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Abstract The structure of a standing plane shock wave in a polyatomic gas is in-
vestigated on the basis of kinetic theory, with special interest in gases with large bulk
viscosities, such as CO2 gas. The ellipsoidal statistical (ES) model for a polyatomic
gas is employed. First, the shock structure is computed numerically for different
upstream Mach numbers and for different (large) values of the ratio of the bulk
viscosity to the shear viscosity, and the double-layer structure consisting of a thin
upstream layer with a steep change and a much thicker downstream layer with a
mild change is obtained. Then, an asymptotic analysis for large values of the ratio
is carried out, and an analytical solution that describes the thick downstream layer
correctly is obtained.

1 Introduction

A shock wave is described as a discontinuous surface, across which the density,
the velocity normal to the surface, and the temperature of a gas exhibit jumps, in
inviscid gas dynamics. In reality, however, the shock wave has a structure, that
is, physical quantities undergo steep but continuous changes across a thin layer of
thickness of a few mean free paths. To describe such a structure, one has to use, in
principle, kinetic theory of gases instead of ordinary gas dynamics. The structure
of a standing plane shock wave is one of the most fundamental problems in kinetic
theory and has been investigated by many authors (see, e.g., [1, 2, 3, 4, 5]). In the
present study, we consider this classical problem with special interest in polyatomic
gases with large bulk viscosities, such as carbon dioxide (CO2) gas.

Recently, the shock-structure problem was investigated for polyatomic gases on
the basis of extended thermodynamics [6, 7], and some interesting results were ob-
tained. In [6], it was shown that for CO2 gas, macroscopic quantities exhibit profiles
of three different types (Types A, B, and C in [6, 7]) depending on the upstream
Mach number. When the Mach number is very close to 1, i.e., the shock wave is
very weak, the profiles of the density, velocity, and temperature are almost sym-
metric with respect to the centers of the respective profiles (Type A). When the
Mach number is increased slightly, the profiles become nonsymmetric and exhibit
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a corner upstream (Type B). If the Mach number is increased slightly more, one
obtains profiles with a double-layer structure, consisting of a thin front layer with
a steep change and a thick rear layer over which the quantities slowly approach the
downstream equilibrium values (Type C).

However, these results are based on extended thermodynamics, which is essen-
tially a macroscopic theory. Since the problem is basically for kinetic theory as
mentioned at the beginning, they also need to be justified directly from kinetic the-
ory. This is the motivation of the present study. However, kinetic approach is not
an easy task because of the extreme complexity of the collision integral of the Boltz-
mann equation for a polyatomic gas. Therefore, we adopt the polyatomic version of
the ellipsoidal statistical (ES) model, which was proposed in [8] and was rederived
in a systematic way in [9].

In the present study, we first show that the three types of shock profiles (Type
A, Type B, and Type C) are also obtained by the direct numerical analysis of the ES
model. Then, we carry out an asymptotic analysis for large bulk viscosity based on
the ES model to obtain an analytical solution that describes the thick rear layer of
Type C correctly. This analytical solution also describes the entire profiles of Type
A and Type B. Since the details of the numerical and asymptotic analyses are found
in [10], we only summarize necessary materials and main results in the present note.

2 Problem

Let us consider a stationary plane shock wave standing in a flow of an ideal poly-
atomic gas. We take the X1 axis of the coordinate system (X1, X2, X3) perpendicu-
lar to the shock wave. The gas at upstream infinity (X1 → −∞) is in an equilibrium
state with density ρ−, flow velocity v− = (v−, 0, 0), and temperature T−, and that
at downstream infinity (X1 → ∞) is in another equilibrium state with density ρ+,
flow velocity v+ = (v+, 0, 0), and temperature T+. We investigate the steady be-
havior of the gas assuming that the problem is spatially one dimensional and using
the ES model for a polyatomic gas [8, 9].

Let us denote by γ the ratio of the specific heats (γ = cp/cv, where cp and cv
are the specific heat at constant pressure and that at constant volume, respectively)
and assume that cp, cv, and thus γ are constant (calorically perfect gas). Then, γ is
expressed in terms of the internal degrees of freedom δ of a molecule as

γ = (δ + 5)/(δ + 3). (1)

We denote by M− the Mach number of the flow at upstream infinity, i.e., M− =
v−/
√
γRT−, where R is the gas constant per unit mass (R = k/m with the Boltz-

mann constant k and the mass of a molecule m). Then, the Rankine–Hugoniot
relations give the following expressions of the downstream quantities ρ+, v+, and
T+ in terms of the upstream quantities ρ−, v−, and T− and the upstream Mach
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number M−:

ρ+ =
(γ + 1)M2

−
(γ − 1)M2

− + 2
ρ−, (2a)

v+ =
(γ − 1)M2

− + 2

(γ + 1)M2
−

v−, (2b)

T+ =
[2γM2

− − (γ − 1)][(γ − 1)M2
− + 2]

(γ + 1)2M2
−

T−. (2c)

3 Basic equations

Let t be the time variable, X (or Xi) the position vector in the physical space,
ξ (or ξi) the molecular velocity, and E the energy per unit mass associated with
the internal modes. We denote the number of the gas molecules contained in an in-
finitesimal volume dXdξdE around a point (X, ξ, E) in the seven-dimensional space
(X, ξ, E) at time t by (1/m)f(t, X, ξ, E)dXdξdE . The function f(t, X, ξ, E),
which may be called the velocity/energy distribution function of gas molecules, is
the fundamental physical quantity and is governed by the ES model. In the present
time-independent and spatially one-dimensional case, where f = f(X1, ξ, E), the
equation is written in the following form:

ξ1
∂f

∂X1

= Q(f), (3)

where

Q(f) = Ac(T )ρ(G − f), (4a)

G =
ρEδ/2−1

(2π)3/2[det(T)]1/2(RTrel)δ/2Γ(δ/2)

× exp

(
−1

2
(ξi − vi)(T−1)ij(ξj − vj)−

E
RTrel

)
, (4b)

(T)ij = (1− θ)[(1− ν)RTtrδij + νpij/ρ] + θRTδij, (4c)

ρ =

∫∫ ∞

0

fdEdξ, (4d)

vi =
1

ρ

∫∫ ∞

0

ξifdEdξ, (4e)

pij =

∫∫ ∞

0

(ξi − vi)(ξj − vj)fdEdξ, (4f)

Ttr =
1

3ρR

∫∫ ∞

0

|ξ − v|2fdEdξ, (4g)

Tint =
2

δρR

∫∫ ∞

0

EfdEdξ, (4h)
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T =
3Ttr + δTint

3 + δ
, (4i)

Trel = θT + (1− θ)Tint. (4j)

Here, ρ is the density, v (or vi) = (v1, 0, 0) the flow velocity, pij the stress tensor,
Ttr the temperature associated with translational motion, Tint the temperature as-
sociated with the energy of the internal modes, T the temperature, dξ = dξ1dξ2dξ3,
and the domain of integration with respect to ξ is the whole space of ξ. The symbol
δij indicates the Kronecker delta, and ν ∈ [−1/2, 1) and θ ∈ (0, 1] are the constants
that adjust the Prandtl number and the bulk viscosity. In addition, Ac(T ) is a
function of T such that Ac(T )ρ is the collision frequency of the gas molecules, Γ(z)
is the gamma function defined by

Γ(z) =

∫ ∞

0

sz−1e−sds, (5)

T is the 3× 3 positive-definite symmetric matrix whose (i, j) component is defined
by Eq. (4c), and det(T) and T−1 are, respectively, its determinant and inverse. In
Eq. (4b), the summation convention aicijbj =

∑3
i,j=1 aicijbj is used.

The boundary condition at upstream infinity and that at downstream infinity
are given as follows:

f =
ρ−Eδ/2−1

(2πRT−)3/2(RT−)δ/2Γ(δ/2)

× exp

(
−(ξ1 − v−)2 + ξ22 + ξ23

2RT−
− E
RT−

)
, (X1 → −∞), (6a)

f =
ρ+Eδ/2−1

(2πRT+)3/2(RT+)δ/2Γ(δ/2)

× exp

(
−(ξ1 − v+)2 + ξ22 + ξ23

2RT+
− E
RT+

)
, (X1 →∞). (6b)

It should be mentioned that for Eq. (3), the viscosity µ, the thermal conductivity
κ, the Prandtl number Pr, and the bulk viscosity µb are obtained as

µ =
1

1− ν + θν

RT

Ac(T )
, κ =

γR

γ − 1

RT

Ac(T )
, (7a)

Pr =
1

1− ν + θν
, µb =

1

θ

(
5

3
− γ
)
µ

Pr
. (7b)

4 Numerical analysis

One of the advantages of using the ES model is that one can reduce the indepen-
dent variables from (X1, ξ1, ξ2, ξ3, E) to (X1, ξ1) eliminating the molecular velocity
components ξ2 and ξ3 parallel to the shock and the energy variable E in the present
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spatially one-dimensional problem. More specifically, we introduce the following
three marginal velocity distribution functions:

g(X1, ξ1) =

∫∫ ∞

−∞

∫ ∞

0

f(X1, ξ1, ξ2, ξ3, E)dEdξ2dξ3, (8a)

h(X1, ξ1) =

∫∫ ∞

−∞

∫ ∞

0

(ξ22 + ξ23)f(X1, ξ1, ξ2, ξ3, E)dEdξ2dξ3, (8b)

i(X1, ξ1) =

∫∫ ∞

−∞

∫ ∞

0

Ef(X1, ξ1, ξ2, ξ3, E)dEdξ2dξ3. (8c)

If we multiply Eq. (3) by 1, ξ22 + ξ23 , and E and integrate the respective results
over −∞ < ξ2, ξ3 < ∞ and 0 < E < ∞, then we obtain three simultaneous
integro-differential equations of ES type for g, h, and i. It should be noted that the
resulting equations do not contain the energy variable E associated with the internal
degrees of freedom. The boundary conditions for these equations at X1 → ±∞ can
be obtained by a similar procedure. Here, we omit the resulting equations and
boundary conditions (see [10]).

The equations for g, h, and i are solved numerically by an iterative finite-different
method. The details of the method, as well as the data for the computational systems
(the distribution of the grid points, the ranges for the variables in the computation,
etc.), are shown in [10], so that we omit them here and only show the results.

5 Numerical results

Let us restrict ourselves to CO2 gas. We set δ = 4 and Pr = 0.761 and assume that
Ac(T ) = const, referring basically to [11]. We also let T− = 293K. According to
[12], the ratio µb/µ is large and between 103 and 4× 103 at this temperature. In the
present study, in order to observe the change of the shock profiles as µb/µ increases,
we carried out computation for µb/µ varying from 100 to 2000. In this sense, our
CO2 gas is a pseudo-CO2 gas with variable µb/µ.

In the following, the results are shown for M− = 5. 1.138 . . . , and 1.05. We
show the profiles of the density ρ, the flow velocity v1 (the X1 component), and the
temperatures T normalized in the conventional way, that is,

ρ̌ =
ρ− ρ−
ρ+ − ρ−

, v̌ =
v1 − v+
v− − v+

, Ť =
T − T−
T+ − T−

. (9)

In the figures shown in the following (except for Fig. 2), the coordinate x1 is the
dimensionless coordinate normalized by the mean free path l− at the equilibrium
state at rest with density ρ− and temperature T−, that is,

x1 = X1/l−, l− = (2/
√
π)(2RT−)1/2/Ac(T−)ρ−. (10)
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Fig. 1: Profiles of ρ̌, v̌, and Ť at M− = 5 for δ = 4, Pr = 0.761, Ac = const, and
µb/µ = 100, 200, 500, 1000, and 2000. (a) Profiles for −200 ≤ x1 ≤ 3600, (b)
profiles for −20 ≤ x1 ≤ 100. The red curves indicate ρ̌, the green curves v̌, and the
blue curves Ť . The solid lines indicate the profiles for µb/µ = 100, the dashed lines
for µb/µ = 200, the dot-dashed lines for µb/µ = 500, the dot-dot-dashed lines for
µb/µ = 1000, and the dotted lines for µb/µ = 2000. In panel (b), the black dotted
lines indicate the profiles of ρ̌, v̌, and Ť for µb/µ =∞.

• Case of M− = 5

Figure 1 shows the profiles of ρ̌, v̌, and Ť at M− = 5 for CO2 gas with µb/µ = 100,
200, 500, 1000, and 2000. Figure 1(b) is a magnified figure of Fig. 1(a) in the range
−20 ≤ x1 (= X1/l−) ≤ 100. The red curves indicate ρ̌, the green curves v̌, and the
blue curves Ť ; the solid lines indicate µb/µ = 100, the dashed lines µb/µ = 200, the
dot-dashed lines µb/µ = 500, the dot-dot-dashed lines µb/µ = 1000, and the dotted
lines µb/µ = 2000. In Fig. 1(b), we also show by the black dotted lines the profiles
of ρ̌, v̌, and Ť when µb/µ = ∞. In this case, since θ = 0 [cf. Eq. (7b)], there is no
relaxation between Ttr and Tint through T [cf. Eqs. (4c) and (4j)]. Therefore, the
downstream condition is different from Eq. (6b) and is given by

f =
ρ̃+Eδ/2−1

(2πRT̃tr+)3/2(RT̃int+)δ/2Γ(δ/2)

× exp

(
−(ξ1 − ṽ+)2 + ξ22 + ξ23

2RT̃tr+
− E
RT̃int+

)
, (X1 →∞), (11)

where ρ̃+, ṽ+, T̃tr+, and T̃int+ are given by

ρ̃+ =
4M̃2

−

M̃2
− + 3

ρ−, ṽ+ =
M̃2
− + 3

4M̃2
−

v−, (12a)

T̃tr+ =
(5M̃2

− − 1)(M̃2
− + 3)

16M̃2
−

T−, T̃int+ = T−, (12b)

M̃− = v−/
√

5RT−/3 = M−
√

3γ/5, (12c)
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Fig. 2: Profiles of ρ̌, v̌, and Ť at M− = 5 for δ = 4, Pr = 0.761, Ac = const, and
µb/µ = 100, 200, 500, 1000, and 2000 in the new coordinate y1. (a) Profiles for
−0.2 ≤ y1 ≤ 1, (b) profiles for −0.06 ≤ y1 ≤ 0.06. The red curves indicate ρ̌, the
green curves v̌, and the blue curves Ť . See the caption of Fig. 1 about the types of
lines.

and the temperature at downstream infinity is given by T = (3T̃tr+ + δT̃int+)/(3 + δ)
Equation (12) is the Rankine–Hugoniot relations for µb/µ =∞. Note that it is the

same as the Rankine–Hugoniot relations for a monatomic gas if M̃− is regarded as
the upstream Mach number. In Fig. 1, x1 = 0 is set at the position where the density
is equal to the average of the upstream and downstream values when µb/µ = ∞,
that is, ρ = (ρ− + ρ̃+)/2.

The profiles in Fig. 1 are of Type C consisting of a thin front layer and a thick
rear layer. As µb/µ increases, the thickness of the rear layer increases and reaches
over 3000 mean free paths (l−), whereas the profiles of the thin front layer are not
affected by µb/µ and coincide with the shock profiles for µb/µ =∞. This indicates
that the thin front layer corresponds to the shock wave for µb/µ =∞, and the jump
caused by this layer is given by the Rankine–Hugoniot relations for µb/µ = ∞.

Therefore, Type-C profile should appear when M̃− > 1.
Here, we introduce the new space coordinate y1 whose length scale of variation

is l−/θ, i.e.,

y1 = (2/
√
π)θx1 = (2/

√
π)θ(X1/l−), (13)

which is expected to describe the slow variation occurring in the thick rear layer when
µb/µ� 1 (θ � 1). In Fig. 2, we show the profiles of ρ̌, v̌, and Ť , corresponding to
Fig. 1, as the functions of y1. Figure 2(b) is a magnified figure of Fig. 2(a). As one
can see, the curves for µb/µ = 100, 200, 500, 1000, and 2000 coincide perfectly in the
thick rear layer. Using this new coordinate y1, we will derive a set of macroscopic
equations that can describe the slow relaxation over the thick rear layer in Sec. 6.1.

• Case of M− = 1.138 . . .

This case corresponds to M̃− = 1, at which the thin front layer of Type-C profile
disappears. Figure 3 shows the profiles of ρ̌, v̌, and Ť , and Fig. 3(b) is the magnified
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Fig. 3: Profiles of ρ̌, v̌, and Ť at M− = 1.138 . . . (M̃− = 1) for δ = 4, Pr = 0.761,
Ac = const, and µb/µ = 100, 200, 500, 1000, and 2000. (a) Profiles for −2000 ≤
x1 ≤ 28000, (b) profiles for −1000 ≤ x1 ≤ 4000. The red curves indicate ρ̌, the
green curves v̌, and the blue curves Ť . The solid lines indicate the profiles for
µb/µ = 100, the dashed lines for µb/µ = 200, the dot-dashed lines for µb/µ = 500,
the dot-dot-dashed lines for µb/µ = 1000, and the dotted lines for µb/µ = 2000.

figure of Figs. 3(a). In the figure, x1 = 0 is set at the position where ρ̌ = 0.05.
The profiles do not show the double layer structure, but the thickness of the shock
increases as µb/µ becomes large, as in the case of M− = 5. The profiles start
abruptly from the upstream uniform state though the approach of the profiles to
the downstream uniform state is slow and smooth. Therefore, the profiles are not
symmetric with respect to the centers of the respective profiles, and we can say that
the profiles in this case are of Type B.

• Case of M− = 1.05

Finally, we show the profiles of ρ̌, v̌, and Ť for M− = 1.05 in Fig. 4. Figure
4(b) is a magnified figure of Fig. 4(a). In the figure, x1 = 0 is set at the position
where ρ̌ = 1/2. The profiles, which are almost symmetric with respect to the
centers of respective profiles, correspond to Type-A profile. The thickness of the
shock increases with the increase of µb/µ and reaches over 50000 mean free paths
for µb/µ = 2000.

In this way, the transition of the profiles from Type A to Type C, which was
predicted by the extended thermodynamics [6], is also observed in the present com-
putation based on the ES model.

6 Asymptotic analysis for large µb/µ

6.1 Slowly-varying solution

Figure 2 in Sec. 5 suggests that the thick layer behind the thin layer of Type-C
profile for large µb/µ (i.e., small θ) may be described by a slowly-varying solution
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Ť

Fig. 4: Profiles of ρ̌, v̌, and Ť at M− = 1.05 for δ = 4, Pr = 0.761, Ac = const, and
µb/µ = 100, 200, 500, 1000, and 2000. (a) Profiles for −40000 ≤ x1 ≤ 60000, (b)
profiles for −10000 ≤ x1 ≤ 10000. The red curves indicate ρ̌, the green curves v̌, and
the blue curves Ť . The solid lines indicate the profiles for µb/µ = 100, the dashed
lines for µb/µ = 200, the dot-dashed lines for µb/µ = 500, the dot-dot-dashed lines
for µb/µ = 1000, and the dotted lines for µb/µ = 2000.

whose length scale of variation is of the order l−/θ. Although the results are not
shown in Sec. 5, the replot of the curves in Figs. 3 and 4 in terms of the variable
y1 [Eq. (13)] shows that the profiles of each macroscopic quantity for large µb/µ fall
on a single curve for respective M−. Therefore, we expect that the slowly-varying
solution may also describe the whole profiles of Types A and B.

Let us introduce the dimensionless quantities [ζi, Ê , f̂ , Ĝ, Âc(T̂ ), ρ̂, v̂i, p̂ij, T̂tr,

T̂int, T̂ , T̂rel], which correspond to the original dimensional quantities [ξi, E , f , G,
Ac(T ), ρ, vi, pij, Ttr, Tint, T , Trel], by the following relations:

ζi = ξi/(2RT−)1/2, Ê = E/RT−,
(f̂ , Ĝ) = (f, G)/2ρ−(2RT−)−5/2, Âc(T̂ ) = Ac(T )/Ac(T−),

ρ̂ = ρ/ρ−, v̂i = vi/(2RT−)1/2, p̂ij = pij/p−,

(T̂tr, T̂int, T̂ , T̂rel) = (Ttr, Tint, T, Trel)/T−,

(14)

where p− = Rρ−T−. If we assume that f̂ is slowly varying, i.e., a function of the
variable y1 [Eq. (13)]: f̂ = f̂(y1, ζ, Ê), then we have the dimensionless ES model of
the following form:

θζ1
∂f̂

∂y1
= Âc(T̂ )ρ̂(Ĝ − f̂). (15)

The explicit form of Ĝ, which is almost the same as G in Eq. (4b), is omitted here
(see [10]).

We analyze Eq. (15) for θ � 1 by a Hilbert-type expansion in θ, i.e.,

f̂ = f̂ (0) + f̂ (1)θ + f̂ (2)θ2 + · · · . (16)

Exp. no VII— Shock wave structure for polyatomic gases with large bulk viscosities
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Correspondingly, the macroscopic quantities h (h = ρ̂, v̂1, p̂ij, ...) are also expanded
as

ĥ = ĥ(0) + ĥ(1)θ + ĥ(2)θ2 + · · · . (17)

We leave the details of the analysis in Appendix C of [10], where the three-dimensional
version of Eq. (15) is analyzed. As the result of the analysis, the macroscopic equa-

tions that describe the leading-order quantities ρ̂(0), v̂
(0)
1 , T̂

(0)
tr , and T̂

(0)
int of the ex-

pansion (17) are obtained. We omit the superscript (0) for brevity. Then, we have

the following system of ordinary differential equations for ρ̂, v̂1, T̂tr, and T̂int:

d

dy1
(ρ̂v̂1) = 0, (18a)

d

dy1

(
T̂tr
v̂1

+ 2v̂1

)
= 0, (18b)

d

dy1

(
v̂21 +

5

2
T̂tr +

δ

2
T̂int

)
= 0, (18c)

v̂1
dT̂int
dy1

=
3

3 + δ
Âc(T̂ )ρ̂

(
T̂tr − T̂int

)
, (18d)

where T̂ in Âc(T̂ ) is given by

T̂ =
3T̂tr + δT̂int

3 + δ
, (19)

which is the dimensionless version of Eq. (4i).

It should be noted that (ρ̂, v̂1, T̂tr, T̂int) are equal to (1, v̂−, 1, 1) at upstream

infinity and to (ρ̂+, v̂+, T̂+, T̂+) at downstream infinity, where

v̂± =
v±

(2RT−)1/2
, ρ̂+ =

ρ+
ρ−
, T̂+ =

T+
T−
. (20)

and they are related by the dimensionless version of the Rankine–Hugoniot relations
(2) or the original conservation laws

ρ̂+v̂+ = v̂−,
T̂+
v̂+

+ 2v̂+ =
1

v̂−
+ 2v̂−, v̂2+ +

5 + δ

2
T̂+ = v̂2− +

5 + δ

2
. (21)

It follows from Eqs. (18a)–(18c) that

ρ̂v̂1 = c1,
T̂tr
v̂1

+ 2v̂1 = c2, v̂21 +
5

2
T̂tr +

δ

2
T̂int = c3, (22)

where c1, c2, and c3 are constants, or

ρ̂ =
c1
v̂1
, T̂tr = v̂1 (c2 − 2v̂1) , T̂int =

2

δ

(
c3 −

5

2
c2v̂1 + 4v̂21

)
. (23)
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The substitution of Eq. (23) into Eq. (18d) with Eq. (19) gives the following equation
for v̂1:

v̂21(
5

16
c2 − v̂1)

dv̂1
dy1

=
3(4 + δ)

8(3 + δ)
c1Âc(T̂ )

[
v̂21 −

5 + δ

2(4 + δ)
c2v̂1 +

c3
4 + δ

]
, (24a)

T̂ =
2

3 + δ

(
v̂21 − c2v̂1 + c3

)
. (24b)

In the case of the Type-C profile, the slowly-varying solution should be applied
to the downstream of the thin front layer, so that c1, c2, and c3 in Eq. (22) are

determined from the downstream condition as c1 = ρ̂+v̂+, c2 = (T̂+/v̂+) + 2v̂+, and

c3 = v̂2+ + [(5 + δ)/2]T̂+. However, these downstream quantities are expressed in
terms of the upstream quantities by Eq. (21). Therefore, we can express c1, c2, and
c3 using the upstream quantities as

c1 = v̂−, c2 =
1

v̂−
+ 2v̂−, c3 = v̂2− +

5 + δ

2
. (25)

Using these relations and the ratio of specific heats γ = (5 + δ)/(3 + δ), we can
transform Eq. (24) as follows:

v̂21 (v̂∗ − v̂1)
dv̂1
dy1

= −3(γ + 1)

16
v̂−Âc(T̂ ) (v̂− − v̂1) (v̂1 − v̂+) , (26a)

T̂ (v̂1) = 1 + (γ − 1) (v̂1 − v̂−)

(
v̂1 −

1 + v̂2−
v̂−

)
, (26b)

where v̂∗ and v̂+ (downstream velocity) are expressed in terms of v̂− as

v̂∗ =
5

16

1 + 2v̂2−
v̂−

, v̂+ =
(γ − 1)v̂2− + γ

(γ + 1)v̂−
. (27)

Let us consider the integration of Eq. (26), with an initial condition v̂1 = v̂0 at
y1 = y0, from y1 = y0 to ∞. When v̂1 < v̂∗ and v̂1 ∈ (v̂+, v̂−) (note that v̂+ < v̂−),
dv̂1/dy1 is negative from Eq. (26). This range of v̂1 is not empty because v̂+ < v̂∗
for γ < 5/3 and M− > 1; this can be seen readily from the relation

v̂∗
v̂+

=
5

16
(γ + 1)

2v̂2− + 1

(γ − 1)v̂2− + γ
=

5

8

γ + 1

γ

γM2
− + 1

(γ − 1)M2
− + 2

. (28)

Therefore, if the initial value v̂0 satisfies v̂0 < v̂∗ and v̂0 ∈ (v̂+, v̂−), the solution v̂1
monotonically decreases as y1 increases and approaches v̂+, which is an equilibrium
point of v̂1 where dv̂1/dy1 vanishes. This means that, with an appropriate choice
of the initial value v̂0, the solution of Eq. (26) is expected to describe the velocity
profile in the downstream range y1 ∈ [y0, ∞) of a shock wave. Once the solution v̂1
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is obtained from Eq. (26), other quantities are obtained from Eq. (23). That is,

ρ̂(v̂1) =
v̂−
v̂1
, T̂tr(v̂1) = 1 + 2 (v̂− − v̂1)

(
v̂1 −

1

2v̂−

)
, (29a)

T̂int(v̂1) = 1 +
8

δ
(v̂1 − v̂−) (v̂1 − v̂∗∗) , (29b)

where v̂∗∗ is the dimensionless downstream velocity of the shock wave when θ = 0,
which is defined as v̂∗∗ = ṽ+/(2RT−)1/2 with ṽ+ given by Eq. (12a) and thus is
written in terms of v̂− as v̂∗∗ = (2v̂2− + 5)/8v̂−. Equation (26) with the initial
condition v̂1(y0) = v̂0 can be solved analytically. More specifically, v̂1 is obtained as
the inverse function of the following function y1(v̂1):

y1(v̂1)− y0 =
16

3(γ + 1)v̂−

∫ v̂0

v̂1

u2 (v̂∗ − u)

Âc(T̂ (u)) (v̂− − u) (u− v̂+)
du. (30)

Moreover, the integration can be carried out explicitly for special forms of Âc(T̂ ),

such as Âc(T̂ ) = 1,
√
T̂ , and T̂ (see Appendix D in [10]).

Let us now discuss the possible choices of the initial value v̂0 and the relation
between the resulting solution v̂1 [and Eq. (29)] and the profiles of Type A, Type B,

and Type C. Here, we note that M̃− < M− holds because M̃−/M− =
√

3γ/5 and
γ < 5/3.

• Case of M̃− < 1 < M−

Since M̃− =
√

6/5v̂−, it follows from Eq. (27) that v̂− < v̂∗. Therefore, the
admissible range of the initial value v̂0, i.e., v̂0 < v̂∗ and v̂0 ∈ (v̂+, v̂−), reduces
to just v̂0 ∈ (v̂+, v̂−). That is, we can take v̂0 as almost v̂−, i.e., v̂0 = v̂− − 0.
Therefore, the solution v̂1 is expected to describe the whole profile of the velocity.
Let us consider this point in more detail. We consider Eq. (30) for a fixed value of
v̂1 in the middle of the profile, v̂+ < v̂1 < v̂−. Then, we have the following estimate:

y1(v̂1)− y0 > Cy(v̂1)

∫ v̂0

v̂1

1

v̂− − u
du = Cy(v̂1)[− ln(v̂− − v̂0) + ln(v̂− − v̂1)], (31)

where

Cy(v̂1) =
16

3(γ + 1)v̂−

v̂21(v̂∗ − v̂0)
maxv̂1≤u≤v̂0 [Âc(T̂ (u))] (v̂0 − v̂+)

> 0. (32)

As the initial value v̂0 approaches the upstream velocity v̂−, the coordinate y1(v̂1),
which expresses the coordinate y1 inside the shock profile, diverges to +∞. To locate
the shock profile in a more comfortable range with finite y1, we need to shift the
coordinate, or take the initial position y0 as −∞. Theoretically, if we assume that
v̂0 → v̂− at y1 → −∞, we obtain the whole profile of v̂1, changing from v̂− to v̂+,
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in a range of finite y1. Correspondingly, ρ̂ changes from ρ̂(v̂−) = 1 to ρ̂(v̂+) = ρ̂+,

T̂tr changes from T̂tr(v̂−) = 1 to T̂tr(v̂+) = T̂+, and T̂int changes from T̂int(v̂−) = 1 to

T̂int(v̂+) = T̂+. This solution corresponds to the whole profile of Type A.

• Case of M̃− = 1

In this case, it follows from Eq. (27) that v̂∗ = v̂− =
√

5/6. Therefore, the
admissible range of the initial value v̂0 is still v̂0 ∈ (v̂+, v̂−). However, Eq. (30)
reduces to

y1(v̂1)− y0 =
16

3(γ + 1)v̂−

∫ v̂0

v̂1

u2

Âc(T̂ (u)) (u− v̂+)
du. (33)

Since the integrand does not have a singularity at u = v̂−, the integral takes a finite
value at v̂0 = v̂− for a fixed value of v̂1 in the middle of the profile, v̂+ < v̂1 < v̂−.
This means that y0 can be a finite value, say y0 = 0, and the velocity profile locates
in a range with finite y1. Therefore, the solution v̂1 can describe the whole velocity
profile v̂− → v̂+ in the range y1 ∈ [y0, ∞). From Eq. (26), we observe that

dv̂1
dy1

∣∣∣∣
y1=y0

= −3(γ + 1)

16
Âc(1)

v̂− − v̂+
v̂−

< 0. (34)

This means that the profile of the velocity suddenly start at y1 = y0 with a finite
gradient and approaches v̂+ as y1 →∞. In other words, the velocity profile exhibits a
corner at y1 = y0. One can also show from Eq. (29) that dρ̂/dy1 > 0 and dT̂ /dy1 >

0 at y1 = y0. Therefore, the profiles of ρ̂ and T̂ also exhibit a corner. These
observations are consistent with the numerical result shown in Fig. 3. This solution
corresponds to the Type-B profile.

• Case of M̃− > 1

Because v̂∗ < v̂− in this case, the admissible range for the initial value reduces
to v̂0 ∈ (v̂+, v̂∗). Here, we should note that v̂+ < v̂∗∗ < v̂∗ holds. Therefore, we
can take v̂∗∗, which is the dimensionless downstream velocity of the shock wave
when θ = 0, as the initial value v̂0. Then, the solution v̂1 describes the monotonic
decrease from v̂∗∗ to v̂+ as y1 varies from y0 to ∞. Correspondingly, ρ̂ changes from
ρ̂(v̂∗∗) = ρ̂∗∗ to ρ̂(v̂+) = ρ̂+, T̂tr changes from T̂tr(v̂∗∗) = T̂∗∗ to T̂tr(v̂+) = T̂+, and T̂int
changes from T̂int(v̂∗∗) = 1 to T̂int(v̂+) = T̂+, where ρ̂∗∗ = ρ̃+/ρ− and T̂∗∗ = T̃tr+/T−
are, respectively, the values of ρ̂ and T̂tr downstream of the shock wave with θ = 0
[cf. Eq. (12)]. This corresponds to the thick rear layer of the Type-C profile. To be
more specific, we replace the thin front layer with a jump satisfying the Rankine–
Hugoniot relations for θ = 0 and the thick layer with the solution corresponding to v̂1
obtained here. In this way, we can describe the Type-C profile by the slowly-varying
solution.

In summary, the slowly-varying solution, i.e., v̂1 obtained from Eq. (30) and
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Ť

Fig. 5: Comparison between the profiles based on the slowly-varying solution and
those of numerical solution. Profiles of ρ̌, v̌, and Ť at M− = 5 for δ = 4, Pr = 0.761,
Ac = const, and µb/µ = 100 are shown in the figure. (a) Profiles for −40 ≤ x1 ≤ 200,
(b) profiles for −20 ≤ x1 ≤ 60. The red line indicates ρ̌, the green line v̌, and
the blue line Ť of the numerical solution. The black dot-dashed line indicates the
corresponding profiles obtained on the basis of the slowly-varying solution. In panel
(b), the numerical solution of the ES model for µb/µ =∞ is also shown by the black
dashed line.

the corresponding ρ̂, T̂tr, and T̂int in Eq. (29), can successfully describe the Type-A

profile when M̃− < 1 < M−, the Type-B profile when M̃− = 1, and the Type-C

profile, with the help of the Rankine–Hugoniot relations for θ = 0 when M̃− > 1.
In [13], the shock-wave structure of a polyatomic gas is investigated by a set of

macroscopic equations that is derived by the extended thermodynamics [14] or from
the Boltzmann equation by an appropriate moment closure [14, 15] (see also [13]).
The macroscopic equations expressed in terms of the slowly-varying variable y1 in
Eq. (13) are essentially the same as our equations (18).

6.2 Comparison with numerical results

Let us compare the slowly-varying solution with the numerical solutions. For our
CO2 gas with varying µb/µ, the values µb/µ = 100 and 1000 gives θ = 5.00...× 10−3

and 5.00... × 10−4, respectively, which are quite small. Therefore, we can expect
that the leading-order slowly-varying solution obtained in Sec. 6.1 describes the
shock profile accurately. To confirm this statement, we consider the case of µb/µ =
100, for which the leading-order solution should be less accurate than the case of
µb/µ = 1000, and make some comparisons. In Figs. 5–7 below, x1 = 0 is set in the
same way as in Figs. 1, 3, and 4, respectively, for the numerical solution. Then,
the profiles obtained by the slowly-varying solution is shifted in such a way that the
point at which ρ̌ = 0.5 coincides with that of the numerical solution.

Figure 5 shows the profiles of ρ̌, v̌, and Ť at M− = 5 and for µb/µ = 100. Figure
5(b) is a magnified figure of Fig. 5(a). The colored lines show the numerical solution
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Ť v̌

Fig. 6: Comparison between the profiles based on the slowly-varying solution and
those of numerical solution. Profiles of ρ̌, v̌, and Ť at M− = 1.138... (M̃− = 1) for
δ = 4, Pr = 0.761, Ac = const, and µb/µ = 100 are shown in the figure. (a) Profiles
for −200 ≤ x1 ≤ 1800, (b) profiles for −160 ≤ x1 ≤ 160. The red line indicates ρ̌,
the green line v̌, and the blue line Ť of the numerical solution. The black dot-dashed
line indicates the corresponding profiles obtained on the basis of the slowly-varying
solution.

obtained in Sec. 5: the red line indicates ρ̌, the green line v̌, and the blue line Ť .
The black dot-dashed line indicates the profile of the thick rear layer obtained on the
basis of the Rankine–Hugoniot relations for µb/µ =∞ [cf. Eq. (12)] and the slowly-

varying solution corresponding to Eq. (30) in the case of M̃− > 1 (see Sec. 6.1). In
Fig. 5(b), the numerical result for µb/µ =∞ is also shown by the black dashed line.
As one can see, the slowly-varying solution describes perfectly the profiles in the
thick rear layer. Needless to say, Fig. 5 corresponds to Type-C profile.

The comparison of the profiles at M− = 1.138... (M̃− = 1) and for µb/µ = 100
is made in Fig. 6. Figure 6(b) is a magnified figure of Fig. 6(a). Note that the
scale of v̌ is shown on the right side in Fig. 6(b). In this case, the slowly-varying
solution based on Eq. (30) gives a profile that starts suddenly with a corner, as
shown by the dot-dashed lines in Fig. 6(b). It agrees with the numerical solution on
the whole though there is a visible difference in the magnified figure, Fig. 6(b). The
numerical solution gives profiles that start smoothly without a corner. However, as
µb/µ becomes large, say 1000, the start of the profiles becomes sharper, and the
difference between the numerical and slowly-varying solutions becomes invisible.
This corresponds to Type-B profile.

Figure 7 shows the comparison of the profiles at M− = 1.05 and for µb/µ = 100.
In this case, the agreement between the numerical and slowly-varying solutions is
good even in the magnified Fig. 7(b). This corresponds to Type-A profile.

In this subsection, we compared the numerical and slowly-varying solutions for
our CO2 gas with varying µb/µ when it is smaller than the real value, i.e., µb/µ =
100, and confirmed the agreement. It should be emphasized that we have much
better agreement for the real CO2 gas with µb/µ of the order of 1000.
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Fig. 7: Comparison between the profiles based on the slowly-varying solution and
those of numerical solution. Profiles of ρ̌, v̌, and Ť at M− = 1.05 for δ = 4,
Pr = 0.761, Ac = const, and µb/µ = 100 are shown in the figure. (a) Profiles for
−2500 ≤ x1 ≤ 3000, (b) profiles for −200 ≤ x1 ≤ 200. See the caption of Fig. 6.

7 Concluding remarks

In the present study, we investigated the structure of a standing shock wave in a
polyatomic gas with a large bulk viscosity on the basis of the polyatomic version of
the ES model for the Boltzmann equation. It is known that CO2 gas has a large
value of the ratio of the bulk viscosity to the viscosity (µb/µ), which is of the order
of 1000. Therefore, we considered an artificial CO2 gas with the same properties
as CO2 gas except that µb/µ takes arbitrary values and investigated its behavior as
µb/µ increases up to 2000 to understand the properties of the shock profiles when
µb/µ is large. The study was motivated by the recent results based on the extended
thermodynamics [6, 7].

We first carried out direct numerical computations of the ES model and obtained
the profiles of the macroscopic quantities inside the shock wave accurately. In this
step, we were able to reproduce the Type-A, Type-B, and Type-C profiles defined in
[6], that is, Type-A profile is a profile almost symmetric with respect to the center
for each macroscopic quantity, Type-B profile is the profile that is nonsymmetric and
has a corner upstream, and Type-C profile is the profile consisting of a thin upstream
layer with a sharp change and a thick downstream layer with a slow change. We
observed that as the ratio µb/µ increases, the thin front layer in Type-C profile does
not change, whereas the thickness of the thick rear layer increases indefinitely. In the
limit when µb/µ→∞, the shock wave reduces to the thin upstream layer only and
its downstream state approaches a uniform equilibrium state satisfying the different
Rankine–Hugoniot relations [Eq. (12)] that hold when µb/µ =∞.

Then, motivated by the numerical results, we tried to describe the behavior of
the thick rear layer of Type-C profile by a slowly-varying solution of the ES model,
the length scale of which is of the order of µb/µ (or the inverse of the parameter θ
appearing in the ES model). Carrying out an asymptotic analysis for small θ (or
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large µb/µ) using a Hilbert-type expansion, we derived a simple set of ordinary dif-
ferential equations for the macroscopic quantities, which can be solved analytically.
We showed that Type-C profile can be described by this slowly-varying solution
correctly if its upstream condition is set to be the downstream condition of the
Rankine–Hugoniot relations for µb/µ =∞. In addition, we showed that the slowly-
varying solution can also describe the entire Type-A and Type-B profiles correctly.
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