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On Extension Properties of Pluricomplex Green
Functions (∗)

S. Zeynep Özal Kurşungöz (1)

ABSTRACT. — Let Ω0 be a bounded domain in Cn and E be a compact subset
of Ω0 such that Ω := Ω0 \ E is connected. This paper deals with the study of the
extension properties of the pluricomplex Green function of Ω to strictly larger sub-
domains Ω̃ of Ω as a pluricomplex Green function. The problem will be studied when
Ω0 is a pseudoconvex, bounded complete Reinhardt domain in Cn and a detailed
study in unit bidisc ∆2 ⊂ C2 will be provided.

RÉSUMÉ. — À condition que Ω0 est une domaine bornée dans Cn et E soit
compact sous-ensemble de Ω0 en maintenant que Ω := Ω0 \ E soit connexe, cet
article va examiner les propriétés d’extension de la fonction de Green pluricomplexe
de Ω en sous-domaines strictement plus larges Ω̃ de Ω comme une fonction de Green
pluricomplexe. Le problème sera examiné quand Ω0 soit une domaine Reinhardt
complète bornée pseduconvexe dans Cn et une étude détaillée sur unité disque ∆2 ⊂
C2 sera fournie.

1. Introduction and Statement of Results

Let Ω be a bounded domain in Cn with a ∈ Ω and f be a plurisubhar-
monic function in a neighborhood of a. If f(z) 6 log ‖z − a‖+ C for z near
a, f is said to have a logarithmic pole at a. The extremal function

gΩ(z, a) = sup
{
f(z) : f ∈ PSH(Ω, [−∞, 0))

and f has a logarithmic pole at a

}
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is called the pluricomplex Green function of Ω with pole at a. This definition
was given by Zakharyuta [10] and later by Klimek ([6]). It is a generaliza-
tion to higher dimensions of the Green function for the Laplace operator
in C. gΩ( · , a) is negative and plurisubharmonic in Ω, it has a logarithmic
pole at a, and it is maximal in Ω \ {a}. It is also decreasing under compo-
sition with holomorphic mappings, which implies that it is invariant under
biholomorphic mappings.

For smooth plurisubharmonic functions, the Monge-Ampère operator is
defined as the nth exterior power of ddc, where d = ∂ + ∂̄ is the exterior
derivative and dc = i(∂̄ − ∂). It is proved by Demailly that for hyperconvex
domains, the pluricomplex Green function is continuous and is the unique
solution to the following Dirichlet problem:

u ∈ C(Ω \ {a}) ∩ G(Ω, a)),
(ddcu)n = (2π)nδa in Ω,
u(z)→ 0 as z → ∂Ω,

where δa is the Dirac mass at a.

Let Ω0 be a domain in Cn, n > 2 and let E be a compact subset of Ω0

such that Ω0 \ E is connected. Hartogs’ extension theorem states that every
holomorphic function f : Ω0 \ E → C has a unique extension to Ω0. The
situation in the case of plurisubharmonic functions is different.

Let Ω0 be an open subset of Cn, n > 2 and let E be a closed sub-
set of Ω0. Harvey and Polking [4] specified some conditions on the class of
plurisubharmonic functions on Ω0 \ E and on the set E to ensure that the
plurisubharmonic functions can be extended across E .

Recall that a domain Ω is called a domain of existence for plurisubhar-
monic functions if there exists a plurisubharmonic function on Ω that cannot
be extended to as a plurisubharmonic function to any domain Ω0 ! Ω. Bed-
ford and Burns [1] and Cegrell [2] showed that if a given domain Ω in Cn,
n > 2 satisfies certain boundary conditions, then Ω is a domain of existence
for plurisubharmonic functions. In his paper [2], Cegrell also showed that
if a domain Ω is contained in a domain of existence for plurisubharmonic
functions Ω0, then any plurisubharmonic function on Ω is the restriction of
a plurisubharmonic function on Ω0. Sadullaev [8] proved that if Ω is a closed
submanifold of a Stein manifold Ω0, then every plurisubharmonic function
on Ω is the restriction of a plurisubharmonic function on Ω0.

Let Ω be an open, bounded, pseudoconvex set in Cn for n > 2, K be
a compact subset of Ω such that Ω \ K is connected, and Ω′ be an open
subset with K ⊂ Ω′ b Ω. Cegrell [3] proved that the Monge–Ampère mass∫

Ω′\K(ddcu)n for u ∈ L∞loc(Ω\K) is finite when K is a removable singularity.
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A natural question is whether pluricomplex Green functions of certain
domains can be extended as plurisubharmonic functions on larger domains,
and in particular, as pluricomplex Green functions of larger domains. In the
setting of the Hartogs extension theorem, in general the pluricomplex Green
function of Ω0 \ E cannot be extended to Ω0, neither as a plurisubharmonic
function nor as a pluricomplex Green function. However, in some cases we
can extend the pluricomplex Green function of Ω0 \ E to a strictly larger
subdomain of Ω0.

In Section 3, we show that for some Reinhardt subdomains Ω of a pseu-
doconvex complete Reinhardt domain Ω0 in Cn, the pluricomplex Green
function gΩ( · , 0) can be extended as a pluricomplex Green function of a
strictly larger Reinhardt subdomain of Ω0.

Theorem 1.1. — Let Ω0 be a pseudoconvex, bounded complete Reinhardt
domain in Cn, and let Ω = Ω0\E, where E 63 0 is a Reinhardt compact subset
of Ω0 that satisfies the following properties:

• E is strictly logarithmically convex, i.e. `(E) is strictly convex,
• E ∩ {z1 . . . zn = 0} = ∅,

where `(z1, . . . , zn) = (log |z1|, . . . , log |zn|) for (z1, . . . , zn) ∈ Cn. Then there
exists a Reinhardt domain Ω̃ such that Ω & Ω̃ ⊂ Ω0 and

gΩ(z, 0) = gΩ̃(z, 0), ∀ z ∈ Ω.

In the case of C2, one can omit the condition E ∩ {z1z2 = 0} = ∅ in
Theorem 1.1.

Theorem 1.2. — Let Ω0 be a pseudoconvex, bounded complete Reinhardt
domain in C2, and let Ω = Ω0 \ E, where E 63 0 is a Reinhardt compact,
strictly logarithmically convex subset of Ω0. Then there exists a Reinhardt
domain Ω̃ such that Ω & Ω̃ ⊂ Ω0 and

gΩ(z, 0) = gΩ̃(z, 0), ∀ z ∈ Ω.

Recall that if g is a function defined on a Reinhardt domain Ω that sat-
isfies g(z1, . . . , zn) = g(|z1|, . . . , |zn|) for all (z1, . . . , zn) ∈ Ω, then it is called
a polyradial function. Since the pluricomplex Green functions are invari-
ant under biholomorphic mappings, gΩ( · , 0) is a polyradial function. The
plurisubharmonicity of polyradial functions on Reinhardt domains can be
discussed by related convex functions. Using some results on a special class
of convex functions and a method introduced by Klimek [7], we will be able
to find Ω̃.

In Section 4, we will discuss this problem in the unit bidisk ∆2 ⊂ C2.
In this case, we can say more about Ω̃. When E is strictly logarithmically
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convex, we show that there exists a unique largest Ω̃. If E is logarithmi-
cally convex, but not strictly logarithmically convex, we show that in some
cases there are infinitely many maximal subdomains of ∆2 with respect to
inclusion that can be taken as Ω̃.

2. Preliminaries

We will first recall some basic properties of convex functions. For any two
points x1, x2 ∈ Rn, we will denote the line segment between x1 and x2 by
[x1, x2]. Let E be any set in Rn and x1, x2 ∈ E. A function u : E → R is
called convex if for any x1, x2 ∈ E such that [x1, x2] ⊂ E, we have

u(λx1 + (1− λ)x2) 6 λu(x1) + (1− λ)u(x2), 0 6 λ 6 1.

For D an open set in Rn, a function u : D → Rn is called locally convex
if for any x ∈ D, there exists a ball Br(x) = {y ∈ Rn : ‖x− y‖ < r} ⊂ D on
which u is convex.

We refer to [9, Section 2] for a discussion of several notions of convexity
of functions defined on arbitrary sets. In particular, we note that our notion
of convexity here corresponds to the notion of interval convexity in [9].

We are going to work with convex functions defined on domains that are
not necessarily convex. In this case, proving local convexity will be enough,
as is shown by the following well-known theorem (see e.g. [9, Section 2]):

Theorem 2.1. — Let D be any open set in Rn and u be a real-valued
function defined on D. Then, u is convex if and only if u is locally convex.

The following lemma will be used several times in the proofs.

Lemma 2.2. — If f : (−∞, a] → (−∞, 0) is a convex function then
f(x) 6 f(a), for any x ∈ (−∞, a).

This simple fact about closed, unbounded convex sets will be used in
proving some results about pluricomplex Green functions in C2.

Lemma 2.3. — Let E be a closed, convex, unbounded subset of R2 such
that

E ⊂ {(x1, x2) ∈ R2 : x1 < 0,m < x2 < 0}.
Then, for any p = (p1, p2) ∈ E, we have lp ⊂ E, where lp = {(p1 + t, p2) :
t 6 0}.
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As mentioned before, the plurisubharmonicity of a polyradial function
depends on the convexity of a related function. Before we discuss this, we
need to give some definitions. Define functions

`(z1, . . . , zn) = (log |z1|, . . . , log |zn|), (z1, . . . , zn) ∈ Cn,

and

e(x1, . . . , xn) = (ex1 , . . . , exn), (x1, . . . , xn) ∈ [−∞,∞)n,

where log 0 = −∞ and e−∞ = 0. For a Reinhardt domain Ω ⊂ Cn, denote
its logarithmic image by ω = `(Ω) ∩ Rn. For any ω ⊂ Rn open define

ê(ω) = int {(z1, . . . , zn) ∈ Cn : (|z1|, . . . , |zn|) ∈ e(ω)} .

Let 1̄ = (1, . . . , 1) ∈ Rn. A function u : ω → R is said to have normalized
growth at −∞ if, for any a = (a1, . . . , an) ∈ ω so that a+ t1̄ ∈ ω for all t 6 0,
there exists a constant Ca such that

u(a+ t1̄) = u(a1 + t, . . . , an + t) 6 t+ Ca, t 6 0.

The convex envelope of ω with normalized growth at −∞ is defined by

uω(x) = sup
{
u(x) : u : ω → (−∞, 0)

convex with normalized growth at −∞

}
.

The relation between this associated convex function and the pluricom-
plex Green function is stated by Klimek [7]

Theorem 2.4 ([7]). — If Ω ⊂ Cn is a bounded Reinhardt domain, then

uω(x) = gΩ(e(x), 0), x ∈ ω.

The pluricomplex Green functions of certain domains can be found using
the Minkowski functional (see [5, Proposition 4.2.21]) as follows:

Proposition 2.5. — Let Ω0 be a bounded pseudoconvex complete Rein-
hardt domain with Minkowski functional hΩ0 . Then gΩ0(z, 0) = log hΩ0(z),
for all z ∈ Ω0.

Proposition 2.5 will form a base for the discussions in proofs. We will
work on a bounded, pseudoconvex complete Reinhardt domain Ω0 and on
its Reinhardt subdomains. Using the pluricomplex Green function obtained
from Proposition 2.5 for Ω0 and Theorem 2.4, we will find the pluricomplex
Green functions of certain subdomains.
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3. Proofs of Theorem 1.1, 1.2

The proof of Theorem 1.1 relies on analyzing the envelopes of certain
classes of convex functions defined on solid hypercylinders in Rn. These
will be introduced and studied in the first section. Afterwards, proofs of
Theorem 1.1 and 1.2 will be provided.

3.1. Special Classes of Convex Functions

Let β ⊂ Rn−1 be a compact, convex set, and q = (q1, . . . , qn) ∈ Rn with
qn > 0. Consider the set

K = {(x, 0) + tq : x ∈ β, t ∈ R},
which is a solid hypercylinder in Rn. The boundary of K is ∂K = {(x, 0)+tq :
x ∈ ∂β, t ∈ R}, where ∂β is the boundary of β ⊂ Rn−1. Given a hyperplane
H that is not parallel to q, we let DH := K∩H. Note that DH is a compact
convex set.

Definition 3.1. — Let ω ⊂ Rn. A function f : ω → R is called q-linear
if f(x+ tq) = f(x) + t holds for any x ∈ ω and t ∈ R such that x+ tq ∈ ω.

Let now f : K → R be a given convex, q-linear function, such that f is
bounded above on DH , for some hyperplane H not parallel to q. We let

V = V ( · ;K, f) : K → R
be the convex envelope of f defined by

V (x;K, f) = sup
{
w(x) :

w : K → R is convex
and w(y) 6 f(y) for y ∈ ∂K

}
, x ∈ K. (3.1)

Lemma 3.2. — The function V is convex and V (x) = f(x) for x ∈ ∂K.

Proof. — Since f is q-linear and bounded above on DH , it follows that
f is bounded above on each compact subset of K. Let x ∈ K and Hx be the
hyperplane parallel to H that contains x. Then f 6 M on DHx

= Hx ∩ K,
for some constant M . If w is an element of the defining family of V then
the restriction of w to the convex set DHx is convex and w 6 f 6M on the
boundary of this set regarded as a subset ofHx. We conclude that w(x) 6M .
It follows that the functions in the defining family of V are locally uniformly
upper bounded on K, hence V is convex fuction on K.

Obviously, f is an element of the defining family of V and therefore f 6 V
on K by definition. On the other hand, any element of the defining family of
V is dominated by f on ∂K, hence so is V . Therefore V = f on ∂K. �
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In order to prove further properties of V we need an alternate description
using q-linear extensions of convex envelopes on slices DH = H ∩ K, where
H is a hyperplane not parallel to q. We define

v(x;DH , f) = sup
{
w(x) :

w : DH → R is convex
and w(y) 6 f(y) on ∂DH

}
, x ∈ DH .

Here ∂DH denotes the boundary of DH seen as a subset of H. We denote
by vH = vH(· ;K, f) the q-linear extension of v(· ;DH , f) to K defined by

vH(x) = v(y;DH , f) + t , where x = y + tq , y ∈ DH , t ∈ R , ∀ x ∈ K.

This function is clearly q-linear.

Lemma 3.3. — If H is a hyperplane not parallel to q then V = vH on
K. In particular, the function V is q-linear.

Proof. — Note that v(· ;DH , f) is a convex function on DH , as it is
the supremum of a family of uniformly upper bounded convex functions.
If H ′ = H + tq is a hyperplane parallel to H, for some fixed t ∈ R, then
DH′ = DH + tq. For any function w on DH we can define a function w′ on
DH′ by

w′(x+ tq) = w(x) + t, x ∈ DH .

Then, a simple calculation shows that w′ is convex on DH′ if and only if w
is convex on DH . Moreover, since f is q-linear, we have that w(x) 6 f(x) if
and only if w′(x+ tq) 6 f(x+ tq), where x ∈ ∂DH . Hence

v(x+ tq;DH′ , f) = v(x;DH , f) + t , ∀ x ∈ DH . (3.2)

Formula (3.2) implies that vH′ = vH if H ′ is a hyperplane parallel to H.
Also, as f is a convex function in the defining family of v( · ;DH , f), we have
that v(x;DH , f) = f(x) for x ∈ ∂DH and the q-linearity of the functions vH
and f implies that vH = f on ∂K.

Next we will show that vH is also a convex function on K. Let x, x1, x2

be points in K such that x = µx1 + (1 − µ)x2 for 0 6 µ 6 1. Now write
x = x0 + λq, xj = xj,0 + λjq where x0, xj,0 ∈ H and λ, λj ∈ R, j = 1, 2. We
claim that x0 = µx1,0 + (1 − µ)x2,0 and λ = µλ1 + (1 − µ)λ2. Indeed, we
have that

x0 − µx1,0 − (1− µ)x2,0 + (λ− µλ1 − (1− µ)λ2)q = 0

If x1,0 = x2,0 = x0 then our claim follows. Otherwise, the vectors p :=
x2,0 − x1,0 6= 0 and q are linearly independent, since p is parallel to H and
q is not parallel to H. As x0 − µx1,0 − (1− µ)x2,0 = sp for some s ∈ R, we
conclude that s = λ− µλ1 − (1− µ)λ2 = 0, which implies our claim. Using
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the definition of vH and the fact that the function v( · ;DH , f) is convex on
DH , we obtain

vH(x) = v(x0;DH , f) + λ

6 µ v(x1,0;DH , f) + (1− µ)v(x2,0;DH , f) + µλ1 + (1− µ)λ2

= µ
(
v(x1,0;DH , f) + λ1)+ (1− µ)

(
v(x2,0;DH , f) + λ2)

= µ vH(x1) + (1− µ)vH(x2),

hence vH is a convex function on K.

Since vH is convex on K and vH = f on ∂K, vH is an element of the
defining family of V , so vH 6 V . On the other hand, take any x ∈ K.
Then, there exists a hyperplane H ′ 3 x that is parallel to H. Since V |DH′

is an element of the defining family of v( · ;DH′ , f), we see that V (x) 6
v(x;DH′ , f) = vH′(x) = vH(x), which concludes the proof. �

For the proof of Theorem 1.1 we actually need to work with envelopes
of convex functions on certain subsets of K, which we now introduce. For a
fixed hyperplane H that is not parallel to q, let D := K ∩H, C := ∂K ∩H,
and define

K := {x+ tq : x ∈ D, t < 0} , ∂′K := {x+ tq : x ∈ C, t < 0}.

Note that D is a compact convex set and ∂K = ∂′K ∪D is the boundary of
K in Rn.

Definition 3.4. — If E is a compact convex subset of K so that D ⊂ E,
we let KE = K \ E and ∂′KE = KE ∩ ∂′K.

The convex function that we will need can now be introduced. Let f :
K → R be a given convex, q-linear function, such that f is bounded above
on D. For each subset KE of K, we let u(· ;KE , f) : KE → R be the convex
envelope of f defined by

u(x;KE , f) := sup
{
w(x) :

w : KE → R is convex
and w(y) 6 f(y) for y ∈ ∂′KE

}
. (3.3)

We can now state the main result of this section.

Theorem 3.5. — For any subset KE of K as above, we have that
u(· ;KE , f) = V |KE

, where V = V ( · ;K, f) is the function defined in (3.1).
In particular,

u(x;KE , f) = u(x;K, f), ∀ x ∈ KE .

Proof. — Note that K = KE if we take E = D. Therefore, the second
conclusion of the theorem follows at once from the first one.
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A similar argument to that in the proof of Lemma 3.2 shows that the
function u( · ;KE , f) is convex on KE and u(x;KE , f) = f(x) for x ∈ ∂′KE .
By Lemma 3.2, V is a function in the defining family of u( · ;KE , f), so
V 6 u( · ;KE , f) on KE . On the other hand, let x ∈ KE . As E is convex,
there exists a hyperplane H 3 x such that H ∩E = ∅, so H is not parallel to
q and DH ⊂ KE . Since u( · ;KE , f)|DH

is an element of the defining family
of v( · ;DH , f) we have by Lemma 3.3 that u(x;KE , f) 6 v(x;DH , f) =
vH(x) = V (x). Hence u(x;KE , f) = V (x) for x ∈ KE , and the theorem is
proved. �

3.2. Proof of Theorem 1.1

Let Ω0 be a pseudoconvex, bounded complete Reinhardt domain in Cn.
Let Ω = Ω0 \ E , where E 63 0 is a Reinhardt compact subset of Ω0 that
satisfies the following properties:

• E is strictly logarithmically convex, i.e. `(E) is strictly convex,
• E ∩ {z1 . . . zn = 0} = ∅.

For z ∈ Ω \ {0}, let Lz = {ζz : ζ ∈ C}. Ω will be partitioned into the
following sets:

Ω1 = {z ∈ Ω \ {0} : Lz ∩ E = ∅}, which is an open set,
Ω2 = the connected component of 0 in Ω \ Ω1,

Ω3 = Ω \ (Ω1 ∪ Ω2).

Set `(Ω) ∩ Rn = ω, `(Ω0) ∩ Rn = ω0, `(Ωi) ∩ Rn = ωi, for i = 1, 2, 3.

We study gΩ by working with the associated convex function uω in log-
arithmic coordinates. As E ∩ {z1, . . . , zn = 0} = ∅, `(E) is a compact set in
Rn and we define a solid hypercylinder K by

K =
⋃

x∈`(E)

{x+ t1̄ : t ∈ R}

where 1̄ = (1, . . . , 1) ∈ Rn. Let H be a fixed hyperplane that is not parallel
to 1̄, and define D := K ∩H, C := ∂K ∩H,

K := {x+ t1̄ : x ∈ D, t < 0} , ∂′K := {x+ t1̄ : x ∈ C, t < 0}.
We assume that H is chosen so that K ⊃ `(E). Note that K does not
necessarily lie in ω0. Let

E =
⋃

x∈`(E)

{x+ t1̄ : t > 0} ∩K.
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Then E is a compact, convex set and we set KE := K \ E. Note that
KE = ω2.

Lemma 3.6. — We have that gΩ(z, 0) = gΩ0(z, 0) for z ∈ Ω1, and
uω(x) = uω0(x) for x ∈ ω1.

The proof of this lemma is straightforward.

Lemma 3.7. — The function f := log hΩ0◦e is a 1̄-linear convex function
on Rn. Moreover, f = uω0 on ω0.

Proof. — Since the Minkowski functional is defined for all Cn, f is defined
on Rn. As hΩ0(ζz) = |ζ|hΩ0(z), for ζ ∈ C, we have that

f(x+ t1̄) = log hΩ0
(
e(x+ t1̄)

)
= log hΩ0

(
et(ex1 , . . . , exn)

)
= t+ log hΩ0 (e(x)) = t+ f(x),

so f is a 1̄-linear function. Now f = log hΩ0 ◦ e = gΩ0( · , 0) ◦ e = uω0

on ω0, which shows that f is convex on ω0. Since f is 1̄-linear, it follows
that f is convex on Rn, using a similar argument to that in the proof of
Lemma 3.3. �

Lemma 3.8. — If f = log hΩ0 ◦ e then uω(x) = u(x;KE , f) for x ∈ ω2 =
KE.

Proof. — Recall that the function u( · ;KE , f) is defined in (3.3). By Lem-
mas 3.6 and 3.7, uω = uω0 = f on ω1, so uω = uω0 = f on ∂′KE since these
functions are continuous.

As uω|KE
is a convex function that is equal to f on ∂′KE , we have uω 6

u( · ;KE , f) on KE . For the opposite inequality, we consider the function

u(x) =
{
uω(x), if x ∈ ω1 ∪ ω3,

u(x;KE , f), if x ∈ ω2 = KE .
(3.4)

We will show that u is an element of the defining family of uω, hence u 6 uω
on ω, and in particular u( · ;KE , f) 6 uω on ω2.

By Theorem 3.5, Lemma 3.2 and Lemma 3.3, the function u( · ;KE , f) is
1̄-linear convex on KE and u( · ;KE , f) = f on ∂′KE . We have u = uω < 0
on ω1 ∪ ω3. Moreover, since f < 0 on ∂′KE it follows that u( · ;KE , f) < 0
on KE , so u is a negative function. It has normalized growth at −∞ on ω1
as uω has normalized growth at −∞ on ω. For x ∈ KE and t ∈ R with
x+ t1̄ ∈ KE , the 1̄-linearity of u( · ;KE , f) shows that

u(x+ t1̄;KE , f) = t+ u(x;KE , f),

thus u( · ;KE , f) has normalized growth at −∞ on ω2 as well.
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It remains to show that u is a (locally) convex function. Note that it
suffices to show that u is convex in a small neighborhood of each point
of ∂′KE . Since uω is convex on ω and u( · ;KE , f) is convex on KE , this
amounts to proving the convexity inequality for points x, x1 ∈ ω1, x2 ∈ ω2,
such that the segment [x1, x2] ⊂ ω and x ∈ [x1, x2].

We write x = sx1 + (1− s)x2, 0 < s < 1. Recall that u = u( · ;KE , f) =
f = uω on ∂′KE ⊂ ω2 and uω 6 u = u( · ;KE , f) on KE . If x ∈ ω1 ∪ ∂′KE

then
u(x) = uω(x) 6 suω(x1) + (1− s)uω(x2) 6 su(x1) + (1− s)u(x2),

since uω(x2) 6 u(x2;KE , f) = u(x2). We assume next that x ∈ ω2, and
we let {y} = [x1, x2] ∩ ∂′KE , so y = tx1 + (1 − t)x2 with s 6 t < 1.
Then x = s

t y +
(
1 − s

t

)
x2. As y ∈ ∂′KE , it follows by above that u(y) 6

tu(x1)+(1− t)u(x2). Since u = u( · ;KE , f) is convex on ω2 = KE we obtain

u(x) 6 s

t
u(y) +

(
1− s

t

)
u(x2)

6
s

t

(
tu(x1) + (1− t)u(x2)

)
+
(

1− s

t

)
u(x2) = su(x1) + (1− s)u(x2).

This shows that u is (locally) convex on ω, hence an element of the defining
family of uω. The proof of the lemma is complete. �

Since the function u defined in (3.4) is equal to uω on ω2 by Lemma 3.8,
it should be noted that in fact we have uω = u on ω.

Theorem 1.1 can now be proved using Lemmas 3.6, 3.7, and 3.8.

Proof of Theorem 1.1. — It suffices to show that there exists a domain ω̃
such that ω & ω̃ ⊂ ω0 and uω = u

ω̃
|ω. In the above setting, let C = `(E)∩∂K,

and let conv(C) denote the convex hull of C. Define

Ẽ =
⋃

x∈conv(C)

{x+ t1̄ : t > 0} ∩K.

Then Ẽ is a compact, convex set and we let K
Ẽ

:= K \ Ẽ. Since `(E) is
convex, conv(C) ⊂ `(E), so Ẽ ⊂ E and K

Ẽ
⊃ KE .

Now we show that K
Ẽ
6= KE . We prove in fact that ∂KE \ ∂K ⊂ K

Ẽ
.

Let x ∈ ∂KE \∂K. Then x ∈ (∂`(E) \C)∩KE . Since `(E) is strictly convex,
there exists a hyperplane H such that H ∩ `(E) = {x}, hence H ∩ C = ∅.
Since C is compact, if ε > 0 is small enough the hyperplane Hε = H + ε1̄
does not intersect C. It follows that x and conv(C) lie on opposite sides of
Hε, for some ε > 0, so x 6∈ Ẽ.

Let ω̃ = ω1∪ω3∪ ω̃2, where ω̃2 = K
Ẽ
. Since `(E)∩∂K = conv(C)∩∂K =

C we have ∂′KE = ∂′K
Ẽ
, so ω̃ is a domain contained in ω0 and ω & ω̃. We
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have u
ω̃
6 uω on ω. For the opposite inequality we define the function ũ

on ω̃,

ũ(x) =
{
uω(x), if x ∈ ω1 ∪ ω3,

u(x;K
Ẽ
, f), if x ∈ ω̃2 = K

Ẽ
,

where f = log hΩ0 ◦ e is as in Lemma 3.7. Since ∂′KE = ∂′K
Ẽ

and, by
Theorem 3.5, u(x;KE , f) = u(x;K

Ẽ
, f) for x ∈ KE , Lemma 3.8 and its proof

(see (3.4)) imply that the function ũ is an element of the defining family of
u
ω̃
. Thus ũ 6 u

ω̃
on ω̃. As u( · ;KE , f) = u( · ;K

Ẽ
, f)|KE

, it follows from
Lemma 3.8 that ũ = uω on ω. Therefore uω 6 u

ω̃
on ω, hence uω = u

ω̃
|ω.

This concludes the proof of Theorem 1.1. �

3.3. Proof of Theorem 1.2

If E ∩{z1z2 = 0} = ∅, the existence of Ω̃ follows from Theorem 1.1. So, let
E∩{z1z2 = 0} 6= ∅. This implies that E intersects {z1 = 0} or {z2 = 0}. Since
Ω is connected and Reinhardt, it can intersect only one of them. Without
loss of generality, suppose that E ∩ {z1 = 0} 6= ∅.

Following the notation in the proof of Theorem 1.1, we consider the same
partition of Ω.

If Φ(x1, x2) = x2−x1, the function Φ|`(E) attains its minimum at a unique
point a = (a1, a2) ∈ `(E), as `(E) is closed and strictly convex. Let

L = {x ∈ ω : x = a+ t1̄, t 6 0}.

Now let

ω̃2 = {y + (s, 0) : y ∈ L \ {a}, s 6 0} , ω̃ = ω1 ∪ ω̃2 ∪ ω3.

By the construction of a and since `(E) is strictly convex, it follows easily
that ω̃ is a domain such that ω & ω̃ ⊂ ω0. Theorem 1.2 will follow if we
prove that uω = u

ω̃
|ω. Since ω ⊂ ω̃ we have u

ω̃
6 uω on ω. To complete the

proof, we need to show that uω 6 uω̃ on ω.

Lemma 3.6 shows that uω = u
ω̃

= uω0 = f on ω1 ∪L, where the function
f = log hΩ0 ◦ e is as in Lemma 3.7. Let us introduce the function

w(x1, x2) = x2 − a2 + f(a) , x = (x1, x2) ∈ ω̃2.

We claim that w = f on L. Indeed, L has equation x2 = x1+a2−a1, x1 6 a1,
and by the 1̄-linearity of f , w(x1, x1 + a2 − a1) = x1 − a1 + f(a1, a2) =
f(x1, x1 + a2 − a1).
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Consider now the function u defined on ω̃ by

u(x) =
{
uω(x), if x ∈ ω1 ∪ ω3,

w(x), if x ∈ ω̃2.

Clearly u < 0 and u has normalized growth at −∞. To show that u is
(locally) convex we proceed as in the proof of Lemma 3.8. Let (x1, x2) ∈
ω̃2 and x′1 be so that (x′1, x2) ∈ L. Then f( · , x2) is a convex function on
(−∞, x′1], so by Lemma 2.2, f(x1, x2) 6 f(x′1, x2) = w(x′1, x2) = w(x1, x2).
Therefore we can apply the same argument as the one used in the proof
of the convexity of the function defined in (3.4). We conclude that u is an
element of the defining family of the function u

ω̃
, so u 6 u

ω̃
on ω̃.

We will prove that uω 6 w on ω2. This implies that uω 6 u 6 u
ω̃
on ω,

which finishes the proof. To this end, we define

m = inf{x2 : ∃ x = (x1, x2) ∈ `(E)} > −∞,

as 0 6∈ E . Since `(E) is strictly convex, Lemma 2.3 shows that if (x′1, x′2) ∈ L
and x′2 6 m then (x1, x

′
2) ∈ ω2 for all x1 < x′1. We partition ω2 as follows:

ω′2 = {(x1, x2) ∈ ω2 : x2 6 m} , ω′′2 = ω2 \ ω′2.

Let v be any element of the defining family of uω. If (x1, x2) ∈ ω′2 and x′1 is
so that (x′1, x2) ∈ L then Lemma 2.2 applied to the convex function v( · , x2)
on (−∞, x′1] implies that

v(x1, x2) 6 v(x′1, x2) 6 uω(x′1, x2) = f(x′1, x2) = w(x′1, x2) = w(x1, x2).

If x ∈ ω′′2 , then, since `(E) is convex, we can write x = tx1 + (1 − t)x2,
0 < t < 1, with points x1 ∈ ω′2 and x2 ∈ L. Since v 6 uω = f = w on L and
w is an affine function, it follows that

v(x) 6 tv(x1) + (1− t)v(x2) 6 tw(x1) + (1− t)w(x2) = w(x).

So v 6 w, and hence uω 6 w, on ω2. This concludes the proof of Theorem 1.2.

4. Reinhardt Subdomains of the Unit Bidisk

We will now provide a detailed study when Ω0 = ∆2 and E 63 0 is a
Reinhardt compact, logarithmically convex subset of ∆2.

It should be noted that if the pluricomplex Green function of a given
subdomain Ω ⊂ ∆2 is identically equal to that of ∆2, the largest domain Ω̃
that satisfies the extension property given by equation (1.1) is ∆2 itself. The
following theorem can be proved easily.
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Theorem 4.1. — Let Ω = ∆2 \ E where E 63 0 is a Reinhardt compact,
logarithmically convex subset of ∆2 such that int E ∩ {(z1, z2) ∈ C2 : |z1| =
|z2|} = ∅. Then gΩ(z, 0) = g∆2(z, 0), for all z ∈ Ω.

Proof. — As in Section 3, we set
ω = `(Ω) ∩ R2 , ω0 = `(∆2) ∩ R2 = {(x1, x2) : x1 < 0, x2 < 0} .

Without loss of generality, assume that E ⊂ {(z1, z2) ∈ C2 : |z1| 6 |z2|}.
Then, `(E) lies in some strip

S = {(x1, x2) ∈ R2 : m 6 x2 6M , x1 6 x2},
where m = inf{x2 : (x1, x2) ∈ `(E)} and M = sup{x2 : (x1, x2) ∈ `(E)}.
Note that −∞ < m 6 M < 0. Lemma 3.6 shows that for any (x1, x2) ∈ ω
with x1 > x2, uω(x1, x2) = x1. Also, for any (x1, x2) ∈ ω with x1 = x2,

uω(x1, x2) = lim
(y1,y2)→(x1,x2)
(y1,y2)∈ω, y1>y2

uω(y1, y2) = x2. (4.1)

Now, let (x1, x2) ∈ ω\S with x1 6 x2. Then, {(x1, x2) : −∞ < x1 6 x2} ⊂ ω
and by Lemma 2.2, uω(x1, x2) 6 x2. Hence we have shown that
uω(x1, x2) = uω0(x1, x2) , ∀ (x1, x2) ∈ (ω \ S) ∪ {(x1, x2) ∈ ω : x1 = x2} .

Note that for any point in {(x1, x2) ∈ ω : x2 = m} or {(x1, x2) ∈ ω : x2 =
M},using the argument in equation (4.1),

uω(x1, x2) = x2. (4.2)

If E∩{(z1, z2) ∈ C2 : z1z2 = 0} 6= ∅, then `(E) is unbounded. Any point in
S \`(E) lies on a segment [P1, P2] ⊂ ω, where the points P1, P2 ∈ {(x1, x2) ∈
ω : x2 = m} ∪ {(x1, x2) ∈ ω : x2 = M} ∪ {(x1, x2) ∈ ω : x1 = x2}. Since uω
is (locally) convex, equations (4.1) and (4.2) yield that uω(x1, x2) 6 x2.

If E∩{(z1, z2) ∈ C2 : z1z2 = 0} = ∅, then `(E) is bounded and S\`(E) has
an unbounded connected component. For any point in the bounded compo-
nent(s) of S \ `(E), the previous argument shows that uω(x1, x2) 6 x2. Any
point in the unbounded component of S\`(E) lies on a segment [Q1, Q2] ⊂ ω,
where the points Q1, Q2 ∈ {(x1, x2) ∈ ω : x2 = m} ∪ {(x1, x2) ∈ ω : x2 =
M}. Equation (4.2) shows that uω(x1, x2) 6 x2. Hence, we conclude that
uω = uω0 on ω and the theorem is proved. �

So, if Ω ⊂ ∆2 is a domain that satisfies the requirements of Theorem 4.1,
Ω̃ = ∆2. Hence, we will focus on the domains that do not fall into this
category.

Let E 63 0 be a Reinhardt compact, logarithmically convex subset of
∆2 such that int E ∩ {(z1, z2) ∈ C2 : |z1| = |z2|} 6= ∅. We will show that
there exists a unique largest subdomain in ∆2 which satisfies the extension
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property given by the equation (1.1) when E is a strictly logarithmically
convex subset of ∆2. But if E is not strictly logarithmically convex, in some
cases there exist many domains that satisfy the extension property and are
maximal with respect to the inclusion.

The problem will be discussed in two cases as in Section 3. The first
case will be when E ∩ {(z1, z2) ∈ C2 : z1z2 = 0} = ∅. Let A = (A1, A2),
B = (B1, B2) be points in (0, 1)2 with A1 > A2, B1 < B2, and define

Ẽ = {(z1, z2) ∈ ∆2 : |z1| = At1B
1−t
1 , |z2| = At2B

1−t
2 , 0 6 t 6 1}. (4.3)

We will show that if E is strictly logarithmically convex, then Ω̃ = ∆2 \ Ẽ or
Ω̃ = ∆2 \ (Ẽ1 ∪ Ẽ2), where Ẽ , Ẽ1, Ẽ2 are unique and are all sets that are of
the form given by equation (4.3). If E is not strictly logarithmically convex,
Ω̃ will be of the same form, but in some cases Ẽ , Ẽ1, Ẽ2 will not be unique.

The second case will be when E ∩{(z1, z2) ∈ C2 : z1z2 = 0} 6= ∅. Without
loss of generality, we will assume that E ∩ {(z1, z2) ∈ C2 : z1 = 0} 6= ∅. Let
A = (A1, A2) ∈ (0, 1)2 such that A1 > A2 and define

F̃ = {(z1, z2) ∈ ∆2 : |z1| = tA1, |z2| = A2, 0 6 t 6 1}. (4.4)

Then, Ω̃ = ∆2 \ F̃ or Ω̃ = ∆2 \ (F̃1 ∪ F̃2), where F̃ , F̃1, F̃2 are all sets of the
form given by the equation (4.4) and the arguments about their uniqueness
properties will be the same as in the previous case.

In order to find Ω̃ for a given Ω, we will construct a basic subdomain
ΩB ⊃ Ω of ∆2. This subdomain will be of the form Ω̃ = ∆2 \ Ẽ , Ω̃ =
∆2 \ (Ẽ1 ∪ Ẽ2), Ω̃ = ∆2 \ F̃ , or Ω̃ = ∆2 \ (F̃1 ∪ F̃2), as described above. We
will show that ΩB satisfies the following:

(1) The pluricomplex Green function of ΩB can be explicitly character-
ized and is not identically equal to the pluricomplex Green function
of ∆2.

(2) To any domain Ω = ∆2 \ E , one can associate a basic subdomain
ΩB ⊃ Ω by a natural geometric construction.

(3) ΩB satisfies the extension property given by equation (1.1).

This subdomain ΩB will provide Ω̃ and will give a complete answer to our
extension problem.

4.1. The case E ∩ {z1z2 = 0} = ∅

In this section, we will first discuss the basic subdomain ΩB . The con-
struction of ΩB from a given Ω will be studied afterwards.
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4.1.1. Basic Subdomains ΩB

The Construction and Partition of ΩB. The construction will be
discussed in logarithmic coordinates. For the simplicity of notation, we set

`(∆2) := `(∆2) ∩ R2 = {(x1, x2) ∈ R2 : x1 < 0 , x2 < 0} .
Let p = (p1, p2), q = (q1, q2) ∈ `(∆2) such that p1 > p2 and q1 < q2. Then
we define the following:

L1 = {tp : 0 < t 6 1}, L2 = {tq : 0 < t 6 1},
L3 = {p+ t1̄ : t 6 0}, L4 = {q + t1̄ : t 6 0},

where 1̄ = (1, 1) ∈ R2. Therefore, L1 and L2 are line segments through the
origin with positive slopes m1 > 1 and m2 < 1, respectively, and L3 and L4
are rays to −∞ with slope 1. We fix points
a = (a1, a2) ∈ L1 , b = (b1, b2) ∈ L2 , c = (c1, c2) ∈ L3 , d = (d1, d2) ∈ L4,

and define following sets:
E1 = {ta+ (1− t)b : 0 6 t 6 1},
E2 = {tc+ (1− t)d : 0 6 t 6 1},
E = {tp+ (1− t)q : 0 6 t 6 1}.

We can now define ωB using these sets as follows:

ωB =
{
`(∆2) \ E if a = p = c and b = q = d ,

`(∆2) \ (E1 ∪ E2) otherwise .
(4.5)

Note that ê(E), ê(Ei), i = 1, 2 are sets of the form given by equation (4.3).

Then, the basic subdomain will be
ΩB = ê(ωB) .

The set ωB will be partitioned as follows:
ωB1,1 = {(x1, x2) ∈ ωB : x2 > x1 + d2 − d1},

ωB1,2 =
{

(x1, x2) ∈ ωB : min
{

(b2−d2)x1+b1d2−b2d1
b1−d1

, b2
b1
x1

}
6x26x1+d2−d1

}
,

ωB1 = ωB1,1 ∪ ωB1,2,
ωB2,1 = {(x1, x2) ∈ ωB : x2 6 x1 + c2 − c1},

ωB2,2 =
{

(x1, x2) ∈ ωB : x1+c2−c16x26max
{
a2
a1
x1,

(a2−c2)x1+a1c2−a2c1
a1−c1

}}
,

ωB2 = ωB2,1 ∪ ωB2,2,
ωB3 = {(tx1, tx2) ∈ ωB : (x1, x2) ∈ E1, t ∈ (0, 1)},
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ωB4 = {(x1, x2) + t1̄ ∈ ωB : (x1, x2) ∈ E2, t < 0},

ωB5 = ωB \
4⋃
j=1

ωBj .

We note that in the definition of ωB1,2 given above it is assumed that b1 6= d1,
i.e. b 6= d. If b1 = d1 then b = d and we define

ωB1,2 =
{

(x1, x2) ∈ ωB : b2
b1
x1 6 x2 6 x1 + b2 − b1

}
.

Similarly, in the definition of ωB2,2 given above it is assumed that a1 6= c1,
i.e. a 6= c. If a1 = c1 then a = c and we define

ωB2,2 =
{

(x1, x2) ∈ ωB : x1 + a2 − a1 6 x2 6
a2

a1
x1

}
.

The Pluricomplex Green Function of ΩB. We are now ready to
compute the pluricomplex Green function of ΩB with pole at 0. This will be
done in logarithmic coordinates as well. Note that

u`(∆2)(x) = max{x1, x2}.

By Lemma 3.6,

uωB (x) = u`(∆2)(x), x ∈ ωB1,1 ∪ ωB2,1. (4.6)

A simple argument using the convexity of uωB then shows that

uωB (x) = u`(∆2)(x), x ∈ ωB1 ∪ ωB2 .

Let uωB
3
be the affine mapping satisfying uωB

3
(0, 0) = 0, uωB

3
(a1, a2) = a1,

and uωB
3

(b1, b2) = b2. Note that this function’s graph is a plane in R3. It can
be written explicitly as

uωB
3

(x) = b2(a1 − a2)x1 + a1(b2 − b1)x2

a1b2 − a2b1
.

Also, observe that

uωB
3

(x) = x1 = u`(∆2)(x), x ∈ ∂ωB2 ∩ ∂ωB3 ∩ ω,

and
uωB

3
(x) = x2 = u`(∆2)(x), x ∈ ∂ωB1 ∩ ∂ωB3 ∩ ω.

Since uωB
3
is affine, it is the maximal convex function on ωB3 that is equal to

u`(∆2) on ∂ωB1 ∩ ∂ωB3 ∩ ω and ∂ωB2 ∩ ∂ωB3 ∩ ω. This shows that

uωB (x) 6 uωB
3

(x), x ∈ ωB3 .
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Let uωB
4

be the affine mapping defined by

uωB
4

(x) = x2 = u`(∆2)(x), x ∈ ∂ωB1 ∩ ∂ωB4 ∩ ω,

and
uωB

4
(x) = x1 = u`(∆2)(x), x ∈ ∂ωB2 ∩ ∂ωB4 ∩ ω.

Therefore the graph of this function is a plane through parallel lines in R3.
Explicitly,

uωB
4

(x) = (c1 − c2)x1 + (d2 − d1)x2 + (c1 − c2)(d2 − d1)
c1 − c2 − d1 + d2

.

Using the same argument as in the case of uωB
3
, we conclude that

uωB (x) 6 uωB
4

(x), x ∈ ωB4 .

Assume now that a 6= p 6= c and b 6= q 6= d. To simplify notation we let

f(x) = u`(∆2)(x) for x ∈ ∂′ωB5 , where ∂′ωB5 = ∂ωB5 ∩ ωB .

Then f < −ε on ∂′ωB5 , for some ε > 0. Define

uωB
5

(x) = sup
{
v(x) : v : ωB5 ∪ ∂′ωB5 → R convex, v 6 f on ∂′ωB5

}
.

Then uωB
5
is a convex function which satisfies uωB

5
6 −ε on ωB5 ∪∂′ωB5 . Also,

as u`(∆2) is an element of the defining family of uωB
5
, we have

uωB
5

(x) = u`(∆2)(x), x ∈ ∂′ωB5 .

Now define a function u : ωB → R as

u(x) =


u`(∆2)(x) if x ∈ ωB1 ∪ ωB2 ,
uωB

3
(x) if x ∈ ωB3 ,

uωB
4

(x) if x ∈ ωB4 ,
uωB

5
(x) if x ∈ ωB5 .

(4.7)

Proposition 4.2. — With the above notation, if a 6= p 6= c and b 6= q 6=
d, then u = uωB .

Proof. — We will show that u is an element of the defining family of uωB ,
that is, u is a negative locally convex function with normalized growth at
−∞.

The negativity of u is trivial. As each function in the definition of u is
convex, it is enough to check the (local) convexity in a small neighborhood of
each point of ∂ωBk ∩ ∂ωBj ∩ωB , k 6= j. But uωB

j
, j = 3, 4, are affine functions

and
u(x) = max{u`(∆2)(x), uωB

3
(x), uωB

4
(x)}, x ∈ ωB \ ωB5 .
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Therefore it remains to check the convexity of u in neighborhoods of points
of ∂′ωB5 . This follows by the same steps as in the proof of the convexity of
the function given by equation (3.4), since the convex function u`(∆2) 6 uωB

5

on ωB5 ∪ ∂′ωB5 and u`(∆2) = uωB
5

on ∂′ωB5 . We conclude that u is convex on
ωB .

Note that the condition of having normalized growth at −∞ should be
checked for rays in ωB1 ∪ ωB2 ∪ ωB4 . As u is equal to u`(∆2) on ωB1 ∪ ωB2 ,
it suffices to check this on ωB4 . But this follows easily as uωB

4
is 1̄-linear.

Therefore, u is an element of the defining family of uωB and u 6 uωB .

On the other hand, we have already shown that uωB 6 u on ωB \ωB5 . As
the restriction of uωB to ωB5 ∪ ∂′ωB5 is an element of the defining family of
uωB

5
, uωB 6 u on ωB5 as well. Hence u = uωB . �

If a = p = c and b = q = d then ωB5 = ∅ and uωB = u where u is the
function given in (4.7). This gives an explicit formula for the pluricomplex
Green function of ΩB with pole at the origin, which was previously obtained
by Klimek [7, Example 5.8]. Note that gΩB ( · , 0) extends continuously to ∆2,
but the extended function is not plurisubharmonic on ∆2.

Proposition 4.3. — With the above notation, if a = p = c and
|{b, q, d}| > 1, or if b = q = d and |{a, p, c}| > 1, then there is an explicit
formula for uωB .

Proof. — In logarithmic coordinates, ωB5 is a triangular region in R2.
Without loss of generality, let a = p = c. Then uωB can be calculated in
ωB\ωB5 as in Proposition 4.2. If a segment [P1, P2] lies in ωB and P1, P2 6∈ ωB5
then [P1, P2] ∩ ωB5 = ∅. This implies that uωB |ωB

5
is the largest negative

convex function on ωB5 that is equal to u`(∆2) on ∂ωB5 ∩ ωB . Hence uωB
5

is the affine mapping such that uωB
5

(b1, b2) = b2, uωB
5

(d1, d2) = d2, and
uωB

5
(a1, a2) = 0. It is given by the equation

uωB
5

= a2(d2 − b2)x1 + (d2(b1 − a1)− b2(d1 − a1))x2 − a2(b1d2 − b2d1)
a2(d1 − b1) + a1(b2 − d2) + b1d2 − b2d1

.

A simple calculation shows that the function u defined as in the equa-
tion (4.7) using this function uωB

5
is equal to uωB , and the result follows. �

4.1.2. Construction of Ω̃

Let Ω = ∆2 \ E , where E 63 0 is a Reinhardt compact, logarithmically
convex subset of ∆2 such that E ∩ {(z1, z2) ∈ C2 : z1z2 = 0} = ∅. We will
show that given such Ω, the subdomain Ω̃ of ∆2 that satisfies the extension
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property given by (1.1) will be ∆2 itself or a basic subdomain ΩB . To this
end, we show how to find points that are required to construct ΩB from a
given Ω, by using two functions in logarithmic coordinates.

The first of these functions is Ψ(x1, x2) = arctan(x2/x1). Its level sets are
lines through the origin, and Ψ|`(E) attains its maximum θ1 and minimum
θ2 as `(E) is compact. Note that θ1, θ2 > π/4 or θ1, θ2 6 π/4 if and only if
int E ∩ {(z1, z2) ∈ C2 : |z1| = |z2|} = ∅. In this case Theorem 4.1 shows that
Ω̃ = ∆2.

We assume next that θ1 > π/4 > θ2. The second function is Φ(x1, x2) =
x2−x1. The level sets of this function are lines with slope 1. Like the previous
function, Φ|`(E) also attains its minimum m and maximum M as `(E) is
compact. Note that Ψ(y) > π/4 for any y ∈ `(E) with Φ(y) = m, and
Ψ(y) < π/4 for any y ∈ `(E) with Φ(y) = M . We define the points p, q as
intersections of lines as follows:

{p} = {(p1, p2)} = {x2 = x1 tan θ1} ∩ {x2 − x1 = m},
{q} = {(q1, q2)} = {x2 = x1 tan θ2} ∩ {x2 − x1 = M}.

Note that p1 > p2 and q1 < q2. We can now use the construction from
Section 4.1.1 and define L1, L2, L3, and L4 as in that section.

Case I : E is strictly logarithmically convex. Let `(E) be strictly
convex. This implies that the extrema of the functions Ψ|`(E) and Φ|`(E) are
attained at unique points. Suppose that Ψ|`(E) attains its maximum at a and
its minimum at b, while Φ|`(E) attains its minimum at c and its maximum
at d.

It is easily seen that as `(E) is strictly convex, Ψ(a) 6= Ψ(c) and Φ(a) 6=
Φ(c) unless a = c, and Ψ(b) 6= Ψ(d) and Φ(b) 6= Φ(d) unless b = d. Then,
one can construct a basic subdomain ΩB using the points a, b, c, and d as
in equation (4.5). Note that as `(E) is convex and a, b, c, d are in it, so is
E1 and E2. Therefore, ω ⊂ ωB and ω 6= ωB .

The following proposition easily follows:

Proposition 4.4. — Let Ω = ∆2 \ E, where E 63 0 is a Reinhardt com-
pact, strictly logarithmically convex subset of ∆2 such that E ∩ {(z1, z2) ∈
C2 : z1z2 = 0} = ∅. Using the above notation, suppose that θ1 > π/4 > θ2.
Then Ω̃ = ΩB.

Hence in this case the pluricomplex Green function of Ω extends to the
pluricomplex Green function of Ω̃ = ΩB , and ΩB is the unique largest domain
with this property.
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Case II : E is logarithmically convex but not strictly logarith-
mically convex. Let `(E) be a convex set that is not strictly convex. In this
case, the functions Ψ|`(E) and Φ|`(E) do not necessarily attain their extrema
at unique points. We will show that in this case, one can pick any point
from each of the sets of points where these functions attain their extrema
and use them to construct basic subdomains ΩB that satisfy the extension
property given by (1.1). In some cases, we will also prove that among these
basic subdomains, there exists one which has the largest pluricomplex Green
function, hence is the most natural to choose.

Observe that if the extrema are attained at unique points, the proof of
Proposition 4.4 can be used to find Ω̃ and this will be unique. Now, suppose
that they are attained at more than one point. We are going to prove the
results in the “generic” case, when ω̃ = ωB is constructed using four distinct
points a, b, c, d. Notice that this implies p, q 6∈ `(E). The other cases are
similar to this one.

We let a, a′ ∈ L1 ∩ `(E), b, b′ ∈ L2 ∩ `(E), c, c′ ∈ L3 ∩ `(E), and d, d′ ∈
L4 ∩ `(E), where ‖ν − p‖ < ‖ν′ − p‖ for ν = a, c, and ‖ν − q‖ < ‖ν′ − q‖ for
ν = b, d. Denote the basic subdomains constructed by these points by

ωB = `(∆2) \ ([a, b] ∪ [c, d]) , ωB
′

= `(∆2) \ ([a′, b′] ∪ [c′, d′]).

Proposition 4.5. — Using the above notation, uω(x) = uωB (x) =
uωB′ (x) for x ∈ ω.

Notice that the subdomains given in Proposition 4.5 are not comparable
to each other by inclusion. Therefore we have infinitely many subdomains
in ∆2 that satisfy the extension property given by equation (1.1) and are
maximal with respect to inclusion.

We now let a, b, c, d satisfy
‖a− p‖ = min

ν∈L1∩`(E)
‖ν − p‖ , ‖b− q‖ = min

ν∈L2∩`(E)
‖ν − q‖, (4.8)

‖c− p‖ = min
ν∈L3∩`(E)

‖ν − p‖ , ‖d− q‖ = min
ν∈L4∩`(E)

‖ν − q‖. (4.9)

We also let (uωB )∗ and (uωB′ )∗ denote the upper semicontinuous regulariza-
tions of uωB and uωB′ on `(∆2), respectively. Note that this says that for
(uωB )∗,

(uωB )∗(x) = lim
y→x
y∈ωB

3

uωB (y), x ∈ [a, b]

and
(uωB )∗(x) = lim

y→x
y∈ωB

4

uωB (y), x ∈ [c, d].

Analogous results also hold for (uωB′ )∗.
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Proposition 4.6. — With the above notations, (uωB )∗ > (uωB′ )∗ on
`(∆2).

Proof. — First of all, note that ωBi ⊂ ωB
′

i for i = 1, 2 and ωBi ⊃ ωB
′

i for
i = 3, 4. Then, the results of Section 4.1.1 show that (uωB )∗ = (uωB′ )∗ on
ωB1 ∪ ωB2 ∪ ωB

′

3 ∪ ωB
′

4 . Since the function (uωB′ )∗ is convex on ωB3 \ ωB
′

3 , it
is bounded above there by the affine function that is equal to x1 on L1 ∩
(ωB3 \ ωB

′

3 ) and x2 on L2 ∩ (ωB3 \ ωB
′

3 ). Since (uωB )∗ is equal to that affine
function there, we conclude that (uωB )∗ > (uωB′ )∗ on ωB3 \ ωB

′

3 , hence on
ωB3 . A similar argument shows that (uωB )∗ > (uωB′ )∗ on ωB4 as well. Lastly,
recall from Section 4.1.1 the definition of uωB = uωB

5
on ωB5 ∪ ∂′ωB5 as the

supremum of a class of convex functions with a given boundary condition.
We note that the restriction of (uωB′ )∗ to ωB5 ∪ ∂′ωB5 is an element of the
defining family of the function uωB

5
. Thus (uωB )∗ > (uωB′ )∗ on ωB5 , and the

result follows. �

Proposition 4.6 shows that if we use the points that satisfy equations (4.8)
and (4.9) to construct ωB , then the associated basic subdomain ΩB will have
the largest pluricomplex Green function. Therefore in this case we let Ω̃ be
given by this basic subdomain ΩB .

4.2. The case E ∩ {z1z2 = 0} 6= ∅

The structure of this section will closely follow that of Section 4.2. The
basic subdomain ΩB will be introduced and investigated before discussing
its construction from a given subdomain Ω ⊂ ∆2. Without loss of generality,
we assume that E ∩ {z1 = 0} 6= ∅.

4.2.1. Basic Subdomains ΩB

Construction and Partition of ΩB. The construction will be discussed
in logarithmic coordinates. Let p = (p1, p2) ∈ `(∆2) such that p1 > p2. We
then define

L1 = {tp : 0 < t 6 1}, L2 = {p+ t1̄ : t 6 0}
where 1̄ = (1, 1) ∈ R2. Hence, L1 is a line segment thorough the origin with
slope m > 1 and L2 is a ray to −∞ with slope 1. We fix points a ∈ L1 and
b ∈ L2, and define the following sets:

E1 = {(ta1, a2) : t > 1}, (4.10)
E2 = {(tb1, b2) : t > 1}, (4.11)
E = {(tp1, p2) : t > 1}. (4.12)
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The set ωB can now be defined using these sets as follows:

ωB =
{
`(∆2) \ E if a = p or b = p,

`(∆2) \ (E1 ∪ E2) otherwise.
(4.13)

Note that ê(E), ê(Ei), i = 1, 2, are sets of type given by equation (4.4). The
basic subdomain will be ΩB = ê(ωB).

In the case a 6= p 6= b, the subdomain ωB will be partitioned into the
following sets:

ωB1,1 = {(x1, x2) ∈ ωB : x2 6 x1 − b1 + b2},

ωB1,2 =
{

(x1, x2) ∈ ωB : x1−b1+b26x26max
{
a2
a1
x1,

(a2−b2)x1+a1b2−a2b1
a1−b1

}}
,

ωB1 = ωB1,1 ∪ ωB1,2,

ωB2 =
{

(x1, x2) ∈ ωB : x2 > a2, x1 6
a1

a2
x2

}
,

ωB3 = {(x1, x2) ∈ ωB : x1 − b1 + b2 6 x2 < b2},

ωB4 = ωB \
3⋃
i=1

ωBi .

In the case a = p or b = p, we construct the partition of ωB = `(∆2) \E
by taking a = b = p in the above formulas. We obtain:

ωB1,1 = {(x1, x2) ∈ ωB : x2 6 x1 − p1 + p2},

ωB1,2 =
{

(x1, x2) ∈ ωB : x1 − p1 + p2 6 x2 6
p2

p1
x1

}
,

ωB1 = ωB1,1 ∪ ωB1,2,

ωB2 =
{

(x1, x2) ∈ ωB : x2 > p2, x1 6
p1

p2
x2

}
,

ωB3 = {(x1, x2) ∈ ωB : x1 − p1 + p2 6 x2 < p2}.

The Pluricomplex Green Function of ΩB. We can now compute the
pluricomplex Green function of ΩB with pole at 0. This will be done in
logarithmic coordinates as well. Recall that

u`(∆2)(x) = max{x1, x2}.

By Lemma 3.6,

uωB (x) = u`(∆2)(x) = max{x1, x2} = x1, x ∈ ωB1,1.

– 351 –



S. Zeynep Özal Kurşungöz

A simple argument using the convexity of uωB then shows that
uωB (x) = u`(∆2)(x) = x1, x ∈ ωB1 .

We now let Bj = ∂ωB1 ∩∂ωBj ∩ωB , j = 2, 3, 4. Note that Bj is a line segment
for j = 2, 4 and B3 is a ray to −∞. It is easily seen that

B2 =
{

(x1, x2) ∈ ωB : a2 < x2 < 0, x1 = a1

a2
x2

}
,

B3 = {(x1, x2) ∈ ωB : x2 < b2, x1 = x2 + b1 − b2},

B4 =
{

(x1, x2) ∈ ωB : b2 < x2 < a2, x1 = (a1 − b1)x2 − a1b2 + a2b1
a2 − b2

}
.

We define the affine functions uωB
j
, j = 2, 3, 4 as follows:

uωB
2

(x1, x2) = a1

a2
x2,

uωB
3

(x1, x2) = x2 + b1 − b2,

uωB
4

(x1, x2) = (a1 − b1)x2 − a1b2 + a2b1
a2 − b2

.

Let x = (x1, x2) ∈ Bj . Then (x′1, x2) ∈ ωBj for all x′1 6 x1, and these
functions verify

uωB
j

(x′1, x2) = uωB
j

(x1, x2) = x1 = u`(∆2)(x1, x2) = uωB (x1, x2).

Applying Lemma 2.2 to the convex function uωB ( · , x2) on (−∞, x1] we see
that

uωB (x′1, x2) 6 uωB (x1, x2) = uωB
j

(x1, x2) = uωB
j

(x′1, x2) , j = 2, 3, 4.

Therefore uωB 6 uωB
j

on ωBj for j = 2, 3, 4.

Now we define a function u : ωB → R as

u(x) =


u`(∆2)(x) if x ∈ ωB1 ,
uωB

2
(x) if x ∈ ωB2 ,

uωB
3

(x) if x ∈ ωB3 ,
uωB

4
(x) if x ∈ ωB4 .

(4.14)

Proposition 4.7. — If a 6= p 6= b, then uωB = u. Moreover, the func-
tion uωB extends continuously to `(∆2).

Proof. — It is obvious that the function u extends continuously to `(∆2).
We have already shown that uωB 6 u on ωB and uωB = u on ωB1 . We will
prove that u is an element of the defining family of uωB , that is, u is a
negative (locally) convex function with normalized growth at −∞. This will
imply that u 6 uωB .
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Clearly, u < 0. As each function in the definition of u is convex, it is
enough to check the convexity of u in a small neighborhood of each point
x ∈ Bj , j = 2, 3, 4. This follows easily since in a small neighborhood of such x
we have that u = max{uωB

j
, u`(∆2)}. Finally, we check that u has normalized

growth at −∞ on ωB1 ∪ωB3 . Indeed, u is equal to u`(∆2) on ωB1 and is 1̄-linear
on ωB3 . �

We remark that the continuous extension of uωB to `(∆2) is not convex
on `(∆2). If ωB = `(∆2)\E, then ωB4 = ∅ and uωB = u, where u is obtained
by replacing a = p and b = p in formula (4.14). This explicit formula for the
pluricomplex Green function of ΩB with pole at 0 was obtained by Klimek [7,
Example 5.9].

4.2.2. Construction of Ω̃

Let Ω = ∆2 \ E , where E 63 0 is a Reinhardt compact, logarithmically
convex subset of ∆2 such that E ∩ {(z1, z2) ∈ C2 : z1 = 0} 6= ∅. We will
show that given such Ω, the subdomain Ω̃ of ∆2 that satisfies the extension
property given by equation (1.1) will be ∆2 itself or a basic subdomain ΩB .
We will use the functions Ψ and Φ that were defined in Section 4.1.2 to find
points that are required to construct the basic subdomain ΩB .

Recall that Ψ(x1, x2) = arctan(x2/x1). Since `(E) is closed, Ψ|`(E) attains
its maximum θ. Observe that θ 6 π/4 if and only if int E ∩ {(z1, z2) ∈ C2 :
|z1| = |z2|} = ∅ and Theorem 4.1 shows that in this case Ω̃ = ∆2.

We assume that θ > π/4. Recall that Φ(x1, x2) = x2 − x1. Φ|`(E) attains
its minimum m as `(E) is closed. Observe that m < 0 and Ψ(y) > π/4 for
any y ∈ `(E) with Φ(y) = m. We define the point p as intersection of lines
as follows:

{p} = {(p1, p2)} = {x2 = x1 tan θ} ∩ {x2 − x1 = m}.
Note that p1 > p2. We can use the construction from Section 4.2.1 and define
L1 and L2 as in that section.

Case I: E strictly logarithmically convex. Let `(E) be strictly convex.
Therefore, the maximum of Ψ|`(E) and the minimum of Φ|`(E) are attained
at unique points a and b of `(E), respectively.

We observe that as `(E) is strictly convex, we have that a = p if and
only if b = p, so Ψ(a) 6= Ψ(b) and Φ(a) 6= Φ(b) unless a = b = p. Then,
one can construct a basic subdomain ΩB using the points a and b as in
equation (4.13). Since a, b ∈ `(E) and `(E) is a closed, unbounded convex set
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which is contained in a horizontal strip, we have E1, E2 ⊂ `(E) by Lemma 2.3.
So, ω ⊂ ωB and ω 6= ωB .

The following proposition can be proved easily.

Proposition 4.8. — Let Ω = ∆2 \ E, where E 63 0 is a Reinhardt com-
pact, strictly logarithmically convex subset of ∆2 such that E ∩ {(z1, z2) ∈
C2 : z1 = 0} 6= ∅. Using the above notation, suppose that θ > π/4. Then
Ω̃ = ΩB.

Hence when E is strictly logarithmically convex, the pluricomplex Green
function of Ω extends to the pluricomplex Green function of Ω̃ = ΩB , and
ΩB is the unique largest domain with this property.

Case II: E is logarithmically convex but not strictly logarithmi-
cally convex. Let `(E) be a convex set that is not strictly convex. In this
case, the maximum θ of Ψ|`(E) and the minimum m of Φ|`(E) are not neces-
sarily attained at unique points. We will show that we can pick any point
at which Ψ|`(E) attains its maximum and any other point at which Φ|`(E)
attains its minimum to construct the basic subdomain ΩB that satisfies the
extension property given by (1.1). We will prove that among these ΩB , there
exists one which has the largest pluricomplex Green function.

Note that if the maximum of Ψ|`(E) and the minimum of Φ|`(E) are at-
tained at unique points, the proof of Proposition 4.8 can be used to find
Ω̃ = ΩB and this will be unique. We will consider here the case when they
are both attained at more than one point. The other cases can be treated in
a similar manner.

Let a = (a1, a2), a′ = (a′1, a′2) ∈ L1 ∩ `(E) and b = (b1, b2), b′ = (b′1, b′2) ∈
L2 ∩ `(E), where ‖ν − p‖ < ‖ν′ − p‖ for ν = a, b. Let E1, E2 be defined by
the equations (4.10) and (4.11), respectively, and let

E′1 = {(ta′1, a′2) : t > 1}, E′2 = {(tb′1, b′2) : t > 1}.

We denote the basic subdomains constructed as follows:

ωB = `(∆2) \ (E1 ∪ E2), ωB
′

= `(∆2) \ (E′1 ∪ E′2).

Proposition 4.9. — Using the above notation, uω(x) = uωB (x) =
uωB′ (x) for x ∈ ω.

The subdomains given in Proposition 4.9 are not comparable to each
other by inclusion. As in Section 4.1.2, we have infinitely many subdomains
that satisfy the extension property given by (1.1) and are maximal with
respect to inclusion.
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To show that there exists a basic subdomain with the largest pluricomplex
Green function, we let a and b satisfy

‖a− p‖ = min
ν∈L1∩`(E)

‖ν − p‖, ‖b− p‖ = min
ν∈L2∩`(E)

‖ν − p‖. (4.15)

Let (uωB )∗ and (uωB′ )∗ denote the upper semicontinuous regularizations of
uωB and uωB′ , respectively. Note that they are simply equal to the continuous
extensions of these functions to `(∆2) (see Proposition 4.7).

Proposition 4.10. — With the above notation, (uωB )∗ > (uωB′ )∗ on
`(∆2).

Proof. — Note that ωB1 ⊂ ωB
′

1 and ωBi ⊃ ωB
′

i for i = 2, 3. The re-
sults of Section 4.2.1 show that (uωB )∗ = (uωB′ )∗ on ωB1 ∪ ωB

′

2 ∪ ωB
′

3 . If
(x1, x2) ∈ ωB2 \ ωB

′

2 , or (x1, x2) ∈ ωB3 \ ωB
′

3 , or (x1, x2) ∈ ωB4 , we con-
sider the point (x′1, x2) such that (x′1, x2) ∈ [a, a′], or (x′1, x2) ∈ [b, b′],
or (x′1, x2) ∈ [a, b], respectively. The function (uωB′ )∗( · , x2) is convex on
(−∞, x′1], so Lemma 2.2 implies that (uωB′ )∗(x1, x2) 6 (uωB′ )∗(x′1, x2) =
(uωB )∗(x′1, x2) = (uωB )∗(x1, x2). Thus (uωB )∗ > (uωB′ )∗ on (ωB2 \ ωB

′

2 ) ∪
(ωB3 \ ωB

′

3 ) ∪ ωB4 , and the result follows. �

Proposition 4.10 shows that if we use the points that satisfy formu-
las (4.15) to construct ωB , the associated basic subdomain ΩB will have
the largest pluricomplex Green function with pole at 0. So, in this case Ω̃
will be given by this basic subdomain ΩB .
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