—Yau 3-fold moduli stacks constructed in Ben-Bassat, Bussi, Brav and
Joyce [3].

CONJECTURE 1.2. — Let U be a smooth K-scheme and ® : U — A’
a regular function. Then the derived critical locus Crit(®) is a —1-shifted
symplectic derived K-scheme. We can also define the Zs-graded dg-category
of matriz factorizations MF (U, ®), as in Preygel [20] for instance.

Suppose f : L — Crit(®) is a Lagrangian, with vdim L — dim U even,
equipped with an “orientation” and a “spin structure”, and that f is proper.
Then we can define an object uy, € MF(U, ®) associated to L. In this way
we interpret MF (U, @) as a kind of “Fukaya category” of the —1-shifted sym-
plectic derived K-scheme Crit(®).

This is connected to the programme of Kapustin and Rozansky [14] for
associating a 2-category to a complex symplectic manifold, locally described
using matrix factorization categories.

For each of the Conjectures 1.1-1.2, using our Lagrangian Neighbourhood
Theorem we can write down local models on L for the coisotropic structure,
and for A\ and pr. The problem is to glue these local models together
globally.

We begin in Section 2 with background material on Derived Algebraic
Geometry and Pantev—Toén—Vaquié—Vezzosi’s shifted symplectic geometry.
Section 3 gives our main results. Theorem 3.2 in Section 3.1 shows that a
morphism f: X — Y of derived K-schemes is locally modelled on Spec « :
Spec A®* — Spec B®, where A®, B® are cdgas and « : B®* — A® a morphism,
all in a particularly nice form.

Theorem 3.7 in Section 3.3 is our “Lagrangian Neighbourhood Theo-
rem”, showing that Lagrangians f : L — X in k-shifted symplectic derived
K-schemes (X,wx) for k& < 0 are locally modelled on explicit “Lagrangian
Darboux form” examples given in Examples 3.3 and 3.5 in Section 3.2. The-
orem 3.11 in Section 3.4 also gives a partial result for £ = 0. Section 4 proves
Theorems 3.2 and 3.7.

Conventions. — Throughout K will be an algebraically closed field with
characteristic zero. All classical K-schemes are assumed locally of finite type,
and all derived K-schemes X are assumed to be locally finitely presented.
Our sign conventions for cdgas, exterior forms, etc., follow Bussi, Brav and
Joyce [7].
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2. Background material

We begin with some background material and notation needed later.
Some references are Toén and Vezzosi [23, 24, 25, 26, 27] for Sections 2.1-2.2,
and Pantev, Toén, Vezzosi and Vaquié [19] for Sections 2.3-2.4, and Brav,
Bussi and Joyce [7] for Section 2.5. Throughout the paper, K will be an
algebraically closed field of characteristic zero.

2.1. Commutative differential graded algebras

DEFINITION 2.1. — Write cdgay for the category of commutative differ-
ential graded K-algebras in nonpositive degrees, and cdgag® for its opposite
category. Objects of cdgay are of the form --- — A2 Ny LN [
Here A* for k = 0,—1,—-2,... is the K-vector space of degree k elements
of A®, and we have a K-bilinear, associative, supercommutative multiplica-
tion - : AF x AL — AR for k1 < 0, an identity 1 € A°, and differentials
d: AF — AR for k < 0 satisfying

d(a-b) = (da) - b+ (—=1)%a - (db)
for all a € A*, b € Al. We write such objects as A® or (A*,d).

Here and throughout we will use the superscript “*” to denote graded
objects (e.g. graded algebras or vector spaces), where * stands for an index in
Z, so that A* means (A¥, k € Z). We will use the superscript “*” to denote
differential graded objects (e.g. differential graded algebras or complexes), so
that A® means (A*,d), the graded object A* together with the differential d.

Morphisms o : A®* — B® in cdgay are K-linear maps o : A¥ — BF
for all k < 0 commuting with all the structures on A®, B*. A morphism
a: A®* — B*® is a quasi-isomorphism if H*(a) : H*(A®) — H*(B®) is an
isomorphism on cohomology groups for all k < 0.

Remark 2.2. — A fundamental principle of derived algebraic geometry is
that cdgay is not really the right category to work in, but instead one wants

to define a new category (or better, co-category) by inverting (localizing)
quasi-isomorphisms in cdgay.
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In fact cdgay has the additional structure of a simplicial model category,
with weak equivalences quasi-isomorphisms, in which all objects are fibrant,
and in which cdgas A® with A* free as a commutative graded K-algebra are
cofibrant. The n-simplices of the mapping space between two cdgas A® and
B® are given by morphisms A® — B® ® Q°*(A"™), where Q*(A"™) is the cdga
generated by elements s; of degree 0 and ¢; of degree 1 for ¢ = 0,...,n with
the relations > s; = 1 and ) ¢; = 0 and the differential ds;, = ¢;. Note that
Q*(A™) are concentrated in positive degrees, and are not elements of cdgay.

We will write cdgag’ for the associated oco-category, so that the homo-
topy category Ho(cdgay’) is the localized category cdgay[Q 1] with quasi-
isomorphisms inverted, an ordinary category. We will not go into any detail
about model categories and co-categories below, but here is some basic ori-
entation on one issue relevant to this paper, for readers unfamiliar with these
ideas. The objects of cdgag, cdgay’, Ho(cdgay’) are the same. If A®, B® are
objects, a morphism ¢ : A* — B*® in cdgay is also a morphism in cdgag’
and Ho(cdgay’). However, a morphism ¢> : A* — B® in cdgag’ (or equiv-
alently, in Ho(cdgag’)) need not correspond to any morphism ¢ : A®* — B*®
in cdgay, unless A® is cofibrant. If A® is cofibrant, the mapping space in
cdgay’ is given by the mapping space in cdgag.

Standard model cdgas A® are “nearly cofibrant”. They have the property
that if >° : A®* — B*® is a morphism in cdgag’ with A® standard model, such
that H°(¢>) : H°(A®) — H9(B®) can be lifted to a K-algebra morphism
¢° : AY — BY then ¢ can be lifted to ¢ : A* — B*® in cdgay.

All this will be important because if X ~ Spec A® and Y ~ Spec B*
are affine derived K-schemes and f : Y — X is a morphism, then f ~
Spec ¢ for some morphism ¢> : A* — B® in cdgay’ . For our Lagrangian
Neighbourhood Theorem in Section 3.3, we want to lift ¢>° to ¢ : A®* — B*®
in cdgay.

DEFINITION 2.3. — Let A® € cdgag, and write D(mod A) for the de-
rived category of dg-modules over A®. Define a derivation of degree k from
A® to an A®-module M*® to be a K-linear map 0 : A* — M*® that is homoge-
neous of degree k with

3(f9) = 6(f)g + (~1)* =T fo(g).

Just as for ordinary commutative algebras, there is a universal derivation
into an A®-module of Kéhler differentials QY. , which can be constructed as
I/1? for I = Ker(m : A*®A® — A®). The universal derivation § : A* — QY.
is 8(a) =a®1—1®a € I/I?. One checks that § is a universal degree 0
derivation, so that od : Hom%. (Y., M*®) — Der®(A, M*) is an isomorphism
of dg-modules.
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Note that QY, = ((Qh.)*,d) is canonical up to strict isomorphism, not
Just up to quasi-isomorphism of complexes, or up to equivalence in D(mod A).
Also, the underlying graded vector space (24.)*, as a module over the graded
algebra A*, depends only on A* and not on the differential d in A® = (A*,d).

Similarly, given a morphism of cdgas ® : A* — B*®, we can define the
relative Kéhler differentials Q. Jae-

The cotangent complex L e of A® is related to the Kdhler differentials
QL., but is not quite the same. If ® : A* — B*® is a quasi-isomorphism
of cdgas over K, then @, : (Q4.) ®ae B* — QL. may not be a quasi-
isomorphism of B®-modules. So Kdhler differentials are not well-behaved
under localizing quasi-isomorphisms of cdgas, which is bad for doing derived
algebraic geometry.

The cotangent complex L 4o s a substitute for QY. which is well-behaved
under localizing quasi-isomorphisms. It is an object in D(mod A), canonical
up to equivalence. We can define it by replacing A® by a quasi-isomorphic,
cofibrant cdga B®, and then setting Las = (Qk.) @pe A*. We will be inter-
ested in the p** exterior power APL qe, and the dual (L e)Y, which is called
the tangent complex, and written T g0 = (L as)V.

There is a de Rham differential dgg : APLae — APT L e, a morphism of
complexes, with dﬁR =0:APL4e — APT2L 4e. Note that each APL 4e is also
a complex with its own internal differential d : (APLae)* — (APLqe)**1
and dgqr being a morphism of compleres means that d o dgg = dgr o d.

Similarly, given a morphism of cdgas ® : A* — B*®, we can define the
relative cotangent complex Lpe /4.

DEFINITION 2.4. — Following [7, Def. 2.9], we will call A* € cdgayg
of standard form if A° is a smooth finitely generated K-algebra, and the
cotangent module QYo is a free A°-module of finite rank, and the graded
K-algebra A* is freely generated over A by finitely many generators, all in
negative degrees.

More explicitly, as A° is a smooth K-algebra, U = Spec A° is a smooth K-

scheme. Suppose that U admits étale coordinates (a9, ... ,x?no) U — A™,
Then QY = A° @k (dara?l, . .. ,ddeQn()}K is a free A%-module of rank my.
Suppose we are given elements x7, ..., xy, in A* fori=—1,-2,... k, such

that A* = A° [33; ci=—1,...,k, j=1,...,m;] is the graded K-algebra freely
generated over A® by the generators x§ in degree i < 0. Then A®* = (A*,d)
is a standard form cdga. The differential d on A* is determined uniquely by

the elements dz; cA* fori=—-1,-2,....,kandj=1,...,m;.

The virtual dimension of A® is vdim A® = E?ZO(—l)imi eZ.
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Then the Kihler differentials QY. are given as an A*-module by
Qhe 2 A" @k (darzl 11 =0,-1,... .k, j=1,...,mx. (2.1)

As in [7, §2.3], an important property of standard form cdgas A® is that they
are sufficiently cofibrant that the Kdihler differentials QY. provide a model for
the cotangent complex L e, so we can take QY. = Las, without having to
replace A® by an unknown cdga B®. Thus standard form cdgas are convenient
for doing explicit computations with cotangent complezes.

We say that a standard form cdga A® is minimal at p € Spec A® if all the
differentials in the complex of K-vector spaces Y., are zero. This means
that m; = dim H* (ILA-\p) fori=0,-1,...,d, and A® is defined using the
minimum number of variables =% in each degree i = 0,—1,..., compared to

J
all other cdgas locally equivalent to A® near p.

2.2. Derived algebraic geometry and derived schemes

DEFINITION 2.5. — Write dStk for the oo-category of derived K-stacks
(or D~ -stacks) defined by Toén and Vezzosi [27, Def. 2.2.2.14], [23, Def. 4.2].
Objects X in dStg are co-functors

X : {simplicial commutative K-algebras} — {simplicial sets}
satisfying sheaf-type conditions. There is a spectrum functor
Spec : (cdgag’)°P — dStk .
A derived K-stack X is called an affine derived K-scheme if X is equivalent
in dStg to Spec A* for some cdga A® over K. As in [23, §4.2], a derived

K-stack X is called a derived K-scheme if it may be covered by Zariski open
Y C X with' Y an affine derived K-scheme. Write dSchgk for the full co-
subcategory of derived K-schemes in dStg, and dSch%ﬂP C dSchg for the
full co-subcategory of affine derived K-schemes. Then Spec is an equivalence
(cdga®)°P =5 dSchaf.

We shall assume throughout this paper that all derived K-schemes X are
locally finitely presented in the sense of Toén and Vezzosi [27, Def. 1.3.6.4].

With this assumption, derived schemes have a virtual dimension vdim X,
which is a locally constant function vdim X : X — Z. If X = Spec A®
for A® a standard form cdga then vdim X = vdim A®, for vdim A® as in
Definition 2.4.

There is a classical truncation functor tg : dSchx — Schx taking a
derived K-scheme X to the underlying classical K-scheme X = ty(X). On
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affine derived schemes dSch%ff this maps to : Spec A®* — Spec HY(A®) =
Spec(A%/d(A1)).

Toén and Vezzosi show that a derived K-scheme X has a cotangent com-
plex Lx [27, §1.4], [23, §4.2.4-4.2.5] in a stable co-category Lycon(X) defined

in [23, §3.1.7, §4.2.4]. We will be interested in the p'® exterior power APLx,
and the dual (Lx)Y, which is called the tangent complex Tx .

By a point of a derived K-scheme X, written x € X, we will always mean
that x € X (K) is a K-point of the underlying classical K-scheme X = to(X).

When X = X is a classical scheme, the homotopy category of Lqcon(X)
is the triangulated category Dgcon(X) of complexes of quasicoherent sheaves.
These have the usual properties of (co)tangent complexes. For instance, if
f: X =Y is a morphism in dSchy there is a distinguished triangle

f(Ly) - Lx Lx,y £ (Ly)[1],

where L x /y is the relative cotangent complex of f.

Now suppose A® is a cdga over K, and X a derived K-scheme with X ~
Spec A® in dSchi. Then we have an equivalence of triangulated categories
Ho(Lycon (X)) ~ D(mod A®), which identifies cotangent complexes Lx =~
L e. If also A® is of standard form then Lae ~ Q4., so Lx ~ Q..

Bussi, Brav and Joyce [7, Th. 4.1] prove:

THEOREM 2.6. — Suppose X is a derived K-scheme (as always, assumed
locally finitely presented), and x € X . Then there exist a standard form cdga
A® over K which is minimal at p € Spec A®, in the sense of Definition 2.4,
and a Zariski open inclusion i : Spec A* — X with i(p) = z.

They also explain [7, Th. 4.2] how to compare two such standard form
charts Spec A®* — X, Spec B®* — X on their overlap in X, using a third
chart.

2.3. PTVV’s shifted symplectic geometry

Next we summarize parts of the theory of shifted symplectic geometry,
as developed by Pantev, Toén, Vaquié, and Vezzosi in [19]. We explain them
for derived K-schemes X, although Pantev et al. work more generally with
derived stacks.

Given a (locally finitely presented) derived K-scheme X and p > 0, k € Z,
Pantev et al. [19] define complexes of k-shifted p-forms AL (X, k) and k-

shifted closed p-forms A%CI(X , k). These are defined first for affine derived
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K-schemes Y = Spec A® for A® a cdga over K, and shown to satisfy étale
descent. Then for general X, k-shifted (closed) p-forms are defined as a
mapping stack; basically, a k-shifted (closed) p-form w on X is the functorial
choice for all Y, f of a k-shifted (closed) p-form f*(w) on Y whenever Y =
Spec A°® is affine and f: Y — X is a morphism.

DEFINITION 2.7. — Let Y ~ Spec A® be an affine derived K-scheme,
for A® a cdga over K. A k-shifted p-form on'Y for k € Z is an element w%. €
(APL a¢)* with dw%e = 0 in (APLae)**) so0 that W. defines a cohomology
class [W9e] € H¥(APLs). When p = 2, we call w9. nondegenerate if the
induced morphism wQ.- : T ge — L ae[k] is a quasi-isomorphism.

A k-shifted closed p-form on Y is a sequence wae = (w%e,whe,w%e,..".)
such that wye € (APTL4e)*=% for i > 0, with dwQe = 0 and dwll’ +
darwlye = 0 dn (APTHIL4)*=% for all i > 0. Note that if wae =
(wWhe,wle,...) is a k-shifted closed p-form then w9+ is a k-shifted p-form.

When p = 2, we call a k-shifted closed 2-form w e a k-shifted symplectic

form if the associated 2-form w. is nondegenerate.

If X is a general derived K-scheme, then Pantev et al. [19, §1.2] define
k-shifted 2-forms w$, which may be nondegenerate, and k-shifted closed 2-
forms wx, which have an associated k-shifted 2-form w%, and where wx is
called a k-shifted symplectic form if w% is nondegenerate. We will not go
into the details of this definition for general X.

The important thing for us is this: if Y C X is a Zariski open affine
derived K-subscheme with'Y ~ Spec A® then a k-shifted symplectic form wx
on X induces a k-shifted symplectic form wae on'Y in the sense above, where
w4e 15 unique up to cohomology in the complex (H@O(AQ”ILA.)**", d+dgr)-

As in [19, §2.1], in the stacky case, an important source of examples of
shifted symplectic derived stacks are Calabi—Yau moduli stacks:

THEOREM 2.8. — Suppose Y is a Calabi—Yau m-fold over K, and M
the derived moduli stack of complexes of coherent sheaves on Y. Then M
has a natural (2 — m)-shifted symplectic form waq.

2.4. Lagrangians in shifted symplectic derived schemes

Following Pantev et al. [19, §2.2], we define:

DEFINITION 2.9. — Let (X,wx) be a k-shifted symplectic derived K-
scheme, and f : L — X a morphism of derived K-schemes. An isotropic
structure on f is a homotopy hr, from 0 to f*(wx) in the complex A]?(’d(L, k),
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regarded as a simplicial set. Truncating to the first term AH%CI(L, k) —
A% (L, k) gives a homotopy hY, from 0 to f*(w%) in A%(L, k).

This induces a 2-commutative diagram in Lycon(L):

TL i)
s . n (2.2)
FrTx) — 29 ) — 2 L,

We say that hY is nondegenerate if (2.2) is homotopy Cartesian (equiva-
lently, homotopy co-Cartesian), and then we say that L (with its morphism
f: L — X and isotropic structure hr,) is Lagrangian in (X,wx).

An alternative way to explain the nondegeneracy of hY is to note that it
induces a natural morphism x : Ty, x — Lp[k — 1] via the diagram

Tr ;
ll'ﬂ‘f }L%.U \L

* f*(wg() . ]Lf[k]
P (Tx) —— = FLx ) — =Lkl (23)

To/x(1,
and hY is nondegenerate if x : Tr/x — Lilk — 1] is a quasi-isomorphism.

Now suppose that X ~ Spec A®* and L ~ SpecB*® are affine, and
f s induced by a morphism « : A®* — B°® in cdgag, and wx lifts to
wae = (Whe,Whe,whe, ) i ([Ti50(A*T"Lae[k])*"*,d + dar) as in Defi-
nition 2.7. Then we can write hy as a sequence (h°, h* h% ...) with hi €

(A2FLge) k=% for i = 0,1,..., where hy, an isotropic structure is equiva-
lent to the equations
oy (Whe) = dhO, a(Whye) = dh 4 dgrh' 1, i=1,2,.... (24)
Remark 2.10. — Let us discuss virtual dimensions of shifted symplectic

derived K-schemes and their Lagrangians. If (X, wx) is a k-shifted symplec-
tic derived K-scheme, it is easy to show (e.g. using the “Darboux Theorem”
in Section 2.5) that

(i) If k=0 mod 4 then vdim X is even in Z.

(ii) If k =1 mod 4 then vdim X = 0.
(i) If £ =2 mod 4 then vdim X can take any value in Z.
(iv) If k =3 mod 4 then vdim X = 0.

Now suppose f : L — X, hr, is Lagrangian in (X,wx). Then we find
that:
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(i) If k=0 mod 4 then vdim L = 1 vdim X.
(ii") If k=1 mod 4 then vdim L can take any even value in Z.
(iii") If K =2 mod 4 then vdim X must be even (at least near the image
of L in X), and vdim L = § vdim X.
(iv') If k =3 mod 4 then vdim L can take any value in Z.

So if k =2 mod 4 and vdim X is odd then no Lagrangians exist in (X, wx).

Ezample 2.11. — Take X = SpecK to be the point *, regarded as a
k-shifted symplectic derived K-scheme with symplectic form wx = 0. Then
Lagrangians L in (x,0) are equivalent to (k — 1)-shifted symplectic derived
K-schemes (L,wr,).

Pantev et al. [19, Th. 2.10] prove:

THEOREM 2.12. — Suppose (X ,wx) is a k-shifted symplectic derived K-
scheme, and fy : L1 — X and fy: Ls — X are Lagrangians in (X,wx).
Then the fibre product Ly x ¢, x ¢, Lz in dSchy has a natural (k—1)-shifted
symplectic structure.

In the stacky case, Calaque [11, §3.2] extends Theorem 2.8:

THEOREM 2.13. — Suppose X is a Fano (m+1)-fold over K, andY C X
is a smooth anticanonical divisor, so that'Y is a Calabi—Yau m-fold. Write
L, M for the derived moduli stacks of complexes of coherent sheaves on
X, Y, and f: L — M for the morphism of derived restriction from X to Y.
Theorem 2.8 gives a (2 — m)-shifted symplectic structure waq on M. Then
there is a natural isotropic structure he on f : L — M making L into a
Lagrangian in (M, waq).

2.5. A shifted symplectic “Darboux Theorem?”

Bussi, Brav and Joyce [7] prove “Darboux Theorems” for k-shifted sym-
plectic derived K-schemes (X,wx) for k < 0, which give explicit Zariski or
étale local models for (X,wx). We will explain their main result in Theo-
rem 2.18 below. First, in Examples 2.14 and 2.16 we define families of explicit
“Darboux form” k-shifted symplectic cdgas A®,w for k < 0.

Ezample 2.14. — Let k = —1,—2,..., and set d = [(k + 1)/2], so that
d = k/2 if k is even (giving k = 2d), and d = (k + 1)/2 if k is odd (giving
k = 2d — 1). Following [7, Examples 5.8 & 5.9], we will define a simple
class of standard form cdgas A® = (A*,d) equipped with explicit k-shifted
symplectic forms w = (w?,0,0,...), which we will call of Darboux form.
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Fix nonnegative integers mg,m_1,m_o,...,mg. Choose a smooth K-
algebra A° of dimension mg. Localizing A® if necessary, we may assume
that there exist 29, ... ,x?no € A° such that dgral, ... ,ddeg)nO form a ba-
sis of Y, over A°. Geometrically, U = Spec A” is a smooth K-scheme of
dimension my, and (29,...,2), ) : U — A™ are global étale coordinates
on U.

Define A* as a commutative graded K-algebra to be the free graded al-
gebra over AY generated by variables

% g

Tlyeees Ty in degree i for : = —1,—-2,...,d, and 25)
) .y 2.5
y’fﬂ,...,yﬁff in degree k —i for i =0,—1,...,d.

So the upper index 4 in :v;,y; always indicates the degree. The variables
come in pairs xé—, y;-“_i, with total degree k. We will define the differential d
in the cdga A® = (A*,d) later.

As in Section 2.1, the spaces (APQ24.)* and the de Rham differential
dgr upon them depend only on the commutative graded algebra A*, not
on the (not yet defined) differential d. Note that Q4. is the free A*-module

with basis ddeé,ddRy;“_i fori =0,—1,...,dand 5 = 1,...,m;. Define an
element
d i
0 _ S i k—i : 2001 \k
w” = Z deij dary; in (AQ4.)". (2.6)
i=0 j=1

Clearly dgrw® = 0 in (A3Q4.)k.

Now choose a superpotential ® in A**+1, called the Hamiltonian, which
we require to satisfy the classical master equation

d m;
<~ 00 09
> % % =0 inAF2 (2.7)
i=—1j=1 Zj ayj
Define the differential d on A* by d = 0 on A°, and
) ; o
%7 dyk_l = 0 7
ay] 7 J 8$3
i=0,....,d, j=1,...,m;. (2.8)

d:c; _ (71)(i+1)(k+1)

Equation (2.7) implies that dod = 0.
Then A® = (A*,d) is a standard form cdga, as in Definition 2.4, with

250 (=1)'mi, k even,

vdim A® =
0, k odd,
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so that vdim A® is always even (compare Remark 2.10). Also dw® = dqrw?® =
0,and w := (w°,0,0,...) is a k-shifted symplectic structure on X = Spec A®,
as in [7, §5.3]. Define ¢ € (24.)* by

d m;

o= Z Z [i xé ddRyf_i + (=1) D&+ () z)yf_z ddej»]. (2.9)

i=0 j=1
Then we have
d® = 0€ A" dgr®@+dep = 0€ (Q4) T, daro = kw® € (A%QL.)F. (2.10)
We say that A®,w are in Darbouz form.

In the first case k = —1, as in [7, Prop. 5.7(b)] we impose an additional
condition on ®. In this case ® : U — A' is a regular function, and X =
Crit(®) is the derived critical locus of ®, so X = to(X) = Crit(®P) is the
classical critical locus of ®. The restriction ®|yrea : X™4 — A’ of ® to the
reduced K-subscheme X9 of X is locally constant. By adding a constant to
® (which does not change X') and localizing, we may assume that ®| yrea = 0.

Remark 2.15. — Continue in the situation of Example 2.14. The following
notation was not defined in [7], but will be important in Sections 3—4. Define
A% to be the sub-cdga of A® generated (either as a cdga or equivalently

as a graded algebra) by A and the variables ac; fori =—-1,-2,...,d and

j=1,...,m;. Then A% is of standard form with vdim A = Zfzo(—l)imi.

Write ¢« : A% < A*® for the inclusion morphism, which is a submersion. Then
we have a fibre sequence

H—‘L

Las ®as A Lae Lae/as .

Taking Lae = QL., Las = Qi‘i’ and Laejae = Qh./A:r as A®, A3 are of
standard form and ¢ is a submersion, as in (2.1) we have
LA' = A" K <dde§a ddRy;?_i : ZZO, _17 ey d7 .]Zla AR 7mi>K;
Las @as A® = A" @k (dapal :i=0,—1,...,d, j=1,...,m)x,
]LA'/A; ~ A* XK <d.dRy;-CiZ 11 :0,—1,...,d, j: 1,...,mi>K.

We will also find it helpful to decompose ® € ARt into components.
Observe that as deg(yfﬂ) < k—dand 2(k —d) < k+ 1, for degree reasons

® can be at most linear in the variables yf_z, SO we may write

d m;
o=, + Z Z(I);‘_Jrly;cfi’ (2.11)

i=—1j=1
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where ¢, € Af'l and <I>;~+1 € Af;H for all 7,5 do not involve the variables
y; Then equation (2.7) is equivalent to the equations

&L i 00
> (-ytteitt a—j =0 in AKT2 (2.12)
i=—1j=1 Ty
i'+1 my ‘ _ 8(1)i_’/+1 .
Z Z(_l)erl(I);—H % =0 in A:_+27
i=—1j=1 O} (2.13)
Zl:_la 7da jI:17 , ey
and (2.8) is equivalent to the equations for ¢ = 0,...,d and j =1,...,m;:
. o . aq; me 8(1)1 1
dat = (1)@t dyht = 4 Z > = yito (214)
i'=1—1j5'=1 J
Define
d m;
== D (~)EEED T dgpat in (Qa)F (2.15)
1=0 j5=1

Then as for (2.10), calculation shows that
d®, =0, dgr®, +do, =0, and dgros = —w’. (2.16)

A nice interpretation of + : A} — A®, which we will not actually use, is
that Spec. : Spec A* — Spec A% is a Lagrangian fibration of (Spec A®,w).

We can also use this example to explain the relation between the
“Darboux Theorems” of Bussi, Brav and Joyce [7], and Bouaziz and Gro-
jnowski [5]. Bouaziz and Grojnowski show that any k-shifted symplectic
derived K-scheme (X,wx) for k¥ < 0 with & #Z 2 mod 4 is étale locally
equivalent to a twisted k-shifted cotangent bundle Ty [k]Y, where Y is an
affine derived K-scheme, and t € 0’;,“ with dt = 0 is used to “twist” the
k-shifted cotangent bundle T*[k]Y .

To make the two pictures correspond, we should identify ¥ with Spec A%,
and & € A’frl with t € O%F!. The data <I>§-+1 in @ in (2.11) is used to define
the differential d in A} = (A%, d), via daf = (=1)""'®'*! in (2.14). The
classical master equation (2.7) reduces to (2.12)—(2.13), where (2.12) means
that d®, = 0, and (2.13) means that dod = 0 in A% = (A%,d), necessary
for A% to be a cdga and Y a derived scheme.

Remark 3.4 will explain how our “Lagrangian Neighbourhood Theorem”
relates to Bouaziz and Grojnowski’s “twisted cotangent bundle” picture.
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Bussi, Brav and Joyce [7, Examples 5.10 & 5.12] also give two variations
on Example 2.14 when £ =2 mod 4:

Ezxample 2.16. — Let k = —2, —6, —10, ... be negative with £ = 2 mod 4,
and set d = k/2, so that d is negative and odd. Fix nonnegative integers

mo,m_1,m_g,...,mq. Choose A%, 29, ... 2% ~and U as in Example 2.14.

Modifying (2.5), define A* as a commutative graded K-algebra to be the
free graded algebra over A° generated by variables

ml,...,xinm in degree i for i = —1,—2,...,d+ 1, and
z‘f, ceey zfnd in degree d, and
yl l7...,yfr';i in degree k —i fori =0,—1,...,d+ 1.
Let qi1,...,qm, be invertible elements of A°, and generalizing (2.6) define
d+1 m; mq
WO =" "darafdaryy ' + D dar(g;2)) darzd in (A*Q4.)F. (2.17)
i=0 j=1 j=1

Choose a Hamiltonian ® in A¥*1 which as in (2.7) we require to satisfy
the classical master equation

d+1 m; mq 2

P d 1 1 P
> g ak - EE (6d> =0 in A" (2.18)
i=—1j=1 zj Oy; iy 02

As for (2.8), define the differential d on A®* by d = 0 on A°, and

n d
w0 o 20§ A o o0
’ J

J 8:10 T 24, Oz} 924,
: 0P . 0P
dzt = (—=1)"! Ayt Tt= = i=—1,...,d+1, j=1,...,m,,
J ( ) 8y§;_1 y] ax; ]
1 09
d def=-—_—— i=1,...,mq. 2.1
an Zj qu asz J ) » Md ( 9)

Then A® = (A*,d) is of standard form, with vdim A® = 2 ZdH( 1)im; —
mg. Also dw® = dgrw® = 0, and w = (w 0 ,0,0,...) is a k-shifted symplectic
structure on X = Spec A°, as in [7, §5.3]. Deﬁning ¢ € (Q4)F by

d+1 m;

¢=> > [iafdary ™ + (=1)" (k= i)y}~ daraf]

=0 j=1

mq
+k Z q; Z;i ddRZ?, (220)
j=1
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as in (2.9), then (2.10) holds. We say that A® w are in weak Darbouz form.

If all the above holds with ¢; = 1 for j = 1,...,mq, we say that A® w
are in strong Darbouzx form.

Remark 2.17. — Actually, when k = 2 mod 4, Bussi, Brav and Joyce [7,
§5.3] did not deﬁne “Darboux form” A®,w as in Example 2.14 involving

only variables :Ej, yj ~% but instead only defined “weak Darboux form” and

“strong Darboux form” as in Example 2.16, involving variables ajj, yf ‘ z;-i.

We can relate Example 2.16 to Example 2.14 with £ = 2 mod 4. Let
A® w be in strong Darboux form as in Example 2.16, so that we have
Varlableb x],yj z and g1 = -+ = gm, = 1, and suppose my is even

(equivalently, suppose vdim A® is even). Then we may change variables from

d d d d d d
2{5- 2, tO TL s Ty o Yl ey Y 20 where

o =20 +V-1ay, Y =2 - Vlay, G=1 ma/2,

and replace mg by mg4/2, and then the “strong Darboux form” of Exam-
ple 2.16 is equivalent to the “Darboux form” of Example 2.14. Here y/—1 € K
as K is algebraically closed.

As in Remark 2.10, if (X, w% ) is k-shifted symplectic with £ =2 mod 4
and vdim X is odd, then no Lagrangians exist in (X, wx ). Because of this,
in this paper we are happy to use the local form of Example 2.14 when
k =2 mod 4, which only works when vdim X is even, rather than that of
Example 2.16, which works for all vdim X.

Here is the main result of Bussi, Brav and Joyce [7, Th. 5.18]. They state
only (i)—(iii), part (iv) is deduced from (iii) as in Remark 2.17. The reason
we need ¢ to be étale in (iii) (and hence (iv)) is that to reduce from weak
Darboux form to strong Darboux form in Example 2.16, it is necessary to
take square roots of the functions ¢i, ..., gm,, and this is only possible étale
locally rather than Zariski locally.

THEOREM 2.18. — Let (X,wx) be a k-shifted symplectic derived K-
scheme for k < 0, and x € X. Then there exists a standard form cdga A®
over K which is minimal at p € Spec A®, a k-shifted symplectic form w on
Spec A*, and a morphism i : Spec A* — X with i(p) = x and " (wx) ~ w,
such that:

(i) If k=0,1 or3 mod 4, then i is a Zariski open inclusion, and A®,w
are in Darbouz form, as in Example 2.14.

(ii) If k = 2 mod 4, then i is a Zariski open inclusion, and A®,w are
in weak Darboux form, as in Fxample 2.16.
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(iii) Alternatively, if k = 2 mod 4, we may instead take i to be étale,
and A®,w to be in strong Darbouz form, as in Example 2.16.

(iv) Alternatively, if k =2 mod 4, and vdim X is even near x, we may
take © to be étale, and A®,w to be in Darboux form, as in Exam-

ple 2.14.

Following [7, Examples 5.15 & 5.16], we explain Examples 2.14 and 2.16
in more detail in the first cases k = —1 and k = —2.

Ezample 2.19. — Choose a smooth K-algebra A° of dimension mgq and
elements z9, ..., 20, € A° such that dara?, ..., dara?,, form a basis of ),
over A%. Choose an arbitrary Hamiltonian ® € A°.

Example 2.14 with k& = —1 defines A* = A°[y;',... y;l], where
Y1 Lo ,y;Li are variables of degree —1, with differential

0P
0_ -1 _ o
d.’I,‘j—O, dy] _371’?) ]—1,...,m0,

and —1-shifted 2-form

w’ = darz) dary; ' + -+ + dar @, daryp,.-
Then w = (w,0,0,...)is a —1-shifted symplectic structure on X = Spec A°.
We have HO(A®) = A°/(2% ..., ;2% ) = A%/(dar®).

’ azomo

Geometrically, U = Spec A is a smooth classical K-scheme with étale
coordinates (29,...,29, ): U — A™ and & : U — A' is regular, and X is
the derived critical locus of ®, with X = t((X) the classical critical locus
of ®.

Thus, the important geometric data in writing a —1-shifted symplectic
derived K-scheme (X,w) in Darbouzx form, is a smooth affine K-scheme U
and a regular function ® : U — A, such that X ~ Crit(®). The remaining

data is a choice of étale coordinates (29,...,20 ) : U — A™, but this is
not very interesting geometrically.

Ezample 2.20. — Choose a smooth K-algebra A° of dimension mg and
elements 7, ..., 29, in A° such that dqr29, ..., darx},, form a basis of Q)
over A°. Fix m_1 > 0, and as a graded algebra set A* = A°[y;>, ..., 42,
.. - Zmt ], where yj_2 has degree —2 and zj_l degree —1, as in Exam-
ple 2.16 with k = —2.

Choose invertible functions gy, ..., ¢, _, in A°. Define

w’ = dar) dary; > + - - + daral,, daryy,

+dar (q127 ") darzy '+ -+ dar (@m_y 2, ) darznt
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in (A2QL.)72 as in (2.17). A general element ® in A~ may be written

-1 -1
b=z "s1+--+ Zin_ 1 Sm_1>

for s1,...,8m_, € A% Then the classical master equation (2.18) reduces to
2 2
(81) 4+t 7(8771’1) =0 in A°. (2.21)
q1 dm_4

By (2.19), the differential d on A® is given by

~— B B)
_ S _ _ S S5 q;

dz? =0, dzil=2L, dy %= S =L 2L )
" ST g ; 5 \0a0 " 295 0af

and d o dy; % = 0 follows from applying ia%@ to (2.21). We have

HO(A') = AO/(51/2q1, ce 5m_1/2qm_1) = AO/(sl, ey Sm)s
as qi,-..,qm_, are invertible.

Geometrically, we have a smooth classical K-scheme U = Spec A°
with étale coordinates (z9,...,20, ) : U — A™", a trivial vector bun-

dle E — U with fibre K™~', a nondegenerate quadratic form @ on F

given by Q(e1,...,em_,) = qile% +ot qml,l eZ, . for all regular functions

1, sem_, : U — A', and a section s = (s1,...,8,_,) in H(E) with
Q(s,s) = 0 by (2.21). The underlying classical K-scheme X = to(X) =
Spec HY(A®) is the K-subscheme s~1(0) in U.

Thus, the important geometric data in writing a —2-shifted symplectic
derived K-scheme (X ,w) in weak Darboux form, is a smooth affine K-scheme
U, a vector bundle E — U, a nondegenerate quadratic form @ on E, and a
section s € HY(E) with Q(s,s) = 0, such that X = to(X) = s71(0) C U.
The remaining data is a choice of étale coordinates (z9,.. .,x?no) U —
A™° and a trivialization £ = U x A™~!, but these are not very interesting

geometrically.

3. The main results
3.1. A local standard form for derived scheme morphisms

As in Theorem 2.6, our favourite local model for a derived scheme X
near a point x € X is Spec A* — X for A® a standard form cdga, and
we can take Spec A®* minimal at z. We used this in the Darboux Theorem,
Theorem 2.18.
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We will need a favourite local model for a morphism f : ¥ — X in
dSchg near y € Y with f(y) = ¢ € X. For this we will use a homotopy
commutative diagram (3.1) below, where o : A®* — B*® is a submersion in
cdgay, following Borisov and Joyce [4, §2.1], which we take to be minimal
at 5~ '(y) € Spec B*.

DEFINITION 3.1. — A morphism « : A* — B® of standard form cdgas
will be called a submersion if the corresponding morphism a. : (Q4e) @ e
B®* — QL. is injective in every degree. (By analogy, a smooth map of man-

ifolds f: X =Y is a submersion if (df)* : f*(T*Y) — T*X s injective.)

If a: A* — B°® is a submersion of standard form cdgas then the relative
Kdhler differentials Q}B./A. are a model for the relative cotangent complex
Lpe/ae, s0 we can take Q}B./A. = LLpe/ae. Thus submersions are a con-

venient class of morphisms for doing explicit computations with cotangent
complezes.

In a similar way to Definition 2.4, we say that a submersion o : A® —
B* is minimal at ¢ € Spec B® if all the differentials in the compler of K-
vector spaces Q}B./A. |4 are zero. This means that regarding A® as fized, B® is
defined using the minimum number of variables in each degree i = 0, —1,...,

compared to all other cdgas locally equivalent to B® near q with submersions
to A®.

Here is a relative analogue of Theorem 2.6, which will be proved in Sec-
tion 4.1.

THEOREM 3.2. — Let f:Y — X be a morphism in dSchg, andy € Y
with f(y) = x € X. Suppose A® is a standard form cdga over K, and p €
Spec A®, and i : Spec A* — X is a Zariski open inclusion with f(p) = x.
This is possible by Theorem 2.8. We do not assume A® is minimal at p.

Then there exists a standard form cdga B® over K, a point ¢ € Spec A®,
a submersion o : A* — B® minimal at ¢ with Speca(q)=p, and a Zariski
open inclusion j : Spec B®* — Y with j(q) =y in a homotopy commutative
diagram
Spec B*® C—J) Y
\LSpeca f\L (31)
Spec A°® « * . x

If instead © is étale rather than a Zariski open inclusion, then j is étale.
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3.2. k-shifted “Lagrangian Darboux form” local models for k£ < 0

In Examples 3.3 and 3.5 we will explain our local models for Lagrangians
in k-shifted symplectic derived K-schemes, which we call “Lagrangian Dar-
boux form”, for the cases k < 0 with & # 3 mod 4, and £ < 0 with
k =3 mod 4, respectively. They are analogues of the “Darboux form” Ex-
amples 2.14 and 2.16 in Section 2.5, and work over a target in “Darboux
form”. Theorem 3.7 in Section 3.3 will show that Lagrangians f : L — X
in a k-shifted symplectic K-scheme (X,wx) for k < 0 are (Zariski or étale)
locally modelled on one of Examples 3.3 and 3.5.

The next example is rather long.

Example 3.3. — Let k < 0 with k& # 3 mod 4, suppose A®,w are in
k-shifted Darboux form, as in Example 2.14, and use the notation
of Remark 2.15. These define a standard form cdga A® over K, a
sub-cdga A% C A*, coordinates x; in A% C A" and y;.“*i in AF~ for ¢ =
0,— ,d=[k+1)/2) and j = 1,...,m;, and a k-shifted 2-form w® =
Zl 0 Zm‘ dar} ddRyf_i. They also define ® € A**+! satisfying (2.7), which
determines the differential d in A® by (2.8), and ¢ € (Q4.)* satisfying
d® = 0, dgr® +d¢ = 0 and dar¢ = kw®. As in (2.11) we write ® =
O+ S @y where @4 € AKT! and @1 € AT for all i, j
do not involve the y, and we define ¢, € (Q4.)* by (2.15).

Write e = [k/2], so that if k is even then e = d and k = 2e = 2d, and if k
is odd then e =d —1 and k = 2e + 1 = 2d — 1. Choose nonnegative integers
Mo, N—1, .. ., Ne. Choose a smooth K-algebra B° of dimension mg + ng, and a
smooth morphism ao A% — BY. Localizing BY if necessary, we may assume
there exist ud, ..., no € BY such that dqr?,.. ., ddRignO, dqrud, ... ,ddRugo
form a basis of Q0 over BY, where we write Z) = a%(z9) € B°.

Define B* as a commutative graded K-algebra to be the free graded
algebra over B° generated by variables

Eﬁ,,%ﬁm in degree ¢ for i = —1,—2,...,d, and
ui, ..., in degree i for i = —1,-2,...,e, and (3.2)
vf 1—1‘7.”70712:1—1‘ in degree k —1—ifori=0,-1,...,e.

So the upper index 7 in xJ7 u], v} always indicates the degree.

Define a morphism a4 : A% — B* of commutative graded K-algebras by
0

ay = a in degree 0 and
ay(zh)=af, i=-1,-2,....d, j=1,...,m, (3.3)
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This is well-defined as A% is freely generated over A° by the .

Now choose a superpotential ¥ in B¥, which we require to satisfy

oV
Z Z 8u 90 lc — tas(®y)+ Z Z 1) a (I)ZH)&'E; =0 (3.4)

i=—1j=1 1=—17=1

in B**!, Extend a4 to a morphism « : A* — B* by «

Ay =0y and

i+1 3‘1{
85;’

(yj ) =(~1) 1=0,—-1,...,d, j=1,...,m,. (3.5)

This is well-defined as A* is freely generated over A% by the yfﬂ Then
from (2.11) and (3.5) we see that (3.4) may be rewritten

ZZ@U a,Uk 1— 'L+a(q)):0

1=—17=1

Define the differential d in the cdga B® = (B*,d) by d = 0 on B°, and

Az = (-1 (@), i=-1,-2,...,d, j=1,...,m,,

)i+ Dk ov dkalfi_a‘lf . . (3.6)

i — — )
d’U/j—(_l 81}?7171‘7 j _TU;’ Z_Oa_la"'ae7 .7_17"'anz-

To prove that d od = 0, note that for '/ = —1,...,dand j' = 1,...,my we
have

dodzl, = ( ’HZZd oy (41

i=—1j=1
oo+

_ z+1 1+1 it+1 J’ _
~ a3 Shenert B <o

1=—17=1

where in the first step we use that 8/3u ., (“)/(“)v’C 1= are zero on a+(<b;+1)

as this is a function of the x :cj only, in the second (3.3) and the first line of

(3.6), and in the third the second line of (2.12).
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For i’ = —1,...,eand j' = 1,...,n; we have
“ I[Zi o
dodu’ = '+ dzt. 2
J R I Srp g7
P ozLovs "
U2 e ng 62\11
+ Z Zdu] iAoy T Z Zdvk - Z' i k17
——1 8u (9’(} i = 18,0'/ i
i=—1j=1 i=—1j=1 Uj j
R
— (z +1)k Z Z 7+1 z+1) v
~i o k—1—1
|J——1] 1 axjavj/
ov 0?0
+ Z Z Hl)k N
i=——1j=1 v; 8uj6vj,
e n; 8\11 82\11
+ Z Z i o k—1—i k—1_i/] =0, (3.8)
i=—1j=1 ouj - 0v; vy

where in the first and second steps we use (3 6), and in the third we apply

8/avk, = 4o (3.4), noting that 8/81}’c 1= ig zero on a+(<1>+),a+(<1>;+1)
as these are functions of the = :r] only, and dealing with signs appropriately.
Similarly, for i/ =0,...,e and 7' = 1,...,n; we have

dOdU;c/_l_l Z Zd i Bx 6u,

i=—15=1
D DD WTRNUAIES o) S e
J 8u 8uzl k_l_iauiﬂ
Z_—lj 1 i=—1j5=1 J
(3.9)
D P IO
Pt &rzau},
ov 02
+ Z Z (Hl)k k’—l—i' 7t kE—1-iq i
i=—1j=1 8u 8u Y i avj 0

where in the last step we apply a/au;ii to (3.4).

This proves that d od = 0, so B® is a standard form cdga over K. Also

doa(zl) = d7l, = (1) Hay (@11) = a[(-1)" 1@+ = aodal,, (3.10)
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using equations (2.14), (3.3) and (3.6), and

% ov
k—i — Z "+1 ~i
doa(y;; ") = (- 1" 5 [ E E 4z’ - 83: (’9331',
J

i=—1j=1
- d T . d k—1—1 82\1}
*ZZ ]MwZZv g1 igad
i=—1j=1 i=—1j=1 Uy 5
0%
= (=1)"+! Ditla (@) —— 3.11
P ) e (3.11)
i=—1j=1 J J
- o 82w SN 820
(z+1)k X A ‘ o vr
+ le k—l—i 81%5'%’7, + Z Z Out 5vk_1_23§i.',
i=—1j=1 ] i=—1j=1 J J J

0 i+1 i+1 ov k—i’
a~1/ ¢)+ + Z Z a~1/ O[J,_ @ )] (_1) * afc@ :O[Od(yj/ )7

i=—17=1 J

where in the first step we use (3.5), in the third (3.6), in the fourth we
apply 9/ 8%?, to (3.4) and deal with signs, and in the fifth we use the second
equation of (2.14) and (3.5). Equations (3.10)—(3.11) imply that d o o =
aod: A" — B*,so a: A* — B*® and hence ay : AY — B*® are morphisms
in cdgag. Note that o, is a submersion, in the sense of Definition 3.1.

Following (2.6), define h° € (A2QL,)F~1 by

= Z Z ddRué ddRUf_l_i- (3.12)

i=0 j=1

Then dggh® = 0, and

ho — Z Z [(d ¢} ddRué) ddR’U?_l_ijL(fl)(iJrl)k(d ° ddef—l—i) ddRuﬂ
i=0 j=1

= 373 (a0 ) dare ™ (<) 0 o) das]
i=0 j—l

S ov o
== Z Z 1)tk [ddR(k_l_) ddek 1=y ddR( ; ) daruj ]
a’Uj ¢ 8'LLJ

=0 j=1

€ Kz 1 aqj ) aqj
= dar [— Z {ddef T —— 4 daruf }
i=0 j=1 Uy u

d m;
=dgr [ dgr V¥ + Z Z ddRN7 6\11

=0 j=1
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m;

_szdﬁ(dcm ) - (=) alyy ’)) (3.13)

=0 j=1
d m; d m; ) )
= Z Z dar (a(}))dar (a (Z/j ) = lz Z darz} ddRny] =, (W),
i=0 j—1 i=0 j—1

using (3.12) in the first step, d odqr +dar ©d = 0 in the second, (3.6) in the
third, dgrodgr = 0 in the fifth, (3.3) and (3.5) in the sixth, a,odgr = dgroas
in the eighth, and (2.6) in the ninth.

Definition 2.9 and equation (3.13) now imply that h := (h°,0,0,...) is
an isotropic structure for Speca : Spec B®* — Spec A® and the k-shifted
symplectic structure w = (w°,0,0,...) on Spec A*. We will now prove that
this isotropic structure is nondegenerate, so that Spec B® is Lagrangian in
(Spec A®,w). To do this, we have to show that the morphism x : Tge /40 —
L e[k — 1] of B*-modules defined in (2.3) is a quasi-isomorphism.

It is enough to apply — ®pe H°(B*®), and show the corresponding mor-
phism of complexes of H%(B*®)-modules is an isomorphism. The analogue of
(2.3) is

(Qpe)" ®pe H(B) 0
[@ny 0 n- |
(2he)¥ ®ae HO(B®) = Qju[k] @ae HO(B') 2! 9}3-[ | ®pe H(B*)

l/ IUUETPPPERR TR X[l] JUTPRTE

Tpe/ae[1] @pe HO(B®). (3.14)

Here we have used Q4., QL. (24.)Y, (Q%.)" as models for L 4e, Lge, Tye,
Tpe, since A®, B® are standard form cdgas. As a model for Tpge 40 @pe
H°(B*®) we will use the cone of (21)Y in (3.14), so that

((Tpejae ®pe H*(B*))*,d)
o)\ % o\ 5 dpe 0
- (@5 By e@ o e (05 ).
As H°(B®)-modules, the i'" graded pieces of Q4. ®4e HO(B®), QL. @pe
HO(B*), (Q4.)Y ®4¢ H°(B®), and (QL.)Y @« H°(B®) are
(Qzlﬁl’ D40 I_IO(B.))2 = <dde_§’7 .] = 1) sy Mg,y

i (3.15)
ddRyj, J = 1, ce ,mk_i>H0(B.),
(Q}g- ®Be HO(B.))i = <ddR5§‘a j = 1, e, MMy, (3 16)
ddRu_,;'v .] = 17 <y Mg, ddRU]i'a .7 = 17 ce 7nk—1—i>H0(B’)7

— 856 —



A Lagrangian Neighbourhood Theorem for shifted symplectic derived schemes

; 0
((4e)Y ®ae H(B®))" = <(9 —, j=1,...,m_,
.
! (3.17)
—a j=1 m
i ) s hi—Ek 0(B*)>
ayj HO(B*)

° 3 8 .
((QIB~)V ®pe H'(B ))z = <a§f—i’ Jj=1...,m_,
’ (3.18)
0 0
Fﬂj:]-a"'vnfia (fa_iaj:17"'7ni+lk>HO(B’)a
UJ Uj

2

where (...) go(pe) denotes the free H°(B®)-module with basis “...".

The next diagram shows x : Tge /40 ®@pe HO(B®) = Qp.[k—1]@ ge H*(B*)
in degrees ,% + 1, together with d in both complexes.

(Tpe a0 @pe H°(B*))’
— 1o} . .
_<7ai;7‘ J¥3) 10 ae) (Lo [k-1]@ 5o HO(B*))'
P P _ ~k—1+i .
@(a",wﬁ,wﬂow.) *<ddR%‘ ’VJ>H0<B°)
u . v . . .
J 7 @<ddRuk71+1,ddek71+l,Vj> o(pe
o —2—,vj) i_(0 0 xw I I R
pa} =T W/ HOE) X~ onr « o

& ==, ¥4) no(ae)

a
y.7
*
*
d= o
*

(Tpe,ae®@pe HO(B*))H!
:<{Mf+47 VJ>H0(B°)
j

* ¥ OO
* O 0O

) d=(10) (3.19)

* O % O

WO

+1__ *
j Xl _( 0 ) ‘
@<6u_f’i,1 o Vi) Ho(me 0h% % 0 J(QL,[k-1]®pe HO(B®)) !

j i —>:<d i v,>
_9 _ ; dRT; 5 V] )gO(pe)
€B< awj—q, ) VJ>H0(B') @<ddRu7?+i,dde;c+i7 vj>H0(B°)'

@<ﬁ;ww>H°<B°>

We have divided Tpge 4 ®pe H(B®) into the direct sum of four pieces,
and QL. [k — 1] ®@pe H°(B®) into two. The morphisms d, x?, x**! are written
in matrix form, where “x” denotes some morphism. In the left hand d, the

Wk Io) o) . i 0, 1ol i "'k_:fl+i
a*” maps 5z — P up to sign. In x*, W’ maps P > ddrT; ,
and h%- maps af—f’ — ddRU;’-“*prZ and ava—"’ — ddRu;?*l“, all up to sign, and

7T i . )
similarly for x**'. The important thing is that these a*,w?-, h®- in d, x?, x**
are all isomorphisms of H°(B*®)-modules.
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Now consider the graded H°(B*®)-submodule

0 0 0
Cc*:={0 — ., Vj . 0 — .V .
{}@<8u;*’8v;*7 ]>H0(B)@{}€B<ay;_*a J>H0(B)
C (Tpe/as ®pe H(B®))".

The form of the left hand “d” in (3.19) implies that C* is closed under d,
so C* = (C*,d) is a subcomplex of Tge 40 @pe H°(B*). The isomorphism
“a*” plus two other zeroes in the left hand “d” in (3.19) imply that the
inclusion inc : C* < Tpge /g0 @pe H%(B*®) is a quasi-isomorphism. And the
isomorphisms “h%.” “w0.” plus two other zeroes in x¢, x**! in (3.19) imply
that x|ce is a strict isomorphism of complexes. Thus we have a commutative
diagram

C.

Xlce
ziinc\ (3.20)

Tpe/ae ®pe H'(B*) ——— Qb [k — 1] @p. HO(B*),

so x is a quasi-isomorphism. Therefore the isotropic structure h is nonde-
generate, and Spec B® is Lagrangian in (Spec A®,w). We say that A®, w,
B*, «a, h are in Lagrangian Darboux form.

Following (2.9), define ¢ € (2%.)*~! by

e ng
Y=Y i darol T 4 (=) TR — 1 — i) dggad]. (3.21)
i=0 j=1

As a relative version of (2.10), we will prove that

d¥ = —a(® + D) in BFL (3.22)
dqr¥ + dy = —a. (¢ + ¢y) in (QL.)%, and (3.23)
darv = (k — 1)n° in (A2QL. )~ 1 (3.24)

Note that dh® = a,(w?) in (3.13) also follows from

(k—1)dh’ =dodart) = —dar © d¢) = —dqg [dar ¥ + dv]
=dar o (¢ + ¢4)
= a,(dgro + dqrody ) = ax(kw’ — w°) = (k — 1) (W),

using equations (2.10), (2.16), (3.23), and (3.24).

— 858 —



A Lagrangian Neighbourhood Theorem for shifted symplectic derived schemes

For equation (3.22), we have

dm_ZZd]8~

¢ 0w
JamLZZd”k“ﬁ

i=—1j=1 1=—17=1 1=—17=1
AR ov OV
Z Z z+1 (I>7,+1) + Z Z (z-‘rl)k Bl
k—l—
i=—1j=1 ax i=—1j=1 ] ' au;
° ov oV
+ Z Z — (3.25)
1=—17=1 au 81)
ov ov  IJv
D IDYEILITT LT D DpPRL PR LS
) o k—1—i
’L_*l‘] 1 ax i=—1j=1 auj 8Uj '
Z Z 1+1 (I)H-l) a\I’
J ~)
i=—1j=1 6xj
d
ov
’L+1 1+1
Oé+ (I>+ + Z Z @ )8fz
i=—1j=1 J
— —a(®+ 0y,

using (3.6) in the second step, (3.4) in the fourth, and (2.11) and (3.5) in
the fifth. For equation (3.23), we have

i 0¥
dar ¥ + dy = ZdeR% aﬂ +ZZ[ddRu] £ +ddRUk - P
=0 j=1 =0 j=1 J

+ 3 i duf darof T 4 (DR — 1 — i)dv) T daruj]

i=0 j=1
+Zezi[(—l)i/i’uéidoddmf/—l—i/_( )7 G+ (g1 — /)f 1-f doddRul]
i'=04/=1
- Ed:i (z+1)k 3‘1/ d o
+ z_; é(—l)“*“k {(i + 1)&]?\Ijlidmf‘l‘i + (k- i)% ddnué]
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2
—Zzl (Hlka\p DHVE ““)k';af;cgzé

=0 j=1 i'=0j'=1

2
- OH)k —1-4 U’Tl*i/ 87\1] dar
Z Z ) J avl_vlflfz'agi_ J

i/=0j'=1
I O
Y ut, 0w’
i=0 j=1 i'=0j/=1 3
2
_ ZZ 1)FDR( — 1 — gyt o durd’
3’ k—1—i g5 5 | CARYS
pror et avj, au;
2
(H'l)k (1+1)k ./ 1 o
3[BT 5 = I
i=0 j=1 i/=0j'=1
2
(z+1)k N, k—1—d oV k—1—i
— Z Z —1—)vy 8@1@—1—@@1@—1—] darv;
i/=0j'=1 J J
e o’
_ (H—l)k: (1+1)k /~1 i
—zz[n 3 s
=0 j=1 i/=0j'=1 J J

SN 7,+1)k /~z 82\1} i 82\11 k—1—1
+ E E E E Z, ; =7 daruy + —— g dary;
ox ('9 oz, o0v”
i=0 j=14'=0j'=1 J J
=- E E DEFVED (1 — i)y} ') dar ()]

=0 j=1

7YL/

—ZZza (x5 )dar| (yfﬂ)]

i/=0j'=1

d m;
—a, [Z Z[(il)(i+1)(k+1)(k 1— z) ddR% g ddRy] 7,]

i=0 j=1

= —on(d+ b), (3.26)

using (3.21) in the first step, (3.6) and d o dgr + dgr ©d = 0 in the second,
in the fourth that

4T h1 g O o
33 g+ X3 g+ - | O
ov

( 2)85;’
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ow 0

since 2¥ has degree k — i, and similar equations for T aki‘ljlz; equations

a"’L
(3.3) and (3.5) in the fifth, and (2.9) and (2.15) in the seventh. Equation
(3.24) is immediate from (3.12) and (3.21).

Let us summarize our progress:

e Example 2.14 defined a cdga A® and w® = Z?:o Z;":l ddeé ddRyfﬂ'
n (A2Q4.)% such that w = (w°,0,...) is k-shifted symplectic on
Spec A®, and ® € A*FL ¢ € (Q4.)* with d® =0, dgg® +d¢p =0
and ddR¢ = kwo.

e Remark 2.15 defined a sub-cdga A% C A® and &, € Affrl, P+ €
(Qh.)k satisfying d®, = 0, dqr®; + d¢; = 0 and dgrp = —w°.

e We define a cdga B® and a morphism « : A®* — B*® such that
ay = qf At ¢ A% — B°® is a submersion, a Lagrangian isotropic
structure h = (h°,0,0,...) with h® = >"7 >t daru} ddek 1=
for a, and ¥ € B*, 1) € (Qhe)F ! with d¥ = —a(® + @), dar ¥ +
dp = —a (¢ + ¢4 ) and dgry = (k — 1)hY. We say A® w, B*,a,h
are in Lagrangian Darbouz form.

This finally concludes Example 3.3.

Remark 3.4. — Bouaziz and Grojnowski [5] proved their own k-shifted
symplectic Darboux Theorem independently of [7], showing that any k-
shifted symplectic derived K-scheme (X,wx) for k < 0 with & # 2 mod 4
is étale locally equivalent to a twisted k-shifted cotangent bundle T} [k]Y,
where Y is an affine derived K-scheme, and ¢ € (’)@‘H with dt = 0 is used
to “twist” the k-shifted cotangent bundle T*[k]Y . Remark 2.15 related their
picture to Theorem 2.18.

We can explain our k-shifted Lagrangian Neighbourhood Theorem 3.7 (i)
below in the style of Bouaziz and Grojnowski [5], by saying that a k-shifted
Lagrangian f : L — X for kK Z 3 mod 4 is étale locally equivalent to the
twisted (k —1)-shifted relative cotangent bundle Ty, , [k —1](Z/Y) — Ty [k]Y
of a morphism of affine derived K-schemes g : Z — Y, with “twisting” u €
(’)kZ satisfying du + g*(t) = 0, or equivalently, to the twisted k-shifted conor-
mal bundle Ny ,[k](Z/Y) — T} [k]Y, since N*(Z/Y) =T*[-1(Z/Y ).

Explicitly, in the situation of Example 3.3 and following Remark 2.15,
define BY to be the sub-cdga of B* generated by BY and the variables ¥ Jc] , u]
for all ¢ < 0 and j. Then B* is freely generated over BY by the variables
vf‘l_i for all 4,j. Also aq maps AS — BY C B®. For degree reasons ¥ can
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be at most linear in the v;?_l_i, so as in (2.11) we may write

_ N it k-1
=W, 4+ Y Y Wit (3.27)
i=—1j=1
where U, € B_’ﬁ and W;‘H € Bj_“ for all 4,5 do not involve the variables
o1
Then as in (2.12)—(2.13), equation (3.4) is equivalent to the equations

d my d my

ov 11,0V
i+1.1,2+1 i1 i+1 +
S B ) 3 a0 S o
i=—1j=1 i=—1j=1 J
(3.28)
i'4+1 m; 8 i/ 8\111 "+1
_ 2_;,_1\1/14_1 z+1 (I)H-l =0
2. 2.1 Y Y oz =0
i=—1j=1 i=—1j=1
(3.29)

where (3.28) holds in BY™, and (3.29) holds in Bi+2 for all ' = —1,...,e
and j' =1,...,n;. Also equations (3.5) and (3.6) may be rewritten

i i1 [ 00 L vt
o= (G 3 Y T s
i'=i—1j5'=1
a7} = <—1>l+1a+<¢>;+1>, du = (1)U,
ov ) U / (3.31)
k—1—1 + J k—1—1
dvj = ou Jr‘z Z ot
i'=i—1j5'=1 J
From these we see that (3.28) is equivalent to

Now write Y = Spec A} and Z = Spec BY, as affine derived K-schemes,
and g = Specay : Z — Y. As in Remark 2.15, we interpret Spec A®
as a twisted k-shifted cotangent bundle T;[k]Y with projection Spect :
Ty[k]Y — Y, where v : A} — A® is the inclusion, and the “twist” ¢ €
(’)’;,Jrl is t = ®,. Similarly, we interpret Spec B® as a twisted k-shifted
conormal bundle N;‘/t[k](Z/Y) of g : Z — Y, with projection Spec} :
N;‘/t[ (Z)Y) — Z, where j: B$ — B*® is the inclusion, and we interpret
Spec « as the twisted inclusion IIlOI‘phlSIIl Ny lkl(Z2/Y) = TY[R]Y.

Here U is the “twist” u of the k-shifted conormal bundle N*[k](Z/Y),
and (3.32) is the compatibility condition du + g*(¢) = 0 with the “twist”
t =&, of T*[k]Y . The data \If;-+1 in ¥ in (3.27) defines the differential d in
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Bt = (B}, d), via du} = (=1)FDRWIH in (3.31). Equation (3.29) means
that dod = 0 in B} = (B},d), necessary for B} to be a cdga and Z a
derived scheme.

The next example, defining “weak Lagrangian Darboux form” and “strong
Lagrangian Darboux form” when k = 3 mod 4, is related to Example 3.3 in
the same way that Example 2.16 is related to Example 2.14 in Section 2.5.

Ezample 3.5. — Let k < 0 with & = 3 mod 4, suppose A®,w are in
k-shifted Darboux form, as in Example 2.14, and use the notation of
Remark 2.15. These define a standard form cdga A® over K, a sub-cdga
A% Q A®, coordinates x; in Ai C A’ and y’C * in Ak i for i =
0,— ,d = [(k + 1)/2] and j = 1,...,m;, and a k-shifted 2-form w® =
ZZ 0 Z dde ddRyJ ~% They also deﬁne ® € AF+1 satisfying (2.7), which
determmes the differential d in A® by (2.8), and ¢ € (Q4.)F satisfying
d® = 0, dgr® + d¢ = O and dqre = kw®. As in (2.11) we write ® =
Oy + 30 S @y where @ € ART! and @1 € AT for all i, j
do not involve the yj and we define ¢4 € (24.)* as in (2.15).

Write e = [k/2], so that e = d—1 and k = 2e+1 = 2d— 1. Choose nonneg-
ative integers ng,n_1,...,ne. Choose a smooth K-algebra B° of dimension
mo + ng, and a smooth morphism a’: A° — BO. Localizing B if necessary,
we assume there exist uf, ..., u) € BY such that dgr9, ..., dqr2Y,,, daruy,

. ,ddRu%O form a basis of QBO over B, where we write x? = ao(x?) € BY.

As in (3.2), define B* as a commutative graded K-algebra to be the free
graded algebra over B? generated by variables

TN in degree i for i = —1,—2,...,d, and
ULy ey Uy, in degree i for i = —1,—2,...,d, and
Wy, .. wy in degree e, and

’flz,...7211’ in degree k — 1 —i fori=0,—-1,...,d.

So the upper index i in xj, uj,vj,w§ always indicates the degree.

As in (3.3), define a morphism ay : A% — B* of commutative graded
K-algebras by ag = a' in degree 0 and

ap(ah) =7, i=-1,-2,....d, j=1,...,m,.

This is well-defined as A7 is freely generated over A% by the x;
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Let q1,...,qn, be invertible elements of B®. Choose a superpotential ¥
in B which as in (2.18) and (3.4) we require to satisfy

Ne

1 1 /00?2
ZZ@U 8v’“11+4ij(8w°i>

i=—1j=1 j=

oW
+ay (D)) + ZZ Dy (@)= =0 (3.33)

T
1=—17=1 a J

in B**1. As in (3.5), extend o to a: A* — B* by alas =ay and

. ov
aly; ) = ()T o = —ld, =1, m
T
e
Yi 030 " = 2q; 079 dwy, T T

This is well-defined as A* is freely generated over A% by the y;“_l Then
from (2.11) and (3.34) we see that (3.33) may be rewritten

ZZMM 42”(

1=—17=1

)2+oz(<1>) =0.

As in (2.19) and (3.6), define the differential d in the cdga B® = (B*,d)
by d = 0 on B°, and

d:f; = <_1)i+1a+(¢3+1)7 Z:_l? _2?"'7d7 jzlv"'7mi7
; ; ov
duf =(=1)"* ———, i=—1,-2,....d, j=1,...,n,
J ( ) 6@5_1_1 J
; o0v
dof T = o i=—1,-2,...,d, j=1,...,n,
Ouj (3.35)
8\11 e wel aq/ 8\1}
dof =" _ J J =1 no
0 0 e ) ) )
J ouj ; 2qjr Ouj Ows,
1 0V
dw?ZTF’ j:l,...,ne.
q; ow;

We prove that dod = 0 asin (3.7)—(3.9), applying 8/3u§l,, 8/81)?,717i,, 9/0ws,
0 (3.33). Thus B* is a standard form cdga over K.

Asin (3.10)~(3.11) we can check that doa(z’) = aodz} and doa(y* Y; ) =
ao dyf_i, sothat doa=aod, and a: A* — B*® is a cdga morphism.
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Following (2.17) and (3.12), define h° € (A2QL.)*~! by

Z Z ddRu ddek 1= + Z ddR q] dde (336)
1=0 j=1
Then dgrh® = 0, and as in (3.13) we can show that dh® = a, (w°). Therefore
h = (h°,0,0,...) is an isotropic structure for Spec a : Spec B* — Spec A*
and the k-shifted symplectic structure w = (w°,0,0,...) on Spec A®. Fol-
lowing the argument of (3.14)—(3.20) we can prove this isotropic structure
is nondegenerate, so that Spec B*® is Lagrangian in (Spec A*,w).

Following (2.20) and (3.21), define ¥ € (Qk.)k! by

d n;
=3 [iud darot T 4 (<) (R — 1 - 0)oh T dagud]
i=0 j—1

kE—1) Z q; wj darwj.
j=1

As in (3.25)—(3.26), we can show that equations (3.22)—(3.24) hold.

Following the notation of weak and strong Darboux form in Example 2.16,
we say that A®,w, B®, a, h are in weak Lagrangian Darbouz form. If all the
above holds with ¢; =1 for j = 1,...,n., we say that A®,w, B®,a, h are in
strong Lagrangian Darbouz form. This concludes Example 3.5.

The next example, similar to Example 2.20, discusses Example 3.5 in
more detail when k = —1.

Example 3.6. — Consider “weak Lagrangian Darboux form” in Exam-
ple 3.5 when k = —1. Example 2.14 gives A®, w, where A is a smooth K-
algebra, elements 29, ..., m € A® such that ddel, . 7dde(T)nO form a ba-
sis of 9}40 over A°, and a Hamiltonian ® € A°. The classical master equation

. C e . . . . —1
(2.7) is trivial in this case, so ® is arbitrary. We have A* = A%y, ...,y 1],
where y7 %, ..., Ymb have degree —1, with differential
_ 0P
dx?:(), dy: 1t = » Mo,

— =1,...
J axg) ) j )
and —1-shifted 2-form
w’ = dqr2y dary; "+ -+ darzd,, daryy,. -

Thenw = (w,0,0,...)is a —1-shifted symplectic structure on X = Spec A°.

Note that H°(A®) = AO/(&CO,...7 agf? )= A%/(dgr®).
o
Geometrically, U = Spec A° is a smooth classical K-scheme with étale
coordinates (29,...,29, ) : U — A™, and ® : U — A' is regular, and
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X = Crit(®) is the derived critical locus of ®, with X = ¢,(X) the clas-
sical critical locus Crit(®). As in Example 2.14 and [7, Prop. 5.7(b)], the
restriction ®| yrea : X4 — A' of ® to the reduced K-subscheme X4 of X
is locally constant. By adding a constant to ®, we suppose that ®|xrea = 0.

Example 3.5 now chooses a smooth K-algebra B°, a smooth morphism
a® : A° — B9 and elements u%...,u%o such that ddec'(f,...7ddR’fgm,

0 0 : 1 0 ~0 _ 00,0
daruy; ..., daruy,, form a basis of Qp, over BY, where 7; = (7). As

0

a graded K-algebra we have B* = B%lv %, ... v 2, wi ', ..., w; ! ] for some
n_1 = 0, with v;z in degree —2 and w;l in degree —1.

We choose invertible elements qi,...,g,_, in B° and a superpotential
U ¢ B~!, which we write in the form

_ -1 -1
U =swy +-+8p_w,

for s1,...,8n_, € B%. The p.d.e. (3.33) which ¥ must satisfy reduces to

63 | 0@y = 0. (3.37)

By (3.34), the morphism o : A* — B*® is determined by a|40 = o and

Ne
T I W Ko e ) oo B E
J 09 2qy 039 7" o

j=1
By (3.35), the differential d in B® = (B*,d) is given by d = 0 on B° and
[ Ds0 sy 0qjr
dv;? = [ I j]wvl, 7=1,...,n0,
’ J'/Z:1 au? 2q; 8u9 !
-1_ 5 —
de —qu, ]—1, s, N1

Then d o dv;2 = 0 follows by applying %Q to (3.37). The Lagrangian struc-
ture is h = (h°,0,0,...), where h® € (A%2QL.)~2 is given by

no n_1
Ko = Z ddRug ddRUj_z + Z dar, (quj_l) ddej_l.

j=1 j=1

Geometrically, we have a smooth classical K-scheme V = Spec B’
with étale coordinates (z9,...,29, ,u?,...,u0) + V. — ATt 4
smooth morphism m = Speca® : V — U acting in coordinates by 7 :
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@,...,20, ul, . up ) = (2., 20,,), a trivial vector bundle E — V
with fibre K"~!, a nondegenerate quadratic form @ on E given by
2 2
€1 (en_y)
Q(el,...,en_l)z( ) o g
Q1 Qn,l
for all regular functions ey, ..., e, , : V—A' and asection s = (s1,...,5,_,)

in H°(E) which by (3.37) satisfies
Q(s,s) + 47*(®) = 0.

To summarize:

e The important geometric data in writing a —1-shifted symplectic
derived K-scheme (X, w) in “Darboux form” is a smooth K-scheme
U and a regular function ® : U — A' with | crig(ayrea = 0, and
then X is the derived critical locus Crit(®).

e The important geometric data in writing a Lagrangian f : L — X in
(X,w) in “weak Lagrangian Darboux form” is a smooth K-scheme
V, a smooth morphism « : V — U, a vector bundle E — V, a
nondegenerate quadratic form Q on F, and a section s € HO(FE)
with Q(s, s) + 47*(®) = 0. Then to(L) is the K-subscheme s~1(0)
in V, and to(f) is 7|s-1(0)-

The remaining data is choices of étale coordinates (z9,... ,:Cgm) on U and
(@9,...,20,,,ul,...,ul ) on V, and a trivialization E =V x A", but these

are not very interesting geometrically.

3.3. A “k-shifted Lagrangian Neighbourhood Theorem” for k < 0

Here is the main result of this paper, proved in Sections 4.2—4.7.

THEOREM 3.7. — Suppose (X,wx) is a k-shifted symplectic derived K-
scheme for k < 0, and f : L — X is a Lagrangian derived K-scheme in
(X ,wx), with isotropic structure hy, : 0 — f*(wx). Lety € L with f(y) =
rzeX.

Suppose we are given a standard form cdga A® over K, a k-shifted sym-
plectic form w on Spec A® with A®,w in Darbouz form (as in Example 2.14
and Remark 2.15, which also define a sub-cdga AS C A®), a point p €
Spec A®, and a morphism i : Spec A®* — X which is either a Zariski open
inclusion or étale, with i(p) = x and w ~ " (wx ). We do not assume A® is
minimal at p.
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(As an aside, we note that Theorem 2.18(i),(iv) guarantee such A®,w,p,
exist, where we may take A® to be minimal at p, and © to be a Zariski open
inclusion for k % 2 mod 4, and étale for k = 2 mod 4, since if k = 2
mod 4 then vdim X = 2vdim L is even near x.)

Then there exist a standard form cdga B® over K, a point ¢ € Spec B®,
a morphism « : A®* — B*® in cdgag with Speca(q) = p such that ay :=
oz|A:r : A — B°® is a submersion minimal at q in the sense of Definition 3.1,
a morphism j : Spec B®* — L which is either a Zariski open inclusion or
étale, with j(q) =y, in a homotopy commutative diagram

Spec B*® — L
|speca fJ/ (3.38)
Spec A°® ‘ X,

and a Lagrangian structure h : 0 — o (w) on Spec B® which is compatible
with hg, in the sense that the following diagram homotopy commutes

0=5"(0) ————>4" 0 f " (wx)
[ ~| (3.39)
(Speca)*(w) = a,(w) ———— (Speca)* o ¢" (wx),

where the bottom equivalence comes from the homotopy w ~ 1" (wx ), and the
right equivalence from the homotopy across (3.38). Furthermore:

(i) If k # 3 mod 4 and i is a Zariski open inclusion, then we may
take 3 to be a Zariski open inclusion, and A®,w,B®, a,h to be in
Lagrangian Darboux form, as in Example 3.3.

If instead © is étale, the same holds with j étale.

(ii) Ifk =3 mod 4 and i is a Zariski open inclusion, then we may take
J to be a Zariski open inclusion, and A®,w,B®, a,h to be in weak
Lagrangian Darboux form, as in Example 3.5.

(iii) If k =3 mod 4 then we may take j to be étale, and A®,w, B*,a, h
to be in strong Lagrangian Darboux form, as in Example 3.5.

Remark 8.8. — Let (X,wx) be a k-shifted symplectic derived K-scheme
for k < 0, and f : L — X, hy a Lagrangian in (X,wx), and y € L
with f(y) = ¢ € X. For clarity, we spell out what Theorems 2.18 and 3.7
together tell us about joint local models for X, L near x,y, for various k =
—1,-2,...:

(a) If k < 0 with £ = 0 or 1 mod 4, then Theorem 2.18 gives a “Dar-
boux form” Zariski local model A®,w for (X,wx), and Theorem 3.7
gives a “Lagrangian Darboux form” Zariski local model B®, «, h for
f:L—X.
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(b) If k < 0 with £ = 2 mod 4, then Theorem 2.18 gives a “Darboux
form” local model A® w for (X,wx) only in the étale topology,
so Theorem 3.7 gives a corresponding “Lagrangian Darboux form”
local model B®,a,h for f: L — X only in the étale topology.

(¢) If k < 0 with k =3 mod 4, Theorem 2.18 gives a “Darboux form”
Zariski local model A®,w for (X,wx). Then Theorem 3.7 gives a
“weak Lagrangian Darboux form” Zariski local model B*, a, h, and
also a “strong Lagrangian Darboux form” étale local model B®, «, h,
for f: L — X.

Our theorems thus do not provide local models in the Zariski topology
for Lagrangians in general k-shifted symplectic derived schemes when k = 2
mod 4. This is due to the laziness of the authors. One should find a “weak
Lagrangian Darboux form” adapted to the “weak Darboux form” of Exam-
ple 2.16.

3.4. The case k=0

When k = 0, a O-shifted symplectic derived K-scheme (X, wx ) is simply a
smooth classical K-scheme X with a classical symplectic form wx. However,
Lagrangians f : L — X in them, in the sense of Section 2.4, need not be
smooth classical Lagrangians; they can be truly derived objects, singular at
the classical level, as Example 2.11 shows for Lagrangians in the point. So
a “k-shifted derived Lagrangian Neighbourhood Theorem?” is still of interest
when k£ = 0, and is more closely related to classical symplectic geometry
than the k < 0 case.

If we try to extend Theorem 3.7 to the case k = 0, two things go wrong;:

(a) As is well known, although the classical Darboux Theorem holds for
real C'°° and complex symplectic manifolds, it is false for algebraic
symplectic manifolds (symplectic schemes). So given a 0-shifted de-
rived Lagrangian f : L — X, h in a general classical symplectic
scheme (X, wx ), we do not have “Darboux form” local models A®, w
for (X,wx) near x € X.

(b) Even if we assume that (X,wx) has a very nice local model near
z (e.g. if X = A% and wy = Z?Zl dar;dary;), in the proof of
Theorem 3.7 in Sections 4.2-4.7, Proposition 4.1 fails when k& = 0,
as there is an obstruction in H! ;(H°(B*)) which need not vanish
Zariski or étale locally.

The next two examples define notions of “Darboux form” for 0-shifted
symplectic schemes, and “Lagrangian Darboux form” for Lagrangians in
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them. Because of (a) and (b), they are not local models for general sym-
plectic schemes and their Lagrangians, but at least they are local models for
especially nice symplectic schemes and nice 0-shifted Lagrangians.

FEzxample 3.9. — Suppose Ag is a smooth K-algebra of dimension my,
and 29,..., 20 € A9 such that dgra{,...,dqral,, form a basis of Q}ﬁ

over Ag. Let A° = Ag [y, ... 7y,ono} be the K-algebra freely generated over
AY by variables ¢?,...,y5, in degree 0, and write ¢ : A} — AT for the
inclusion. Regard AE’H AD as cdgas AS, A® concentrated in degree 0. Define

mo

OJO = Z dde?ddRy? in AQQ}ﬁlo.

j=1
Then w° € (A%2QL.)° with dw® = dgrw® = 0, and w := («°,0,0,...) is a 0-
shifted symplectic structure on Spec A®. We say that A®,w (and A% C A®)
are in Darbouz form. Following (2.15) we also define

mo
by = Z y?ddeg in A1Q1140,

j=1
and then dgro; = —w® and d¢, = 0.

Geometrically, U = Spec A?|r is a smooth K-scheme of dimension mg, and
(29,...,a9, ) : U — A™ are ¢tale coordinates on U, and Spec A° = T*U is

its cotangent bundle with projection 7 = Spec: : T*U — U, and w° is the
canonical symplectic form on T*U.

The next example, similar to Example 2.19, is basically Example 3.3
for k=0.

FEzxzample 3.10. — Use the notation of Example 3.9. Choose a smooth K-
algebra BY of dimension mg + ng, and a smooth morphism af : A9 — B°.
Localizing BY if necessary, we may assume there exist u{, ..., u% o € B such
that dgr29,...,dary,,,darul, ..., daguy, form a basis of Qp, over BY,
where we write 70 = o (29) € B°. As in (3.2), define B* = B°[v; !, ..., v, ]
to be the free graded algebra over B° generated by variables vi',... v}
in degree —1. Choose a superpotential ¥ in B°. The p.d.e. (3.4) is trivial
in this case, so ¥ is arbitrary. As in (3.5), extend ay to a : A* — B® by
af a9 = ay and

ov .
a(y?)z—@, j=1,...,mq.

Define the differential d in the cdga B® = (B*,d) by d = 0 on B°, and
g
dort = 4

j 70
5'uj

jil,...,’no,
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as in (3.6). Then d od = 0 trivially. As in (3.12), define h° € (A2QL.)~! by

ng
h = Z ddRu? ddRUj_l.

j=1
Then dgrh® = 0, and (3.13) implies that dh® = a.(w®). Hence h :=
(h°,0,0,...) is an isotropic structure for Speca : Spec B®* — Spec A®
and the O-shifted symplectic structure w = (w°,0,0,...) on Spec A°®. Fol-
lowing (3.14)—(3.20) we prove that h is nondegenerate, so that Spec B® is
Lagrangian in (Spec A®,w). We say that A® w, B® «, h are in Lagrangian
Darboux form.

Following (3.21), define ¢ € (Qk.)~! by
no
’l/) = — Z’U;l ddRU?.
j=1

As for (3.23)—(3.24) we have
dqr¥ + dyp = —a.(d+) in (Q%.)", and
darp = —h° in (A’Qg.) "

Geometrically, V = Spec B° is a smooth K-scheme, 7 := Spec o& V=
U = Spec A(}r is a smooth morphism of K-schemes, and ¥ : V — Al is a
regular function. We should interpret L := Spec B*® as the derived relative
critical locus Crit(V/U) of ¥ : V — A' relative to 7 : V — U. Heuristically,
L is the total space of a family of derived critical loci over the base U:

L = Crit(¥/U) =~ [] Crit(¥|y, : Vi — A"),
uelU
where V,, = m~1(u) is the (smooth) fibre of 7 : V — U over u € U.

The morphism Speca : L — T*U can now be understood as follows. We
have a commutative diagram of vector bundles on L C V:

Or,

AT 0
RS i/ddR‘I’\L

0——7*(T"U)| ——=T*V|L T*(V/U)|p —=0,

with the bottom row exact. The section dgr¥|r of T*V|r projects to 0 in
T*(V/U)|L, since L is the derived zero locus of dgr ¥ in T*(V/U). Hence by
exactness dgr ¥|r, lifts to a section A of 7*(T*U)|r, and Speca : L — T*U
can be interpreted as the graph of —A.

We can now prove the following somewhat weak and unsatisfactory “0-
shifted Lagrangian Neighbourhood Theorem”:
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THEOREM 3.11. — Let (X,wx) be a 0-shifted symplectic derived K-
scheme, and f : L — X be a Lagrangian derived K-scheme in (X, wx),
with isotropic structure hy, : 0 — f*(wx). Let y € L with f(y) =z € X.

Suppose we are given a standard form cdga A® over K, a 0-shifted sym-
plectic form w on Spec A® with A®,w in Darbouz form as in Example 3.9,
which also defines A3 C A®, a point p € Spec A®, and a Zariski open inclu-
sion i : Spec A* — X with i(p) =z and w ~ " (wx).

Then we can define an obstruction class [y] in

Hllnf(tO(L))y = hﬂyEUgto(L)Hilnf(U)v (340)

where the direct limit is over Zariski open neighbourhoods U of y in the
classical K-scheme to(L), and H ;(-) is algebraic de Rham cohomology.

If this obstruction class [y] is zero then there exist a standard form cdga
B*® over K, a point ¢ € SpecB®, a morphism o : A* — B*® in cdgag
with Speca(q) = p such that oy = alas + AL — B® is a submersion
minimal at q in the sense of Definition 8.1, a Zariski open inclusion j :
Spec B®* < L with j(q) = y in a homotopy commutative diagram (3.38),
and a Lagrangian structure h : 0 — o, (w) on Spec B® for which (3.39)
homotopy commutes, such that A®,w,B®, «a,h are in Lagrangian Darbouz
form, as in Example 3.10.

If instead © is étale, the same holds with j étale.

Proof. — We follow the proof of Theorem 3.7 for £ < 0 even in Sec-
tions 4.2-4.5, setting k¥ = 0 and &, = & = ¢ = 0. The only place where
taking £ = 0 causes problems is in the proof of Proposition 4.1. Then in
place of (4.9) we have that

Y= (70[*(91)4-)3 7h0, 7h17 o )

is a 0-shifted closed 1-form on Spec B®, that is, a closed element of degree 0
in the complex ([T;5(A"*'Lpe)[i], dar + d). The analogue of (4.10) is

H0<H(AZ‘+1LB.)[2'], dar + d) >~ HN°(B®)(1) = HP’(B*)(1)

i>0

~ HP°(H(B%))(1) = H}

inf

(HO(B.)) = Hilnf(U)7

where U = to(7)(Spec H°(B*)) is a Zariski open neighbourhood of y in
to(L).

The vanishing theorems used in Proposition 4.1 fail when k£ = 0, so we
may have H., .(U) # 0. If the cohomology class [y] of v in H}, ((U) is nonzero
then =, v in Proposition 4.1 do not exist, so we cannot continue the proof.
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If there is some Zariski open neighbourhood V of ¢ in Spec H°(B®)
such that [y] becomes zero when restricted to H. .(V), then by localizing
B* we can make [y] = 0, so =, in Proposition 4.1 do exist, and the rest
of Sections 4.2-4.5 works without a hitch. The condition for there to exist
some such V' is that the image of [] should be zero in the direct limit (3.40).

This completes the proof. O

Remark 3.12. — It seems likely that there exists a good theory of De-
rived Complex Analytic Geometry, a complex analytic version of Derived
Algebraic Geometry, including derived complex analytic spaces, built using
complex manifolds and holomorphic functions. Within this there should exist
good notions of k-shifted symplectic derived complex analytic space, and La-
grangians in these. So far as the authors know, neither theory is yet available
in the literature.

If such theories were constructed, the authors expect that the obvious
complex analytic generalizations of the k-shifted symplectic Darboux Theo-
rem 2.18 and Lagrangian Neighbourhood Theorem 3.7 will hold.

Observe that the two problems (a) and (b) in the case k = 0 above will not
occur in the complex analytic case. For (a) the classical Darboux Theorem
holds for complex symplectic manifolds, and for (b), the complex analytic
analogue of (3.40) is zero, since H® cohomology classes for i > 0 on a com-
plex analytic space are zero locally in the complex analytic topology. So the
complex analytic versions of Theorems 2.18 and 3.7 should also work when
k = 0. The authors hope in future work to use these ideas to define a notion
of “derived Lagrangian” in complex symplectic manifolds, generalizing the
“d-critical loci’ of Joyce [13].

3.5. k-shifted Poisson structures and coisotropics

Recently, Calaque, Pantev, Toén, Vaquié and Vezzosi [12] defined k-
shifted Poisson structures mx on a derived scheme or stack X, for k € Z,
and coisotropics f : C — X in (X, 7x). They prove [12, Th. 3.2.4] that the
spaces of k-shifted symplectic structures wx and nondegenerate k-shifted
Poisson structures mx on X are equivalent, and for fixed equivalent wx,wx
they conjecture [12, Conj. 3.4.5] that the spaces of Lagrangian structures
on f: L - X in (X,wx) and nondegenerate coisotropic structures on
f: L —= X in (X,7x) are equivalent. Recently this conjecture has been
proved in [18, Th. 4.22].

The purpose of this section is to observe that for our “Darboux form”
local models for k-shifted symplectic derived schemes in Section 2.5, we
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can write down simple, explicit (strict) k-shifted Poisson structures, and for
our “Lagrangian Darboux form” local models for Lagrangians in k-shifted
symplectic derived schemes in Section 3.2, we can write down simple, explicit
(strict) coisotropic structures.

DEFINITION 3.13. — A Pyq-algebra is a cdga A® equipped with the data
of a Lie bracket { -,-} : A*QA® — A®[—k] satisfying the following equations:

§) 1£.9) = —(-)I/R g, ),
(ii) {f.{g,h}} = {{f. g} n} + (=)ITHRUsER g {f n}},
(iv) {f.gh} = {f, g}h + (~1)ll TR gL p},

for all elements f,g,h € A®.

Note that if A® is a Pj4i-algebra, then, forgetting the multiplication,
A*[k] is a dg Lie algebra.

DEFINITION 3.14. — Let A® be a cdga. A k-shifted Poisson structure
on A® is a Pri1-algebra A® equipped with a quasi-isomorphism of cdgas
A® — A°.

We say that a k-shifted Poisson structure on A® is strict if A® 5 A° s
an isomorphism; that is, A® itself is a Py 1-algebra.

Let X = Spec A® be an affine derived scheme and assume that A is
a cofibrant cdga. Then one can define the complex of k-shifted polyvector
fields to be

Pol(X, k) = Hom®%. (Sym(Q4. [k + 1]), A®).

This is a graded Py o-algebra, where the grading comes from the sym-
metric algebra, and the Lie bracket is the Schouten bracket of polyvector
fields that we denote by [-,-]. We write Pol(X, k) for its completion with
respect to the grading, and §81>2(X , k) for the part in degrees at least 2.

If A® is a Py 1-algebra, we get a bivector 74, € Pol(X, k) by the formula
{f.9} = (—1)”‘%“%3, (dar.f darg)-
satisfying the equations
dn. =0, [T%e,T3e] = 0,

ie 73, € 158122(X , k) is a Maurer—Cartan element. More generally, Melani
[17, Th. 3.2] proves:
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THEOREM 3.15 (Melani). — Let X = Spec A® be an affine derived
scheme. Then the space of k-shifted Poisson structures on X is equivalent
to the space of Maurer—Cartan elements in Pol®?(X k).

A Ek-shifted Poisson structure mx on X defines a map 7@(' cLx —
T x [—k]. We say that mx is nondegenerate if this map is a quasi-isomorphism.
Calaque et al. [12, Th. 3.2.4] prove the following theorem (see also Prid-
ham [21] for related results).

THEOREM 3.16 (Calaque—Pantev—Toén—Vaquié—Vezzosi). — The space
of nondegenerate k-shifted Poisson structures on a derived stack X is equiv-
alent to the space of k-shifted symplectic structures on X.

It is difficult in general to explicitly invert a k-shifted symplectic structure
to obtain a k-shifted Poisson structure, but this can be easily done in the
“Darboux form” models of Bussi, Brav and Joyce [7] from Section 2.5 where,
in fact, we obtain strict k-shifted Poisson structures.

Example 3.17. — Let k < 0 and suppose A®,w are in k-shifted Darboux
form, as in Example 2.14. The differential of vector fields is given by

d my i +1 d my
) 0%, 20, 9
I e MBI e =
i T o0 i’ i i/ k—i’
oz ] oz 833 e} Oz 0x, oy
m;r m; i’
il T 82@/“ , a
+ Z DD B e S BT
] Oz 0x%, Oy
d my i+1
0 _ (k—i—z) i+i')+1 (9@] 9
A S oo
Yj i'=0j'=1 J' yj’

The morphism w®: : T4e — L 40 [k] is a strict isomorphism given by

9 k—i 9 i+1)(k+1 i
oz z — ddRy s W — (71)( ) )ddej-
Its inverse Lge — T g¢[—k] is given by
ddRyk g — (—1)k 8 s ddR.’Ei- — (—1)ik+i+178 =,
&r; J ayk_l
J
This gives a degree —k bivector
d m;
SN T s
=0 j=1
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Its differential is

my; My

it 9 9 o't 9 9
dr?. = 1)t : . It . .
T A Z Z Z |: :C; al‘;, ay;c—z 8.’1’:;, ({91’; ay;c/—z

4,i/=0 j=1 j'=1

mi My

)i ’d, o 0
+ Z Z Z AN 8;62'481:;/, ay;c/—z" ay;_c—i

1,1/ = O] 15'=1

my My My 214 +1
020

z i’ —i’ 9 9
+ Z )IDID I 3:6;5%;, vy T yF =0,

i,i/,i’=0 j=1j'=1j'=1 J’

where each line vanishes separately after exchanging the indices ¢ and 4’

Clearly, [1%.,7%.] = 0 as the bivector has constant coefficients. There-
fore, it defines a strict k-shifted Poisson structure on X = Spec A°.

The same formulae also work trivially when k& = 0, defining A®,w in
0-shifted Darboux form as in Example 3.9, with coordinates zY,y, with

P, = @”1 =0 and d a = d(9 ‘2 - = d7r2A. = 0 for degree reasons, and 7r124.

is a classical Poisson structure on A® = A°,

Example 3.18. — Let k < 0 with £ =2 mod 4 and suppose A®,w are in
k-shifted weak Darboux form, as in Example 2.16. Example 3.17 generalizes
to this case, where instead of (3.41) we have

d+1 m; mq

1 9 0
D ) P Z***
10]18 ak 14qj823-18z§l
mdq Mo d
8q]' Zj g 0
- L (3.42)
;]2 Buj 245 0= Oy

Then dn%. = 0 and [7%.,7%.] = 0, so 74. defines a strict k-shifted Poisson
structure on X = Spec A°.

Combining Theorems 2.18 and 3.16 gives a k-shifted Poisson version of
the k-shifted Darboux Theorem 3.7:

THEOREM 3.19. — Let (X,7x) be a nondegenerate k-shifted Poisson
derived K-scheme for k < 0, and © € X. Then (X,nx) is Zariski lo-
cally modelled near x up to equivalence on a strict k-shifted Poisson affine
derived K-scheme (Spec A®,7%.) in Ezample 3.17 if k # 2 mod 4, and
in Example 3.18 if k = 2 mod 4. Also, when k = 2 mod 4, by instead
taking (X ,mx) to be étale locally modelled on (Spec A®,7%.) we may set
g1 =""=@qm, =1 in Example 3.18.
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Now let us turn to k-shifted Lagrangians and coisotropics.

DEFINITION 3.20. — A Pp 1 x-algebra is a triple of a Py11-algebra A®,
a Py-algebra B® and a morphism of Px41-algebras

A* — (Hom;}' (Sym(Q}g. [k])v B)a d+ [W%}H *]) .

Note that if (A®, B®) is a Pp,q x-algebra, the composite
A* — (Homp. (Sym(Qp.[k]), B),d + [, —]) — B®,

where the latter morphism is given by projection to the weight zero part, is
a morphism of cdgas.

DEFINITION 3.21. — Let a: A* — B® be a morphism of cdgas. A k-
shifted coisotropic structure on « is a P41 4)-algebra (A®, B*) together with
quasi-isomorphisms of cdgas A®* — A® and B®* — B® making the diagram of
cdgas

L —

L

A® *‘1> B*

commutative.

This definition in fact is equivalent to k-shifted coisotropic structures
of [12] as shown in [22]. Moreover, one can define a nondegeneracy condition
on a k-shifted coisotropic structure on A®* — B*® which in particular implies
that the k-shifted Poisson strucutre on A® is nondegenerate. The following
is [18, Th. 4.22].

THEOREM 3.22. — The space of nondegenerate k-shifted Poisson struc-
tures on a morphism of derived stacks L — X is equivalent to the space of

pairs of a k-shifted symplectic structure on X and a Lagrangian structure
on L — X.

_ As before, we say a k-shifted coisotorpic structure is strict if the maps
A®* — A*®* and B* — B*® are isomorphisms, so that (A%, B®) is a Py -
algebra. In general, it is difficult to construct a k-shifted coisotropic structure
corresponding to a given k-shifted Lagrangian structure, but we will now
explain how to perform this construction for our local models for Lagrangians
which will moreover give strict coisotropic structures.

Example 3.23. — Let k < 0 with & # 3 mod 4, and consider data
A® w, B* a, h in Lagrangian Darboux form as in Example 3.3, so that A®, w
is in Darboux form as in Example 2.14. Then Example 3.17 defines a strict
k-shifted Poisson structure 5. on A®. We will define a strict k-shifted
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coisotropic structure on a : A®* — B°®. We need to construct a (k — 1)-
shifted Poisson structure mge on B® and provide a Py ;-morphism a : A® —

(S/YI\H(TB° [_k])v d+ [WJQBH _])

The morphism x : Tge 40 — Lpe[k — 1] is given by

9 9 ko1 9 k(i1 ;
= — 0, 1 — dde ’ ey g (1) o+ )ddRUz'»
8.’Ej 8 81}? 1 J

0 8\1! 0 i i i
e — (—1)° ddR@n , pw =i — (—1) k+k+ dar ;.

J Yj

1

We can find its one-sided inverse ™" so that the composite

—1

Lpe — > Tpe/ae[l — k] ——> Tge[l — ]
is given by

i1 O
E—1—4°
811j

kt1 O
i b)
auj

1—¢

ddR”Uk — (71)

ddRu;- — (71) ddRE;- — 0.

This gives a degree 1 — k bivector

1=0 j=1
Clearly, [1%.,7%.] = 0 as the bivector has constant coefficients.

As a graded commutative algebra, A* is freely generated over A% by the
variables yf_7 fori=0,—-1,...,dand j = 1,...,m;. We define the morphism
a to be aon A% and

ir1 0¥

—1\ __ 1+1 6
(57 = (1 g+ () g

J

(3.44)

Let us check that this « is compatible with the differential and the brack-
ets:

ki ; a\p - ov
doa(y_;C ):(71) +1< +ZZ|:8U 8,0]41 1— z”af;])

i/=07'=1

Equation (3.11) implies that

L HU s d odu T g
-1 - = a(dy" ) = ) o, | —L— .
(=1) oz a(dy;™) Z (- ( ozt | 0,

=0j'=1
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Therefore,
=0 j/'= 1 ]
d  my 1 6<I’i./,+1 P
PRI (a;;.)
+ Z:Ojli:l(—l)k(iurl) 352»685;1”' 631” + 12::0;::1 8;;;3// 81}521_1,
' Zo jzl DA av;?,afqz’ O 83;‘.’/
+ 2;2;(—1)%#1 81?;;%; 61}5214/ = &(dy;?ﬂ')’ (3.45)

which shows that & commutes with the differential d.
The Poisson bracket on A® is given by
{ahay} =0, {wpup} =0, {jal} = ()"0 (3.46)
Under « these are sent to

[(;), a(5)] = [75.75] =0,

. Y o Ow o ov 0
o i a 1‘/ - _1 it - — . = —_—
R R e g e
sy T (3.47)
A
ey 85;-', 8%;-'/ oz} ’
i! 1| 0¥ 0 i S A
[ (y]) ( 3’ )] = (_1) 1 |:ax +8 z_’ajj :l = (_1) +16jj/6 = Oé({yj7le )
J

Therefore, & is a morphism of Py 1-algebras, and so (3.43) and (3.44) define
a (strict) coisotropic structure on « : A®* — B®.

The same formulae also work when k = 0, defining A®,w in O-shifted
Darboux form as in Example 3.9, with ¢}+1 = 0, and A*,w,B®, o, h in
Lagrangian Darboux form as in Example 3.10.

Example 3.24. — Now let k < 0 with £k = 3 mod 4, and consider data
A® w,B* a,h in weak Lagrangian Darboux form as in Example 3.5, so that
A* ,w is in Darboux form as in Example 2.14, and we have coordinates
xj , u], Uf 1=i ;wj in B®, with the w} associated to invertible g1, ..., qn, € B,
where A®,w, B®*, a, h are in strong Lagrangian Darboux form if ¢; = --- =

qn, = 1.
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All of Example 3.23 generalizes to this case, so we just give the definitions,
leaving most verifications to the reader. As in (3.42)—(3.43), the bivector

% is

Ne

1 ne 10 9w P
T = Zzﬁu 8’“ 1—i Z4q 3w 3w Zzau] 2(11810 81}k L

=0 j=1 j=1j'=

As this does not have constant coefficients, we check that [1%.,7%.] = 0 by
e 0q; 0 o 0 g 1 0 o 0
[T5e, mhe] ; '2:1 [8u0 4q 8vk 1 ows, dws, B Gug 4qJ av;? 1 ows, Qws,

£ — 8u?8ug, 2¢;0 Qs 81);?’1 81);.“,’1

:O7

which vanishes as the Ze are symmetric under multiplication, as e is odd,
j

02(] i/ . .
and the 7 —9__ are antisymmetric, as k — 1 is even, and W is symmetric
J i’

in j,j".
The Pj4q-morphism a : A® — (S/yx\n(TB-[—k:}),d + [7%.,-]) is given by
Ar and, generalizing (4.43),

«a =«
AL

7 1 7 a . .
ay; ) =alyy )+ ()T =, i=—1d =1, m,

~ 0 1 0q; 0

k k J . .e .
aly;y) =alyy) — =5 + = i ; _—17~--> .
(yj) (5) 8z? ],,Zl 2q;/ (91’9 Wi ows, J o

We can show that doa = avod as in (3.45), and that & preserves {-,-},[-,-]
as in (3.46)—(3.47). Thus 7%., & define a (strict) coisotropic structure on « :
A*— B*.

Examples 3.23 and 3.24 show that all of our (ordinary/weak/strong) “La-
grangian Darboux form” local models in k-shifted symplectic derived K-
schemes for & < 0 can be promoted to explicit (strict) coisotropic structures
in k-shifted Poisson derived K-schemes.

Theorems 3.7 and 3.22 imply a “Coisotropic Neighbourhood Theorem”,
saying that a nondegenerate coisotropic f : C — X in a nondegenerate
k-shifted Poisson derived K-scheme X for k£ < 0 is Zariski or étale locally
modelled on Speca : Spec B* — Spec A® in Spec A® in Examples 3.23
or 3.24, in a similar way to Theorem 3.19.
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4. Proofs of the main results

Sections 4.1 and 4.2—4.7 will prove Theorems 3.2 and 3.7, respectively.

4.1. Proof of Theorem 3.2

The proof is modelled on that of Theorem 2.6 in [7, §4.1]. As in The-
orem 3.2, let f :' Y — X be a morphism of derived K-schemes, A® be a
standard form cdga over K, ¢ : Spec A®* — X be a Zariski open inclusion (or
étale morphism), and y € Y, p € Spec H°(A®) with f(y) =i(p) =z € X.

First, consider a homotopy pullback diagram in dSchy:

Z —— > Spec A*
h
I .
f

Y X

3

where Z =Y x x Spec A®. The map g : Z — Y is a Zariski open immersion
(or étale if 4 is étale). Also there is a unique point z € Z with g(z) = y and
h(z) = p. Let k : Spec C*®* — Z be an affine Zariski neighbourhood of z for
some finitely presented cdga C*, so that r € Spec C*® with k(r) = z.

Recall the distinction between the ordinary category cdgayg and the oo-
category cdgay’ of cdgas over K, discussed in Remark 2.2. The morphism
h ok : SpecC® — Spec A® is equivalent to Spec~y*° for some morphism
v : A* — C* in cdgag’, unique up to equivalence. Later (after modifying
C*) we will show that > descends to a morphism v in cdgay.

Possibly after localizing C*®, we will inductively construct a standard
form cdga B® with a quasi-isomorphism 3 : B®* — (C® in cdgay, such
that h o ko (Spec3)~! : Spec B* — Spec A® is equivalent to Spec «, for
a: A* — B*® in cdgag a submersion of cdgas minimal at ¢ = Spec 8(r), with
(Spec )~ ! a quasi-inverse for Spec 3. Then setting j = go ko (Spec )71,
so that Spec a(q) = p, j(¢) = y, we have a homotopy commutative diagram

Spec B* Speca
‘\%C B!
Spec 3 Specy
SpecC* Z Spec A* (4.1)
k h
j J/Q P zl/
Y X

which gives (3.1). Also j is a Zariski open inclusion (or étale if 4 is étale), as
g,k, (Spec 3)~! are, so this will prove Theorem 3.2.
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As Spec C* is affine, we can choose an embedding Spec H%(C*®) < A
for N > 0. We also have a composition of morphisms

W 40(2) 2" Spec HO(A%) > Spec A? =: U,

Spec HY(C*)
so the direct product is an embedding e : Spec H(C*) < A" x U. Choose a
smooth, affine, locally closed K-subscheme V in AY x U, such that V contains
an open neighbourhood of e(r) in e[Spec H°(C*)] as a closed K-subscheme,
and the projection V. — U is smooth, and dim V' is minimal under these
conditions. Localizing V if necessary, we can assume T*V is a trivial vector
bundle.

As V is affine we have V = Spec B° for a smooth K-algebra B°, with
Q%0 a free B-module. The (smooth) projection V' — U is Speca’ for
a®: BY — A% a smooth morphism of K-algebras. Since V' contains an open
neighbourhood of e(p) in e[Spec H%(C*)], localizing C* if necessary we can
suppose e[Spec H°(C*®)] is a closed K-subscheme in V. Then the closed
embedding Spec H°(C*®) — V is Spec 3’ for some 3’ : B — HY(C*).

Since C'* is the homotopy limit of its Postnikov tower --- — 75_1C*® —
750C*® ~ H°(C*®) in which each map is a square-zero extension of cdgas [16,
Prop. 7.1.3.19], and as BY is smooth and hence maps out of it can be lifted
along square-zero extensions, after replacing C'* by an equivalent cdga we
can lift 8’ : B® — H(C*®) along the canonical map C* — HY(C*®) to obtain
amap B°: BY — CY C C*.

Set ¥ = Y0 a’ : A° — C°, as a morphism in cdgay. Then we have
a homotopy commutative diagram in cdgag’, with o, 3°,4° morphisms in
cdgag:

0

o
0 0 0

A\L‘w af B 8° C\L‘x (4.2)
A* ! Ce.

Since A*® is cofibrant over A, and A° — C* is represented by a morphism

7% in cdgay, up to equivalence Y descends to a morphism v : A* — C*
in cdgay.

As A° is a standard form cdga, it is freely generated over A° by finitely

many generators zi, ... , Ty, in degree i for ¢ = —1,-2,..., where m; = 0
for i < 0. Write A*(k) for k = 0,—1,... for the sub-cdga of A® generated
over A by the generators a:; in degrees ¢ = —1,—2,...,k only, so that

A*(0) C A*(—1) C A*(-2) C ---, and A®*(0) = A°, and A®(k) = A® for
k<O0.
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Next we inductively construct a sequence of standard form cdgas B*(0) C
B*(—1) € B*(—2) C -+, and submersions a(k) : A*(k) — B*(k) in cdgay,
and morphisms B(k) : B*(k) — C® in cdgag, such that a(k — 1)|ge) =
a(k), B(k—1)|ge) = B(k), and the following diagram commutes in cdgay:

A (k) —— s A*(k—-1) &———> A°®

i/a(k) \La(k—l) ’Y\L
BY(k) e Bk ) s O, -
B(k)

and Lce ge (k) is concentrated in degrees (—oo, k —1], and B*(k —1) is freely
generated over B*(k) by finitely many generators in degree k — 1, where
this number of generators is minimal such that the previous conditions hold
near 7.

For the first step, set A*(0) = A° and B*(0) = B, regarded as cdgas
concentrated in degree 0, and «(0) = o' : A*(0) — B*(0), which is a
submersion, and 3(0) = B8° : B*(0) — C*. Then (4.2) implies that the
outer rectangle of (4.3) commutes for k = 0.

For the inductive step, suppose that for some £ < 0 we have chosen
B*(0),B*(-1),...,B*(k) and «(0),a(-1),...,a(k) and 5(0),5(-1),...,
B(k) with the desired properties. Now H*~!(Lce,pe|r) is spanned by
elements (dgry, darz) for y € C*~! and z € B*(k) with dy = B(k)(z) € C*
and dz = 0 € B*1(k). We have generators x;?*l of A® in degree k — 1
with dxf‘l € A*(k) C A®, so that y = 7(3:?_1), z = a(k)(dz:?_l) sat-
isfy dy = B(k)(z) and dz = 0, and (ddey(xffl),ddRa(k)(dwffl)) gives
an element of H**(Lce /e (k)|r). Choose a minimal number of additional
pairs (yy ", 2F), . (koL 2k ) in O x BRE(k) with dyf Tt = B(k)(2F)
and dz}C = 0, such that kal(]LC./B.(m ) is spanned by (darv(] k= 1)7
ddRa(k‘)(dxffl)) for j =1,...,mg_1 and (ddRyj 1 ddRz ) for j = 1
nNeg—1-

Define B*(k — 1) to be the commutative graded algebra freely generated
over B*(k) by generators Elffl, .. .,Eﬁlkl l,ﬂlf Lo ,ynk , in degree k — 1.
Define the differential d in B*(k — 1) = (B*(k — 1),d) by d|p-x) = dpem),
and d(Z57") = a(k)(daf™"), dgf~" = 2F for all j. Then dod = 0 as
do oz(k)(dxf_l) = 0 and dzj = O in B*(k). Define a(k — 1) : A*(k—1) —
B*(k—1) to be the unique graded algebra morphism with a(k—1)
a(k) and a(k—l)(x?il) = fkfl forj=1,...,mi_1. Then a(k—1) is a cdga
morphism as da(k — 1)(z* T ) d~k 1= (k:)(dx?_l) =ak — 1)(dx?_1).
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Define f(k — 1) : B*(k — 1) — C* to be the unique graded algebra
morphism with 3(k —1)|g-u) = B(k) and B(k — 1)(3??71) = *y(x?*l) and
5(]{,1)@?—1) = yf_l for all j. Then 8(k—1) is a cdga morphism B®(k—1) —
C* as

dB(k — 1)(FE") = dy(ah ™) = 4(d2h ™) = B(k) 0 a(k) (dah )

=Bk —1)ed(@™),
dBk = 1)) = dyf ™" = Blk)(=F) = Blk — 1) o d(F ).

Also (4.3) commutes as S(k—1) o a(k — 1)(95?71) = 'y(x?*l).

As LLge/pe(k) is concentrated in degrees (—oo,k — 1], and the new gen-
erators of B*(k — 1) span H’“_l(LC./B.(k)|T), we see that Lee/pe(p—1) is
concentrated in degrees (—oo, k — 2] near r € Spec C*. Thus, localizing C*
and B*(0),...,B*(k — 1), we can suppose that Lge /ge(,—1) is concentrated
in degrees (—oo, k — 2]. This completes the inductive step. Hence, by induc-
tion we have defined standard form cdgas B*(0) C B*(—1) C B*(-2)C .-,
submersions a(k) : A*(k) — B*(k), and morphisms 8(k) : B*(k) — C*® in
cdgay for k=0,—-1,-2,....

Since A*® is of standard form and C* is finitely presented, for k£ < 0
A® has no generators in degrees < k, and Lge is concentrated in degrees
[k,0]. Then we add no further generators in degrees < k, so that A®(k) =
A*(k—-1) = .- = A® and B*(k) = B*(k—1) = ---. Set B* = B*(k),
a = a(k) and g = B(k) for such k. Then 8 is a quasi-isomorphism, since
B(7) is a quasi-isomorphism in degrees > i and g = (k) = 8(k—-1)=---,
and v = B o, so (4.1) commutes up to homotopy. Also a : A* — B® is a
submersion, as a(k) : A*(k) — B*(k) is, and the minimality conditions we

k=1 _k

imposed on dim V' and the number of (y;~ ", 25) imply that « is minimal at

q. This completes the proof of Theorem 3.2.

4.2. Beginning the proof of Theorem 3.7 for k£ <0

Sections 4.2-4.7 will prove our main result, Theorem 3.7. This section
begins by showing that when & < 0 we can choose B®,q,,%,7 and h =
(h°,0,0,...) as in the first part of Theorem 3.7, and = € B, ¢ € (Qk.)F1
with d= = —a(® + @), dqr= + dv = —au (¢ + ¢4 ) and kO = ﬁddRz/).
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Sections 4.3-4.5 continue the proof for even k < 0. In Section 4.3 we
choose coordinates xj,u],vf_l_l € B* with h® = Zi,j ddRaf_l_ldde;- +

ddRu ddek =7 for functions affl*i € BF-1=% Section 4.4 defines ¥ =

— Z k 1= de , and computes the p.d.e. satisfied by ¥, and expressions
for d in B' = (B~ d) and for o : A* — B°.

Section 4.5 explains how to replace a, h by an equivalent morphism & :
A® — B*® and Lagrangian structure h = (iLO, 0,0,...), such that for &, h the
functions a* 1% are zero, giving ho = ddRué» dde;?*l*i. This will complete
the proof of Theorem 3.7 for even k < 0. Sections 4.6—4.7 discuss how to
modify Sections 4.3—4.5 to prove Theorem 3.7 for the cases k < 0 with k =1

mod 4, and k£ < 0 with £k =3 mod 4, respectively.

Let (X,wx) be a k-shifted symplectic derived K-scheme for & < 0, and
f: L — X be a Lagrangian derived K-scheme in (X,wx), with isotropic
structure hr, : 0 — f*(wx). Let y € L with f(y) = 2 € X. Suppose A°® is
a standard form cdga over K, w is a k-shifted symplectic form on Spec A®
with A®,w in Darboux form, p € Spec H(A*®), and i : Spec A* — X is
either a Zariski open inclusion or étale, with ¢(p) = z and w ~ 4" (wx).

As in Example 2.14, we have coordinates :z:], y] ‘in A®fori=0,—1,...,d,
j = 1, ..y My, and w = (w 70, 0, . ) with w = Z?:O Z;nzbl ddeé‘ ddRy;-Cii
in (A2Q4.)%, and @ € A ¢ € (Q4)F with d® = 0, dgr® + d¢ = 0
and dqr¢ = kw®. We also use the notation of Remark 2.15, which defined a
sub-cdga ¢ : A% < A® containing the z% but not the yf_i, and &, € AFT,
b1 € (Q4)F satisfying d®, = 0, dqr®4 + dp; = 0 and dgrp = —w.

Form a homotopy commutative diagram

Z - Spec A Spec: Spec A%
lg i (4.4)
L ! X

)

with Z = Lx ¢ x ;Spec A®. Then ¢ a Zariski open inclusion, or étale, implies
that g is a Zariski open inclusion, or étale, respectively. There is a unique
point z € Z with g(z) =y € L and h(z) = p € Spec A°®.

Apply Theorem 3.2 with Speccoh : Z — Spec A%, id : Spec A% —
Spec A%, z € Z, p € Spec A in place of f : Y — X, i:SpecA® — X,
y € Y, p € Spec A®. This gives a standard form cdga B*, a point g €
Spec B‘, a submersion ay : AY — B*® minimal at ¢ with Speca(q) = p,
and a Zariski open inclusion e : Spec B®* — Z with e(q) = z such that the
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following diagram is homotopy commutative

Spec B Specay Spec A%
i/e idi/ (4.5)
7 Spec oh Spec A:_

The morphism h o e : Spec B®* — Spec A°® is equivalent to Spec o™ for
some morphism a® : A* — B*® in cdgag’, where a® ot ~ a,. Since A® is
freely generated over A% and so cofibrant over A%, up to equivalence o™
descends to a morphism « : A* — B® in cdgay with a ot = «a4. Thus,
combining (4.4)—(4.5) gives a homotopy commutative diagram

Spec B* S
i/e W P +
ilZ - Spec A* Spec: Spec A% (4.6)
Je |
f
L X

)

where we write j = g o e, so that j is a Zariski open inclusion, or étale,
if 4 is a Zariski open inclusion, or étale, respectively. This proves the first
part of Theorem 3.7: we have constructed a standard form cdga B®, a point
q € Spec B®, a morphism « : A* — B*® in cdgai with Speca(q) = p such
that oy = aov: A} — B® is a submersion minimal at ¢, and a morphism
j : Spec B®* — L which is either a Zariski open inclusion or étale with
J(q) =y, such that (3.38) homotopy commutes by (4.6).

Next we discuss the isotropic structure. As we have the homotopy commu-
tative diagram (3.38) with 2, j étale, and w ~ i*(wx ), Definition 2.9 implies
that the Lagrangian structure hy, for f : L — (X, wx) lifts to a Lagrangian
structure h for Spec o : Spec B®* — (Spec A®,w), where h = (h°, h', h2,...)
with h® € (A2 Lpge)*~1=% which by (2.4) satisfy

dh® = a,(w®) and dgrh’ +dh"Tt =0 fori=0,1,.... (4.7
First, we need a vanishing result for the isotropic structure. Note that
“Lagrangian Darboux form” in Example 3.3 involves ¥ € B* and ¢ €

(QL.)%1, and (4.8) is (3.22)(3.23) with Z in place of ¥, and h° = =dar?
is (3.24).

PROPOSITION 4.1. — There exists = € B* and ¢ € (Q%.)*! satisfying
dZ2=—-a(®+P;) and dgrE+dyY = —a.(p + ¢4), (4.8)
such that the isotropic structure h = (h®, hl,...) is homotopic to (EO, 0,0,...)

where h0 = ﬁddm/).
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Proof. — Combining equations (2.10), (2.16) and (4.7) gives the equa-
tions

d[-a(®) — a(®4)] =0 in B¥?,
dar [~(®) = (@) +d[-au(d) —au(p4)] =0 in (Qp)*,
dar [~ (¢) — au(¢1)] +d[(k — 1)R°] =0 in (A*QF.)",
dar [(k — DA'] +d[(k — DR =0 in (A*FQL)F11 0 > 0.

Therefore

7= (@) — a(®y), —an(9) — au(ds), (k= DR, (k= DA',...) - (4.9)

is a (k + 1)-shifted closed 0-form on Spec B*®, that is, v is a closed element
of degree k + 1 in the complex (H@o(AiLB’)[i]’ dar + d).

As in Bussi, Brav and Joyce [7, §5.2] we have isomorphisms

" (H(NLB') i dan d) =~ AN*1(B*)(0) = HPH(B*)(0)

i>0

~ HPF 1 (HO(B*))(0) = HEE (HO(B®)), (4.10)

inf

where HN*(-) is negative cyclic homology, HP*( ) is periodic cyclic homol-
ogy, and H} ;(-) is algebraic de Rham cohomology.

inf

If k < —1 then HFPY(HO(B®)) = 0. If k = —1 then H? (H°(B*)) is
isomorphic to the locally constant functions (Spec H°(B*))™d — A'. This
identifies the cohomology class of v with —a.(®|(spec Ho(a*))rea). But as
in Example 2.14, when k = —1 we impose the additional condition that
®|(spec Ho(as))rea = 0. Hence 7 is exact in (Hi>0(AiLB-)[i], dar + d) for all
k < 0. So we may write

v = (dar + d)(E, %, (k — 1)6°, (k — 1)0", (k — 1)§°,...), (4.11)

where = € B¥, ¢ € (Q4.)F 1 and §° € (A2T1QL)F27 for i = 0,1,.... Set
h? = 25dar®. Then combining (4.9)—(4.11) proves (4.8) and the equations

ds® = RO — B0, dgrd’ +dstt =Rt i=0,1,....

Thus (6°,6%,...) is a homotopy from (k°,0,0,...) to h = (h°,A',...) in the
complex (Hi>O(AiLB.)[i], dar + d). This completes the proof. O

We replace h = (h°, h',...) by (h°,0,0,...), so from now on we suppose
that b = (h°,0,0,...) with 2® = L;dqr1. We continue the proof in the
cases k even, k = 1 mod 4, and £ = 3 mod 4, in Section 4.3, Section 4.6

and Section 4.7, respectively.
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4.3. Choosing coordinates :E;,u;,vf_l_i on B* for even k < 0

We carry on from Section 4.2, but now also assume that k is even. In the
notation of Example 3.3 we have d = [(k+1)/2], e = [k/2], so that e = d and
k = 2d = 2e. Supposing k is even simplifies the proof as there is no “middle
degree” (k —1)/2 in B®, which would require special treatment.

Sections 4.3-4.5 will complete the proof of Theorem 3.7 for even k < 0.
To save work in Sections 4.6—4.7, in Sections 4.3—4.5 we give the correct signs
in formulae for general k, so we include factors such as (—1)0+DF in (4.27)
although £ is even.

From Section 4.2, we have a submersion of standard form cdgas oy :
A% — B°® minimal at ¢ € Spec B®, and coordinates z; € A for i =

0,—1,...,dand j =1,...,m;, where (2,...,29 ) are étale coordinates on

U = Spec A°, and A% is freely generated over AY by the xg in degree ¢ for
i <0.Asaf : A’ — B is smooth, localizing B* if necessary, we may assume

there exist ud, . .. ,U%O € BY such that dqr2Y,.. ., dde?no, dqrud, ... ,ddRu9LO

form a basis of Qy, over BY, where we write 7) = of(z9) € B°
Geometrically, (z9,... ,x?no) are étale coordinates on U := Spec A°, and
(9,...,20, ,ul,...,u) ) are étale coordinates on V := Spec B°.

Since ay : A} — B*® is a submersion of standard form cdgas and A% is
freely generated over A° by the xj fori=-1,-2,...,dand j=1,...,m;,

we see that B* is freely generated over B° by the Ec'; = a+(gc§») for i =
—1,-2,...,dand j =1,...,m; plus some additional variables, which lie in
degrees —1,—2,...,k — 1 since Lps is concentrated in degrees [k — 1,0] and

oy is minimal at ¢. Thus, as in (3.2), we take B* to be freely generated over
B° by

Tl T, in degree i for i = —1,—-2,...,d, and
uﬁ,,u; in degree i for i = —1,—2,...,e, and (4.12)
vf_l_’, e vﬁfl_l in degree k — 1 —id for i =0,—1,...,¢,

k2

where % = o (z7), and later we will show that nj = n;. Note that by (2.8)
and (2.14) this implies that in B® = (B*,d) we have

~i i i 0P i i
A7} = ay(dzt) = (-1)¢ +1><k+1>a(8yk_i) = (1) ay (@), (4.13)
J
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Since 1 € (Lpe)*~1, we may write

d m;
w Zzak 1— zdde +Zzbk 1— deRu
=0 j=1 =0 j=1

e M
+ZZc§dde§“_1_i, (4.14)

i=0 j=1

where aé,bé,cé € B! For degree reasons, the c§- depend on B° and the

$j/, u’,, but do not involve the "uk 1= . By leaving h° unchanged but replac-
ing ~7¢ by
E=2Z—(k-1)d [Z Z(—l)"c;lvf“] ,
e (4.15)
=1 —(k—1)dar [Z Z(—l)ic;ivf“] :
i=0 j=1
we may assume that c; = 0 for all 4,7, as ddRcé» involves no terms in
ddek 1= Thus we have
d m;
71& DO a1 dar +ZZb’“ " dagud, (4.16)
i=0 j=1 1=0 j=1
so that h0 = %dde yields
d m;
=3 dara’ ' dard} +ZdeRbk " dagud. (4.17)
i=0 j=1 =0 j=1

The next part of the argument follows (3.14)—(3.20) in Example 3.3. By
Definition 2.9, h being a nondegenerate isotropic structure means that a
certain morphism y : Tpge ae — Qp.[k — 1] is a quasi-isomorphism of B*-
modules, 50 x|g : Tge/aelq = Qpe[k — 1]|4 is also a quasi-isomorphism of
complexes of K-vector spaces. As for (3.15)—(3.18), as K-vector spaces, the

b graded pieces of QL. |y, QLaly, (Q4)V]p, and (24.)V], are

(Q}4°|p)l = <dde§‘7 ] = 17 sy My, ddRy;‘a ] = 17 cee 7mk—i>]K7 (418)
(Ql '|q)i = <ddR§;‘a J =1,... ) Mg, ddRuéa ] = ]-7 EEERLZP

o/ (4.19)
darvf, j=1,...,n5 1)k,
, 0 , o .
((Q}‘l‘)vlp)zz <_i’ jzla"wmfia a —i0 j:17"'7mik>K; (420)
Ox; Ay
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i 0 . 0 )
((9}4‘)\/|p) :<a~—i’j:17"”mi’ 7_ia]:17“'7n7i,
z; auj
P (4.21)
W’ J= 13""n;+1—k>K'
J

As for (3.19), the next diagram shows x|q : Tge/aelg = Qpe[k — 1]|4 in
degrees 7,7 + 1, together with d in both complexes:

(Tpe aelq)’ .
. (@a b= 11"
={—, K k=14 s
oz :<dde;€ 1+1’V]>1K
@< af‘_,; ,#7 Vj>1]< @<ddRu?_l+l,ddef_l+l) VJ>K
2 J
P v S ST TNG
<81; 7 > X‘q (ho_ho_* 0
5 .
@<$,VJ>K
J
: 91
[ = _(*0
4=\ a* 00 d=(30) (4.22)
* ok %k ok
(Tpe aely) ™t

:<F@i_l,Vj>]K
J |i+1:(ho< hO. x wOA)
®<au;i71 =5 vj>KX ! h- B % 0

u—i-T1°
N (Qpalk=1]]) "+

®< B;}i ’ VJ>K :<ide§+j(j Vj>K

@<ﬁj_i7 Vj>K @<ddRU_};+i7ddef+iv Vj>1<~

Here in the left hand column of (4.22), the component of “d” mapping

<ijﬂ- , %IJK — <#, #ﬁ( is zero. This is because oy : A — B*® is
a submersion minimal at ¢, so in the additional variables uz», vf_l_i in B® the
differential vanishes at g. Similarly, in the right hand column, the component
of “d” mapping <ddRu§_1+i, ddRU?_1+i>K — <ddRu§+i, ddR”Uf-H, v j>K is

Zero.

The argument in Example 3.3 involving the subcomplex C'* works again
in this case. Thus in (4.22) we may replace the right hand column by the
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subcomplex C*®, giving a simpler diagram in which the rows are a quasi-
isomorphism:

< B,v,%,vj%g k144
ou’ K o N <ddej ‘ VJ>IK

el - k—1+1 k—141i .
@<F7VJ>IK X‘;_(ho- w0~) @<ddRuj *,darv; L»VJ>K

ld—(‘i ?) d=(19) (4.23)

Gtmrgtmre X =(097) (g ),

@<#, Vj>K ®<ddRu§+i7ddR’Uf+i, Vj>K.

In the top row of (4.23), the morphism w?- : <%>K — <ddR-Af?71+i>K is
j
an isomorphism. Using this, we see that x|, is a quasi-isomorphism if and

only if the morphism A°- : <3ua,i, %ﬁ( — <ddRu§71+i, ddRUf71+i>K in x|f1
j j

is an isomorphism for all ¢ € Z.

From (417), h0~ : <61?’i’ %ﬁ( — <ddRu?_1+i,ddRUf_l+i>K acts by

’
N apk—1+4i
o . . Ob; ,
(U k(i+1 J k—1+414
h*-: S — (—1) (i+1) E W ddRUj/ )
. : (Y
J j'=1 J q
Nk—1+i —1
0 ob, ,
0 . J k—1+1
h-: ay_i — v ddRuj, .
J j'=1 Jj la

Therefore we see that h nondegenerate at ¢ is equivalent to n; = n; and the

following being an invertible matrix over K for all : = 0,—1,... e:
(abk—l—i n;
J
—— ) ) (4.24)
Guj g/ =1

Set ﬁ;?_l_i = (—1)(i+1)kb?_i_i forall: =0,-1,...,eand j =1,...,n;.

The invertibility of (4.24) implies that near ¢ € V we can invert this
to write the v;?,_l_i/ as linear functions of the @?‘Fi with coefficients in
Bo[ié/,,u;,,] Localizing B® we can suppose this invertibility holds globally
on V = Spec B, so that Eé, u;,@; is an alternative set of coordinates for

B*®. Thus, replacing the v; by the @;, by (4.16)—(4.17) we can take 1 and h°
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to be of the form

d my
w=(k—1) [ZZa’“ L dgr 7 +ZZ 1) (kb= deRu], (4.25)

=0 j=1 i=0 j=1
d m; e n;
_ k—1—1 ~1 7 k—1—1
= ddRaj ddej + ddRuj ddRUj . (4.26)
i=0 j=1 i=0 j=1

Leaving h° unchanged, but by replacing =, by

[I]2
1

m; e ng
s k—1—ir~i i1, k—1—1
D AEUST SRS 5 g

i=0 j=1 i=0 j=1
_ d m; ‘ o e n; o ‘
=1 +dar | D> (—DF a0 Y Z(—mu;v;—I—Z] :
i=0 j=1 i=0 j=1
we have
d m;
Y= ZZ -1 7@ k 1= 7dd .CE +( 1)(1+1)ki%;ddRa§_1_l]
1=0 j=1
+ 30 i dago T ()RR — 1= i)oh T dagud]. (4.27)
i=0 j=1

4.4. Determining the equations for even k < 0

We continue in the situation of Section 4.3. Using (4.13), define ¥ € B* by

d my d m;
== Zzak 1— zd _ ZZ z+1 k 1— z ((I);+1) (428)
=0 j=1 1=0 j=1

Writing things in terms of ¥ rather than = will make many of the following
formulae simpler. This section will compute the p.d.e. satisfied by ¥, and
expressions for d in B®* = (B*,d), and for « : A* — B°.
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By (4.8) we have dar= + dy) = —a.(¢ + ¢4). Expanding this equation
using (2.9), (2.15), (4.27), (4.28), and 7, = a(z}) yields

d m; e
1) D 3‘11 ~i (it1)k | OF i ov k—1—i
?_ E_ : ddej +> ) () |:8u; daruj + P darv;

=0 j=1

+ ZZ —1—i)daf T dar @ 4+ (~1) T (k — 2 — i)l ' dar 0 AT
=0 j=1 +(—1)(1+1)k(l+1)d$jddRa§_1_i+( 1)(z+1)(k+1)zx ddROdak 1— z)]

+ ZZ du] dde T (1)l dar o dvk - Z)
=0 j=1 (—1)(1+1)k(k—1—1)(dv;€ = dgpad — (—1)F T g odué-)]

J

— _ZZ 75 dar o ayf )+ D) TVEY (149 a(yf ") daray]. (4.29)

=0 j=1

Rewriting terms of the form dggr o d(---) using equations such as

4 o(du?)

dgr © du = Z Z (’H) @@ +1)87 ddREEl,
=0j5'=1 x]
¢ a(du?) , . oy O(dut) .
z+1 (i '4+1 J 1 i+1)(k—1 J k—1—
+Z Z { )aTi',ddR“j'“L(_l)( ) )dem’j/ e
=0 /=1 j 5

‘9- (di’:/) = W(dm ) =0 as dz} = a(dz}) for dz’ in
A%, we can express (4.29) solely in terms of multiples of dde ddRué and

dde;€ 174 Then taking coefficients of these, multiplying by (—1)¢*D* and
rearranging, gives three equations:

(1) 0k = Dafyh ™) — (=) Gk — 1)dal 1

J
d myr
: /6(dx,)
zk 1-¢") k—1—
k_l)E § (—1) ( )] ij
i'=0;'=1

d my
[wzz Vi T o) + (4 Dak i dE
=0j'=1 +( 1)k 1—4' ’dak 1— lfl]
’ ]/

=30 (uddoh T () DR (-1 =i dud ) | (4.30)

i'=0'=1
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— (k= 1)dvf =17

d my
[\IJ—I—Z Z Zz’xlla(yf_l) + (7 —|—1) 1 ’d

i'=0j'= 1+( 1)k 1—i’ /dak: 1— z‘%‘z]]
e T,
=30 (uldol T () TR (-1 =)ok dud) | (4.31)
/=0 j/=1

— (—1)FFDR(E — 1)du

d mys

8k11[\II+ZZ ’z’xz/a(yj ")+ (z—i—l)klldx
=0j'=1 +( l)k 1—4’ /dak 1— z%;/]
-3y (i'uél,dvf,_l_i/Jr(1)(i/+1)k(kli’)v;?,_l_i,dug,)}, (4.32)
i'=0j'=1

where (4.30) holds for all ¢ = 0,...,d and j = 1,...,m,;, and (4.31)—(4.32)
hold for alli =0,...,eand j =1,...,n;

Writing F for the function [ --] on the r.h.s. of (4.30)—(4.32), we have

d my e
- oF
) k 1—3
S > fing 95 (= 1 i,
=0 j=1 1=0 j=1 J

since F' has degree k. Thus, multiplying (4.30) by i}, and (4.31) by iu}, and
(4.32) by (k—1—1) f 1=¢ and summing all three over all i, j, ylelds

d m;
[\I'—FZZ %ﬁla yj Z)—&—(z—i—l) k—1- ld~’
’LO]1+( 1)k11d(kll)xj]

—ZZ (i dvk 1= (—1)GFDk (k—l—i)vffl*idué)
=0 j=1

d m;

= (k=1)> > [(=D'iFalyy ™) + (i + Dal ' dz;
=0 j=1 +(_ )k 1—14 d(ak 1— 1)$;]
_ 71 iz ZU d’l}k 1—i ( )(l+1)k(k 171)’1}?_1_1(171‘27] (433)
1=0 j=1

Here the second term on the r.h.s. of (4.33) comes from the third term on the

, 3 it o 571// zt I
Lh.s. of (4.30) using 3, ; j (aw ) = (' +1)dzj,, as (suf_ L - 6,,(: )‘ =0.
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Rearranging (4.33) shows that I = —(k — 1)U. Substituting this into
(4.30)—(4.32), dividing by 1 —k, rearranging, and using (4.13) in (4.34) yields

(y] i) = (_1)i+1§§; _ (_1)(i+1)(k+l)da§717i
s (4.34)
dvy ™7t = g:gv (4.35)
duy = (—1)(”1)’“%. (4.36)

J

Using equations (2.14), (4.13), (4.28), (4.35) and (4.36) we see that

== 3 S (a2 da;mdz;-)

i=—1j=1
; ov
k—l—z
=+ le< I ou z j avl_cli>
i=—1j=1 J
v , .
Z ZO‘ (I)ZH ( )z+1 §~ + (_1)(z+1)(k+l)da§11> (4'37)
i=—1j=1 J
. ovr ov
+2 Z Z o k—1—i"
i=—175=1 au (9’[)

Also we have

AP+ D) =20, (D)) + Z Z ap (D) a(yh ) (4.38)
1=—17=1
=92 (I) ¢Z+1 i+1 ov — (=1 (i+1)(k+1)d k—1—1
=204 (94) Z Z Ot —1) o (1) a; :
i=—1j=1 J

Here in the first step we use (2.11), and in the second we use (4.34) to
substitute for oz(yffi), and note that the terms coming from the second line
of (4.34) are zero by (2.13). Since d= = —a(® + @) by (4.8), equations
(4.37)—(4.38) give

e 6 a 6
Z Z 3;11 avk\IIH +ay (Py)+ Z Z 1)t <I>3+1) 8; =0, (4.39)

i=—1j=1 i=—17=1

which is equation (3.4) in Example 3.3.
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4.5. Improving « : A* — B*® and completing the proof for even k < 0

We continue in the situation of Sections 4.3—4.4. Observe that the expres-
sions (4.13), (4.35), (4.36) for d in B®* = (B*,d), and the p.d.e. (4.39), all

depend on the coordinates %, uj, vf =% and functions ¥, o, (@), a+(q>§+1)
k—i—1

in B*, but are independent of the a; , although the expressions (4.34)
for a1 A* — B*, and (4.26), (4.27) for h° € (A2QL.)*~! and ¢ € (QL.)k!

do depend on the a;?_l_i

Now « : A* — B*® was chosen in Section 4.2 to make (4.6) homotopy
commute, and thus « is unique only up to homotopy in cdgaﬁ?, bubject to the
condition awor = ay. We will now show that keeping B®, a4, 7%, u” Pt

32 g0 Vg
fixed, we can replace a by a homotoplc morphism & : A®* — B® with Got =
ay, and h°, v by homotopic ho ,1/), S0 as to make the ak 1= yero.

Define a morphism of graded K-algebras & : A* — B* by &

A =0 and

i+1 ov

) = (=1 4.40
A = 1 o (1.40)
fori=0,-1,....,dand j=1,...,m;, as in (3.5), which would be (4.34) if
we had a?il*l = 0 for all 4, j. This is well-defined as A* is freely generated
over A% by the yf_l The proof in equation (3.11) in Example 3.3 shows that
& : A* — B*® is a cdga morphism. Define h® € (A2QL.)*~1 ¢ € (QL,)F1
by

= Z Z ddRu§- ddR'U;C_l_i, (441)
i=0 j=1

=D il darvl T 4 (=) IR (R — 1 — i)k T dgul], (4.42)

i=0 j=1

as in (3.12) and (3.21), which would be h° ¢ in (4.26)—(4.27) if we had

a?il*i = 0 for all 4, j. The proofs of (3.22)—(3.24) in Example 3.3 show that

AW = —&(® + @), dar¥ +d¢p = —au(¢ + 61), (k— 1A = dar?,

as in Proposition 4.1 with \I/,i/AJ,}ALO in place of E,?,/J,EO. Also Example 3.3
shows that A" is a Lagrangian structure for & : A* — B® and w.
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PROPOSITION 4.2. — In the situation above, o, & : A®* — B® are homo-
topic cdga morphisms, and under this homotopy, the Lagrangian structures
(h0,0,...) for a: A* — B*, w and (iLO,O, ...) for & : A* — B®, w are also
homotopic.

Proof. — By definition, a homotopy H from & to « is a cdga morphism
H:A* — B* ®x K]s, 1],

where K[s, t] is the cdga over K in nonnegative degrees which as a graded
K-algebra is freely generated by variables s in degree 0 and ¢ in degree 1
with differential given by ds = ¢, dt = 0, such that the following commutes:

. A*
[e3 (03
/ | H\ (4.43)
B* s=0, t=0 B* ®K K[s”‘,} s=1, t=0 B.,

where the bottom morphisms are evaluationat s =t =0andat s = 1,¢ = 0.
These are 1-simplices in the simplicial model category cdgay, as explained
in Remark 2.2.

Note that as in Section 2.1, all cdgas C*® considered so far have been
concentrated in nonpositive degrees, so that C* = 0 for 4 > 0. Here, how-
ever, K[s, t] lives in degrees 0,1 (since t* = 0), and B® ®x K[s, ] in degrees
1,0,—1,-2,.... So SpecK]s, t], Spec(B‘ ok K[s, t]) do not exist as derived
schemes in the usual sense. Nonetheless, this is a good definition of homotopy
of cdga morphisms.

Heuristically, we can pretend “SpecK]s, t] = [0, 1]” is an interval, so that
“Spec(B® @k K[s,t]) = (SpecB*®) x [0,1]”, and (4.43) corresponds to a
diagram

Spec A*

Spec & Speca
/ T“ speN (4.44)

Spec B* 4 x07 “(Spec B®) x [0,1]” DERLLLE Spec B®,

so that “Spec H” is a homotopy from Spec & to Spec « in the usual sense
in topology. But we do not claim that (4.44) actually makes sense in dSchg.
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Define H : A* — B*®kK]s, t] to be the morphism of graded K-algebras
given by H\A1 =ay ®1 and

(1)

L OU . . ,
i+1 _ (_1\G+1)(k+1) k—1—i _ ¢ q\(i+1)(k+1)y k—1—i
o (-1) sda; (-1) ta;

=

S
l

2
]

myr y 6¢Ji-//+1 y
_ E E 1+(2 +1)k8a+( 6]i )a?/—l—z (445)
A
J

i'=07'=1

fori =0,-1,...,d and j = 1,...,m;. This is well-defined as A* is freely
generated over A% by the y;?ﬂ. To see that H is a cdga morphism, note that
H‘Ai : A} — B* ®x K[s, ] is a cdga morphism, and

doH(yy™) = (*D”ld

oot .
%3 S, (]
i'=—1j'=1 ax]
o z+1 i’
- Z Zd Ly 3~z’ 8:10
i'=—17'=1
+( 1)i+1 i i d i Z\IJ +d k—1—14' 82\11
- S~ (Y T
, — |7 0u}, 07} J ot " o
o P, ,
_ Z (_1)z+(z +DE g7t /Oz+ it S P
. ) 4 83:;,896;- J
i 41
a Z (1)(i/+1)(k+1)50¢+(a®] )dak, 1=
3x;

o aPi ;
(_1)1+(z +1)kt0¢+< J- )a?/—l—z

i=—1j'=1 61‘;
8 e T 8\1} 8@
== -+ ) +(@° H) —
axﬂ |J’_Zl j’zzl au]/ v ;C - Z/;l ];1 8£EJ/
d mgr . a@i»/;i»l ale
+ Z Z(—l)z +1a+< a;; ) @
i'=—17'=1

d mys d

myr o y i 8q>i_l/+1 s
3 3 S a2 Yo

i'=—1j'=1i'=—1j'=1
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3

||M.

d @/ i 41
Z 1D+ g, (a‘b>dak, -
- Ox]

=5

=

nis i1
1)+ + kg, (a?;)ak_l_i/ (4.46)
Tt
J

3’ ’

HM

using (4.45) and d[sda?il*i + taffl*i] = 0 in the first step, and (4.13),
(4.35) and (4.36) in the third. Also equations (2.14) and (4.45) imply that

0 NN Y ey OU
Ho dy;c = ag; [a+ (<I)+)] + Z Z a+< ajx; > {(1)1 +1ﬁ
j J

1\ @ D) (k41 k—1—i" [ 1\(&'+1)(k+1)y, k—1—1
(-1 sda;, (-1) ta;,

d my i +1
3‘1’ i1 ;!
— Z Z 7.+kz+1) +< i-/ >a]?/—1—l:|. (447)
oz, J

i'=07'=1

Combining (4.46), (4.47) and adding applied to (4.39) yields

8.
8&;
doH(yy™") — Hody} ™" (4.48)

y i+ ’ 091+ ,
=22 > 2y +1)k8a+(¢>3/+1)a+<a&c)af_l_’
Ny kG 99!+ 9P+ y
P YD S S s (T (G )

i'=i—14/=14=0j'=1

But by applying o (2.13) for i’,j’, we see that the r.h.s. of (4.48) is

9 t
Bz;

zero. Hence d o H(y;?_i) Ho dyk ‘ and H is a cdga morphism. From
(4.34), (4.40) and (4.45) we see that restricting H to s =t = 0 gives &, and
restricting H to s = 1, t = 0 gives a. Thus (4.43) commutes, and H is a

homotopy of cdga morphisms from & to «, as we have to prove.

Next we must show that the Lagrangian structures (h°,0,...) for & :
A®* — B°®, w and (h°,0,...) for a : A* — B®, w are homotopic, over the
homotopy H from & to a. It is enough to find A° € (A2QB.®KKH])’“_1
satisfying

h0s=0, t=0 = A, hO|s=1, t=0 = R,

. . 4.49
ddRhO = 0, dho = H, ((JJO), ( )
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since then (h°,0,...) is a homotopy from (h°,0,...) to (h°,0,...) over H.
Set

d my; e ng
- Z Z dar (saj ') dar; + Z Z daruf; dgrof (4.50)
=0 j=1 i=0 j=1

The first two equations of (4.49) follow from (4.26) and (4.41), and the third
is also immediate. For the fourth equation, we have

dh’
= Z Z [(dodar(sal ™ 7") dar@+(—1)“"1*(d o dar @) dar (saj "))
i=0 j=1
+ Z Z [(d o ddRU;‘) ddR’U;-C_l_i—l—(—l)(i—i_l)k(d o ddR’U;—C_l_i) ddRuﬂ
i=0 j=1
==Y [(dar od(sa¥ 7)) dar @i+ (—1) ¥ (dap 0 i) dar (saf 7))
i=0 j=1
_ Z Z[(ddR o du;) ddR,U;c—l—i_’_(_l)(i—H)k(ddR ° d’Uk 1— z) ddRuﬂ
i=0 j=1
=->.>. {(1)(”1)(“1)%% (dar o d(saj7"))
i=0 j=1
. d T4 oeit! ‘
1)(1+1)k Z Z(_ H_lddR H( g z’ ) ddR(saflz)}
i'=0j'=1

=YD (=l |:ddR (2’)_\111_1> darvf '+ ddR(a\I;) ddRU;‘:|
=0 =1 8fuj 3uj
d m;
= ddR [Z Z|: (Z+1 kddR% [Sdak I=i =+ tag?_l_i]
=0 j=1
d mys (I)z "+1 .
38 (2 )]
=0j5'=1
—ZZ{ddek - 1%+ddr{u o H
=0 j=1 J
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d m;
= ddR[ dar¥ + ZdeR |: 9 (_1)(l+1)k3dak 1—i
J

=0 j=1
( )(H—l)kﬁ k—1— z_i_zd: g 7+1)k (8(I);Z+1> kli/]
CL pors Q.
i/=07'=1 8%‘; !
d m;
= szdR (ddR(H(l";')) : (_1)i+1H(yffi))
i=0 j—=1
d m;
—szdR *))dar (H (Z/g )
=0 j=1
d m;
= H., lz deRfé' ddRyfl} = H.("),
i=0 j=1

using (4.50) in the first step, equations (2.14), (4.35) and (4.36) and H|as =
a4 @1 in the third, ds =t in the fourth, H[4s = ay ® 1 and (4.45) in the
sixth, and (2.6) in the ninth. This completes the proof of Proposition 4.2.

Proposition 4.2 shows that we may replace a, h® by &, h°. We have now
proved all the assumptions of Example 3.3 in the case £ < 0 with k even.
Equation (3.3) was the definition of Zi. The classical master equation (3.4) is
(4.39). The definition (3.5) of a(y;?_i) is (4.40), and the definition (3.6) of d
in B* = (B*,d) is equations (4.13), (4.35) and (4.36). The definitions (3.12)
and (3.21) of h° and ¢ are equations (4.41) and (4.42). Thus, A®,w, B®, o, h
are in Lagrangian Darboux form. This proves Theorem 3.7 (i) for & < 0 with
k even.

4.6. Modifications to the proof for £k < 0 with k=1 mod 4

Next we explain how to modify Sections 4.2-4.5 to prove Theorem 3.7
when k < 0 with £ = 1 mod 4. In the notation of Example 3.3 we have
d=[(k+1)/2], e=[k/2],s0o that e=d — 1 and k = 2d — 1 = 2e + 1, with
d, k odd and e even.

First follow Section 4.2 without change. Then follow Section 4.3 with the
following modifications. In place of (4.12), we take B* to be freely generated
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over BY by
%ﬁ,,fﬁm in degree i for i = —1,—2,...,d, and
ul, . ul in degree i for ¢ = —1,—2,...,d, and
PR . (4.51)
Wy vy Wy, in degree e, and
vf‘l_i, . ,vflfl_i in degree k —1 —i for ¢ =0,—1,...,d,
where 7% = o (2%). In place of (4.14), we write
d my
= > IR
=0 j=1 =0 j=1
Pe  De
-I-ZZC?/] ,dde -I-Zd dde —1—226 ddek 1= 1, (452)
j=17'=1 =0 j=1

where aj,bj,c”,,dj,ej € B, and dj includes no terms in wf,, as these are

written separately in the cj/j terms.

As in (4.15), by 1eaving h® unchanged but replacing =, by

_] 15'=1 j =0 j= 1
§= v (h- 1ddR[zz s +zd6w DD NEIEES ]
j=1j5'=1 1=0 j5=1
we may assume that ijj =— Q. for all 7,7 and dj = e;'- =0 for all 7, j, as
dde ddRe involve no terms in dde 5 ddek 1= Here the minus sign in
;= =}, occurs as e is even. Thus the analogue of (4.17) is
m; d n;
=3 3 o o+ 30 3t
i=0 j=1 i=0 j=1
Pe DPe
+ Z Z ddR(c?,j w§) dgrws.  (4.53)
j=1j'=1

The argument of (4.18)—(4.24) now shows that h nondegenerate at g
is equivalent to n; = n, for i = 0,—1,...,d, and the following being an
invertible matrix over K for all ¢ =0, —1 d:

k—1—i
<6bj }
61);?,_1_’

-902 -

P

>m , (4.54)

J,3'=1
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and for the case i« = e, the following being an invertible matrix over K :
Pe
(ila)s ey (4.55)
As (4.55) is an invertible and antisymmetric, p, is even, so we write p, = 2n..

Regard ( ) = @8 an antisymmetric form on the trivial vector bundle

K?" x V — V over V = Spec B°, which is nondegenerate at ¢ € V, and
hence near q. Since nondegenerate antisymmetric forms can be standardized
Zariski locally by a change of basis, after localizing B® we can choose an
invertible change of variables of the wf,..., w5, , such that w.r.t. the new

w]e we have

%7 j/:]‘7"'7n€7 j:jl+ne7
C?/J _%’ j:17"-aney j,:j+n€7
0, otherwise

As in Section 4.3, set ﬁffl*i = (—1)“‘%?4” for all i = 0,—1,...,d

and j = 1,...,n;. Since (4.54) is invertible, localizing B® we can suppose
Ty, uj, v], wj§ is an alternative set of coordinates for B®. Also define u§ = w§
and vi = w§,, for j = 1,...,n.. Then, modifying (4.51), B* is freely

generated over BY by

Tl Ty, in degree i for i = —1,—2,...,d, and
ULy s Uy, in degree i for i = —1,—2,...,e, and
vfflfﬂ Lok indegree k —1—ifori=0,—-1,... €.

Also, from (4.52) we have

d m;
7w § § ak 1—12 dd 1, + E E z-&-lvfflfz ddRu;'
=0 j=1 =0 j=1

G 1 € € 1 e (&
+ Z [2uj ddR'Uj — §’Uj ddRuJ} . (4.56)
j=1
Leaving h? unchanged but replacing =, by
= [l 1 G e, e " 1 - e, e
E==2—(k—-1)d §Zujvj , =1 —(k—1)dgr §Zujvj ,
Jj=1 j=1

equation (4.56) becomes

d m;
w E E ak 1—1 dd J) + § E 1+1,U§:7171 ddRu;‘;
=0 j=1 =0 j=1
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which agrees with (4.25), so h® = :1;dar yields

d m; e n;

k—l—i §  ~i ; k—1—i

R = E E dara; " darZ} + E E daruj darvy ",
=0 j—1 i=0 j—1

as in (4.26). The rest of the proof, from (4.27) to the end of Section 4.5,
works without further changes. This proves Theorem 3.7 (i) when k < 0 with
k=1 mod 4, and so completes the proof of Theorem 3.7 (i).

4.7. Modifications to the proof for k < 0 with £k =3 mod 4

We now explain how to modify Sections 4.2-4.6 to prove Theorem 3.7
when k£ < 0 with £ =3 mod 4, that is, to prove Theorem 3.7 (ii),(iii). In the
notation of Example 3.3 we have d = [(k+1)/2], e = [k/2], so that e =d — 1
and k =2d — 1 = 2e + 1, with d even and e, k odd.

The first part of the proof follows that for K =1 mod 4 in Section 4.6,
as far as equation (4.55). The only difference is that just before (4.53) we

. . Pe .
have ¢J,; = 9/, since e is odd rather than even. So (cg, j)A is now a

Ji" j.j'=1
symmetric matrix of functions on V', rather than an antisymmetric matrix.

Write ne = pe.-

Now in general, nondegenerate quadratic forms cannot be trivialized
Zariski locally, but they can at least be diagonalized. That is, in general
we cannot find a (Zariski local) change of variables of the w§,...,w¢ to

bl Ne
e

make (cg, j)?j’=1 the identity matrix, but we can change variables to make

(C?/j)?_;/:1 a diagonal matrix. Thus, after localizing B® if necessary and

changing variables w¢, we can suppose there are invertible elements g1, ..., gn,
in BY such that ¢; = ¢; and ¢,; = 0 if j/ # j. Also replacing v}“_l_i by
@ffl*i = (—1)“‘%?”” forall i =0,—1,...,dand j = 1,...,n;, we now
have the analogue of (4.25):

d my d mn;
1 - L " . . L )
D 3 RTINS )y Y
i=0 j=1 i=0 j=1

Ne

e €

+ E gjw; darwy,
i=1
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so that h® = 5 dqre yields the analogue of (4.26):

d mg d Uz
k—1—i §  ~i ; k—1—i
= E E dara; " dar7; + E E daruj darvy "
=0 j—1 =0 j—1

+ Z dar (gjw5) darw;.

Leaving h° unchanged, but by replacing =, by

)9 SEIRTEETS » o BT

[I]

=0 j=1 i=0 j=1
. d m; - o d n o '
WW%%Rzzxwkw¢Ha+2234wmf“}
i=0j=1 i=0 j=1
we have the analogue of (4.27):

d m; -
v=>_> [k aE171 dpF + (1) LiF dgrah 1]

1=0 j=1

+ Z Z [Z u; ddR’U?_l_i + (—1)i+1(]<1 -1- Z')’U;?_l_i ddRué]

i=0 j=1
+ Z dar (gjw5) darw;.
We now follow Section 4.4 adding extra terms involving the g;, w§, which

we leave as an exercise. The definition (4.28) of ¥ is unchanged. For the final
results, equation (4.34) is unchanged, the analogues of (4.35)—(4.36) are

) i O _ .
duj:(—l)Jer, Z:O,—l,...7d7 ]:1,...7712‘,
J
;o oV
d/U;‘c_l_l - aui ’ L= _17 25 ad? J = 1’ ) Ty
J
oV & W, Jqjr OV
d l?_l = —— J J - 1 e
Ui ouf ;qu/ ou ows,’ o
1 ov
dwj = ——-—, ji=1,...,n,
2Qj 8wj
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as in (3.35), and as in (3.33), equation (4.39) is replaced by

Ne

1ea 1 /00 \°
ZZ@U aklz+4z.(aw¢>

i=—1j=1 j=1 4

yi ey OV
+Oé+ (D_A,_ Z Z +1 (I)]+1)8fi, = 0
J

i=—17=1

Next we follow Section 4.5 adding extra terms involving the q;, ws, to
show that we can define an alternative cdga morphism & : A®* — B® by
Glas = ay and &( f ) as in (3.34), and a Lagrangian structure (h9,0,...)
for & : A* — B*, w with 2° as in (3.36), such that o, & : A* — B® are homo—
topic cdga morphlsms and under this homotopy, the Lagranglan structures
(h0,0,...) for a,w and (h°,0,...) for &, w are also homotopic. Replacing
a, h? by &, ho, WecansetagC 1= 2—Oforallzj Then A®,w, B®, o, h are in
weak Lagrangian Darboux form, in the sense of Example 3.5. ThlS completes
the proof of Theorem 3.7 (ii).

All the proof so far has worked with B®, «, , j in the homotopy commu-
tative diagram (4.6) with Z ~ L Xy x ; Spec A® and e : Spec B® — Z a
Zariski open inclusion, so that j is a Zariski open inclusion (or étale) if 4 is
a Zariski open inclusion (or étale), as required by Theorem 3.7(i),(ii). For
Theorem 3.7 (iii) we allow j to be étale even if ¢ is a Zariski open inclusion, so
e : Spec B®* — Z in (4.6) can be étale, and we can use étale local operations
to construct B*®, a, J.

In the proof above we have invertible elements ¢y, ...,q,, in B°. Write
B* = B*[q, 1/2 ...,qne ] for the cdga obtained by adjoining square roots of
qi,.--,qn, to B*. The inclusion j: B® — B* is an étale cover of degree 2™,
Let ¢ € Spec B* be one of the 2" preimages of ¢ € Spec B®. Write a4 =
Joay : AL — B*, & =joa: A® — B*, &= eo Spec): Spec B* — Z,
and 7 = ¢ o Spec) : Spec B* — L. In the proof in Section 4.2, replace
B*,q,a4,a,e,1 by B*.q, a4, &, &, 1, respectively.

The new features are that e : Spec B®* — Z in (4.6) is now étale rather

than a Zariski open inclusion, and the invertible functions qi,...,¢g,, € B°
above now have square roots qjl./ > in BO. Thus, in the first part of Sec-
tion 4.7, we may change variables from wf,...,w;, to w{,..., vy, , where
Wi = g, 1/2 w§, while leaving the other variables = :rj,uj vf 1= unchanged.

ThlS has the effect of setting ¢; = 1 for all j = 1,...,n., so at the end of
the argument above, A®, w, B®, a, h are in strong Lagrangian Darboux form,
in the sense of Example 3.5, at the cost of working étale locally rather than
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Zariski locally. This proves Theorem 3.7 (iii), and finally completes the proof
of Theorem 3.7.
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