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Formality theorem and bialgebra deformations

Vladimir Hinich(1), Dan Lemberg(2)

RÉSUMÉ. – On vérifie la formalité de l’algèbre exterieure de V ⊕V ∗ munie

du grand crochet considérée comme une algèbre de Poisson graduée. On

discute la pertinence de ce resultat pour les déformations de bigèbres
d’une algèbre symétrique de V considérée comme une bigèbre.

ABSTRACT. – In this paper we prove formality of the exterior algebra on
V ⊕ V ∗ endowed with the big bracket considered as a graded Poisson al-

gebra. We also discuss connection of this result to bialgebra deformations

of the symmetric algebra of V considered as bialgebra.

1. Introduction

1.1. In this paper k will always denote a ground field of characteristic
zero. Fix a finite dimensional vector space V over k. This paper deals with
the graded vector space H = ⊕Hn where

Hn =
⊕

p+q=n

∧pV ⊗ ∧qV ∗, n ≥ 0. (1.1)

This vector space has a graded Poisson structure defined as follows. This
is a (graded) commutative algebra with unit as H = S(W ) where

W = (V ⊕ V ∗)[−1].

Here we use the standard convention for graded versions of commutative
algebras, based on symmetric monoidal structure on the category of graded
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vector spaces defined by the commutativity constraint given by the standard
formula

σ : X ⊗ Y � Y ⊗X, σ(x⊗ y) = (−1)|x||y|y ⊗ x. (1.2)

The commutative algebra H has a degree −2 Lie bracket (called big
bracket by Y. Kosmann-Schwarzbach in [9]) satisfying Leibniz rule with
respect to the multiplication, and given on the generators by the formula

[x, x′] = 0, [y, y′] = 0, [x, y] = [y, x] = 〈y, x〉 (1.3)

for x, x′ ∈ V , y, y′ ∈ V ∗.

Throughout this paper we will be using the language of operads to de-
scribe various algebraic structures. Graded Poisson algebras are algebras
over a certain operad denoted Pn. Algebras over Pn have a degree zero
commutative multiplication and degree 1− n Lie bracket satisfying Leibniz
rule. Thus, our algebra H is a P3-algebra.

The operad Pn is Koszul [4], so it has a particularly nice cofibrant reso-
lution and a particularly nice notion of homotopy Pn-algebra.

In this paper we prove that H is intrinsically formal as P -algebra. This
means that any homotopy P3-algebraX such thatH(X) = H as P -algebras,
is equivalent to X.

The proof follows ideas of Tamarkin [21] and makes use of the criterion
of intrinsic formality described in [6], 4.1.3.

1.2. The graded vector space H appears in two interconnected instances
in deformation theory. The first one is connected to Lie bialgebras, and the
second to associative bialgebras.

1.2.1. Lie bialgebras. Recall that, according to Y. Kosmann-Schwarzbach
[9] a proto-Lie bialgebra structure on a vector space V is just a degree 3
element h of H satisfying the condition [h, h] = 0. Let λ ∈ V ⊗ ∧2V ∗,
δ ∈ ∧2V ⊗ V ∗, α ∈ ∧3V and β ∈ ∧3V ∗ be the components of h. One can
easily check that if α = 0, β = 0, the tensors λ and δ determine a Lie
bialgebra structure on V . The case β = 0 describes Lie quasi-bialgebras,
whereas α = 0 corresponds to the dual notion.

Lie bialgebras and their ”quasi-” versions describe quasiclassical limits of
quantized enveloping algebras as defined by Drinfeld [3]. The notion of Lie
proto-bialgebra naturally generalizes both Lie quasi-bialgebra and coquasi-
bialgebras. We are unaware of the existence of the notion of associative
proto-bialgebra quantizing Lie proto-bialgebras.
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Let h ∈ H3 satisfy [h, h] = 0, so that (V, h) is a Lie proto-bialgebra.
The operator dh = adh is a derivation of both commutative and Lie algebra
structure on H, so that (H, dh) becomes a dg P3-algebra. The dg Lie algebra
(H[2], dh) governs formal deformations of the Lie proto-bialgebra (V, h). In
particular, H[2] governs deformations of the commutative Lie bialgebra (in
the class of Lie proto-bialgebras).

Our result on formality should be much more relevant to another defor-
mation problem, that of associative bialgebras1, see 1.2.3.

1.2.2. Associative algebras. Before we start talking about bialgebra defor-
mations, it is worthwhile to remind what is going on with already classical
problem of deformations of associative algebras.

Let A be an associative algebra. The Hochschild cohomology HH∗(A)
has a structure of Gerstenhaber algebra (this is the same as P2-algebra in
our notation). Moreover, P2 is the homology of the small squares operad
E2 (F. Cohen, [1]), and the Hochschild cochain complex CC∗(A) has a (ho-
motopy) structure of algebra over E2 (Deligne conjecture). In case A is a
polynomial algebra its Hochschild cohomology, the algebra of polyvector
fields ∧T , is intrinsically formal as P2-algebra, and this result implies the
famous Kontsevich formality theorem for the polynomial ring, see Kontse-
vich [8], Tamarkin [21]. Note that the algebra ∧T , similarly to our algebra
H, can also be interpreted as the algebra responsible for deformations of
the (trivial) Poisson bracket in the polynomial ring.

Note that there are two different deformation problems connected to an
associative algebra A. Deformations of A are governed by the (shifted and)
truncated Hochschild cochain complex DefA concentrated in nonnegative
degrees, so that

DefnA = Hom(A⊗n+1, A), n ≥ 0.

However, this dg Lie algebra is not formal even in case A is a polyno-
mial ring. The Kontsevich formality theorem states that the full (shifted)
Hochschild cochain complex concentrated in degrees n ≥ −1 is formal. The
deformation problem described by the full Hochschild complex is that of
the category of A-modules. This deformation problem is not easy to for-
mally define; the difference between two deformation problems can be seen
if one studies deformation of a sheaf of associative algebras: as a result of
deformation one can get an algebroid stack instead of the deformed sheaf
of associative algebras.

1Or associative proto-bialgebras if one could imagine what they are.
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1.2.3. Associative bialgebras. Deformation theory for associative bialgebas
was pioneered by Gerstenhaber and Schack in [5] where a deformation com-
plex CGS(A) of a bialgebra A was defined by the ad hoc formulas

Cn
GS(A) = ⊕p+q=nHom(A⊗p, A⊗q), (1.4)

with the differential given for φ : A⊗p → A⊗q by the formula

d(φ) = d1(φ) + d2(φ), (1.5)

where

d1(φ)(a0 ⊗ . . .⊗ ap) = Δq−1(a0)φ(a1 ⊗ . . .⊗ ap) + (1.6)

+

p−1∑

i=0

(−1)i+1φ(a0 ⊗ . . .⊗ (aiai+1)⊗ . . .⊗ ap) +

+(−1)p−1φ(a0 ⊗ . . .⊗ ap−1)Δ
q−1(ap)

and

d2(a1 ⊗ . . .⊗ ap) = (μp−1 ⊗ φ)Δ⊗p(a1 ⊗ . . .⊗ ap) + (1.7)
q∑

i=1

Δi(φ(a1 ⊗ . . .⊗ ap)) + (−1)p−1(phi⊗ μp−1)Δ
⊗p(a1 ⊗ . . .⊗ ap).

Here in formula (1.6) Δq−1 denotes the multiple comultiplicationA � A⊗p,
Δ⊗p in formula (1.7) denotes the comultiplication induced on A⊗p, that is, a
map A⊗p � A⊗p⊗A⊗p, μp−1 denotes the (multiple) product A⊗p � A,
and Δi = 1⊗ . . .⊗Δ⊗ . . .⊗ 1. Gerstenhaber-Schack cohomology is defined
by the formula

H∗
GS(A) = H∗(CGS(A)).

For the bialgebra A = S(V ) with standard multiplication and coprod-
uct, a well-known calculation (reproduced below, following Shoikhet [18],
see 3.2.1) shows HGS(A) = H as a graded vector space. According to a
version of Deligne conjecture proven by B. Shoikhet [19], the chain complex
CGS admits a structure of E3-algebra. Once more, in characteristic zero the
operad E3 is equivalent to P3, see [10], so Gerstanhaber-Schack cochains
admit a canonical homotopy P3-algebra structure.

Therefore, in order to have a complete analog of Kontsevich formality
theorem for bialgebras, one needs to solve two problems.

1. Verify that the P3-algebra structure on H defined in 1.1 comes from
the E3-algebra structure on the cochains CGS(S(V )).
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2. Understand in what sense E3-algebra CGS(A) governs deformations
of the bialgebra A.

We will now describe what we can say about the above problems.

1.2.4. First of all, Gerstenhaber-Schack cohomology is known to be de-
scribed as Ext(A,A) calculated in the abelian category of A-tetramodules,
see Taillefer [20] and Section 3 below. The commutative algebra structure
on HGS(A) comes from Yoneda product in Ext’s, and it is not difficult to
verify that for A = S(V ) this yields the commutative multiplication in H
coming from the symmetric algebra structure.

Furthermore, Leibniz rule together with degree considerations imply that
the Lie bracket on the cohomology induced from the E3 structure on the
cochains, is determined by its restriction to W , that is by a symmetric
bilinear form on V ⊕ V ∗.

One can easily deduce from this that the bracket on H defined by E3

structure is proportional to the one given by the formula (1.3). Unfortu-
nately, this does not imply that the bracket is nonzero. This remains a
problem. We were unable to make an explicit computation of the bracket
using Shoikhet’s description of E3 structure on the chain complex. We be-
lieve that a correct way of doing so would be using deformation theory; at
the moment we are only able to deduce this fact from Conjecture 1, see
Section 4.

1.2.5. Gerstenhaber and Shack used their cohomology to describe ob-
struction theory: third cohomology of a certain subcomplex of CGS(A) de-
scribes infinitesimal deformations, with obstructions dwelling in the fourth
cohomology. They conjectured the existence of Lie algebra bracket on co-
homology so that the obstruction of infinitesimal deformation given by
u ∈ H3

GS(A) is [u, u] ∈ H4
GS(A).

Merkulov and Vallette [16] proved existence of such bracket on a certain
subcomplex of CGS(A); unfortunately, we see no way of comparing this
bracket with the one coming from E3-structure.

One should also have in mind that, similarly to the case of associative
algebras, one cannot expect the full Gerstenhaber complex to govern defor-
mations of bialgebras; the full complex should rather govern deformations
of a certain ”linear” object attached to a bialgebra A.

A sensible candidate would be the two-category of categories, left-tensored
over the monoidal category of left A-modules.

We hope to be able to make sense of this claim in a later publication.
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2. Intrinsic formality of H

The rational homology Pn of the topological operad En was calculated
by Fred Cohen in 1973. This is a graded operad over Q generated by two
operations: commutative associative multiplication μ in degree zero, and a
Lie bracket λ in degree 1− n, subject to the graded version of Leibniz rule.

Furthermore, the operad C•(En,Q) on rational chains is known to be
formal: it is quasiisomorphic to Pn as an operad of complexes, see [10].

In this section we prove the intrinsic formality of the P3-algebra H =
S(V [−1]⊕ V ∗[−1]) in the sense of [6], 4.1.2.

We will follow the Tamarkin’s idea [21, 6].

Recall that P = P3 is Koszul operad and the free P-algebra spanned by
a complex X has the following form.

FP(X) = FCom ◦ FLie{2}(X) (2.1)

where FCom is the free commutative (=symmetric) algebra, Lie{2} is the
operad defined by the property that Lie{2}-algebra structure on X is the
same as Lie-algebra structure on X[2].

Also P⊥ = P{−3}∗, so that the cofree P⊥-coalgebra spanned by H has
form

F∗P⊥(H) = F∗Com(F∗Lie(H[1])[2])[−3]. (2.2)

We will use the following criterion of intrinsic formality.

2.1. Theorem. (see [6], 4.1.3).— Let g be the dg Lie algebra of coderiva-
tions of (F∗

P⊥(H), Q), where the differential Q is defined by the E-algebra
structure on H. Denote

g≥1 = Hom(⊕i≥2F∗iP⊥(H), H) ⊂ Hom(⊕i≥1F∗iP⊥(H), H) = g. (2.3)

Then , if the map H1(g≥1) � H1(g) is zero, the P-algebra H is intrin-
sically formal.

The dg Lie algebra g is obtained from a bicomplex,

g = ⊕p,q≥0g
p,q, g≥1 = ⊕(p,q) �=(0,0)g

p,q, (2.4)

where
gp• = Hom(F∗(p+1)

Com (F∗Lie(H[1])[2]), H[3]), (2.5)

and q+1 is the total Lie-degree. The horizontal and the vertical components
Ql andQm of the differential are defined by the Lie bracket and commutative
multiplication on H respectively. In order to calculate the cohomology of
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g we can use the spectral sequence of the above bicomplex. Look at the
complexes

(gp•, Qm) = HomH(Sp+1
H (F∗Lie(H[1])⊗H[2]), H[3]). (2.6)

The complex Z := F∗Lie(H[1]) ⊗H is the homological Harrison complex of
the commutative algebra H. Therefore,

(gp•, Qm) = HomH(Sp+1
H (Z[2]), H[3]). (2.7)

Now recall that H = S(W ) where W = V [−1] ⊕ V ∗[−1], so Z is quasiiso-
morphic to the shifted module of differentials, Z = H ⊗W [1].

Therefore, the homology of the complex gp• with respect to the vertical
differential Qm is

Ep,q
1 =

{
Hom(Sp+1(W [3]), S(W )[3]) if q = 0

0 otherwise.
(2.8)

The spaces Ep,0
1 are quotients of gp,0 = Hom(F∗p+1

Com (H[3]), H[3]), so the

differential Ql on Ep,0
0 is induced by the Chevalley-Eilenberg differential

(df)(a1 · · · ap+1) = −
p+1∑

i=1

(−1)i+|ai|(|a1|+...+|ai−1|)[ai, f(a1 . . . âi . . . ap+1)]

(2.9)

The spectral sequence degenerates at term 2 (Ep,q
2 = Ep,q

∞ ), Ep,q
2 = 0 for

q > 0 and Ep,0
2 is the p-th cohomology of the complex (Ep,0

1 , Ql).

We can now verify the condition of Theorem 2.1. One-cochain in Ep,0
1

has form
∑

p fp with

fp ∈ Hom(Sp+1(W [3]), S4−2(p+1)(W )).

This immediatelly implies that fp = 0 for p > 1. Such cochain is in the image
of g≥1 iff f0 = 0. Thus, any one-cochain coming from g≥1 is presented by
a map f1 : S2(W ) � k. We will show it is always a boundary. More

precisely, we claim there exists g ∈ E0,0
1 of total degree zero such that f1 =

Ql(g). The elements of total degree zero in E0,0
1 are maps g : W � W .

The formula (2.9) shows that for such g its differential is calculated as

Ql(g)(a, b) = [a, g(b)] + [b, g(a)].

Since the bracket restricted to W is a nondegenerate symmetric bilinear
form, existence of g is a basic fact of linear algebra. This proves the theorem.

�
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3. Gerstenhaber-Schack cohomology of Ug

According to Taillefer [20], Gerstenhaber-Schack cohomology of a bial-
gebra A is just Ext(A,A) in a certain abelian category TetraA, the cate-
gory of A-tetramodules. According to Shoikhet [19], the braided monoidal
structure on the category of tetramodules induces E3-algebra structure on
GS cochains. This induces a P3-algebra structure on the cohomology. The
graded space H studied in the previous section is the GS cohomology of
the bialgebra A = S(V ). We would like to identify the P3-structure on H
defined by the formulas (1.1)–(1.3) with the one induced on H as the GS
cohomology. We have not completely succeeded in this.

We check that the commutative multiplication in H induced from the P3

structure comes from the presentation H = S(W ); furthermore, we prove
that the bracket is proportional to the one given by formula (1.3). Thus, if
the bracket on H is nonzero, the formality calculation of Section 2 is appli-
cable. Unfortunately, we were unable to prove nonvanishing of the bracket
on H induced from the E3-structure on GS cochains.

We believe that the Lie bracket on H is in fact given by the formula (1.3).
We support this belief in Section 4 with some speculations and conjectures.

In this section we present the calculation of RHomTetraA(A,A) for A =
Ug the enveloping algebra. We present it by a dg algebra which induces
Yoneda product on the cohomology.

In the special case g = V is a commutative Lie algebra, this allows one to
identify the Yoneda product on H with the multiplication in the symmetric
algebra. Then we deduce that the bracket is proportional to (1.3).

The category TetraA of A-tetramodules has enough injectives; but it is
more convenient to make calculations using formalism of (P,Q) pairs de-
scribed in [18]. In the following subsection we recall the relevant definitions.

3.1. Tetramodules. Let A be a bialgebra.

Recall that a tetramodule structure on a vector space M is a bialgebra
structure on the direct sum A ⊕ M sich that the natural projection p :
A⊕M � A is a bialgebra morphism and p is an abelian group object in
the category of bialgebra morphisms B � A with target A. The latter
means that the maps M ⊗M →M and M →M ⊗M defined by restriction
of the multiplication and the comultiplication on M , vanish.

Thus, a tetramodule has both a bimodule and a bicomodule structure,
satisfying certain compatibilities.
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The category of A-tetramodules is denoted TetraA. This is an abelian
category with enough injectives, see [20]. In case A is a Hopf algebra, it is
equivalent to the category of Yetter-Drinfeld modules and is Drinfeld double
of the monoidal category of left A-modules, see [17].

3.1.1. Induced and coinduced tetramodules. We have two pairs of adjoint
functors

BicomodA
Ind��
G

TetraA
G��

Coind
BimodA (3.1)

where G denotes the forgetful functors, Ind is the induction and Coind the
coinduction functor defined as in Shoikhet [18].

Any tetramodule embeds into a coinduced tetramodule and is an image
of induced tetramodule. Therefore, any tetramodule X admits an induced
resolution

� Pn
� . . . � P0

� X � 0

and a coinduced resolution

0 � X � Q0 � . . . � Qn � .

One has

Theorem.— (see [18]) One can calculate RHomTetraA(X,Y ) using in-
duced resolution for X and coinduced resolutions for Y .

3.2. The case A = Ug. Let A = Ug be the enveloping algebra of a finite
dimensional Lie algebra g considered as a bialgebra.

We will calculate RHomTetraA(A,A) using an induced and a coinduced
resolutions for the tetramodule A. We define Pn = Ind(∧ng) and Qn =
Coind(∧ng), where in the first formula ∧ng has the trivial bicomodule struc-
ture, whereas in the second formula it has the trivial bimodule structure.

We will use the following notation. For a subset I ⊂ N = {1, . . . , n}
and a collection of elements xi ∈ g, i ∈ N , we denote as xI the product
xi1 ∧ . . . ∧ xi|I| .

The induced tetramodules Pn form a complex P• with H0(P•) = A, with
the differentials ∂n : Pn

� Pn−1 defined by the formula

∂n(a⊗ xN ⊗ b) =
n∑

i=1

(−1)i−1axi ⊗ xN−{i} ⊗ b− a⊗ xN−{i} ⊗ xib+ (3.2)

+
∑

i<j∈N
(−1)i+ja⊗ [xi, xj ] ∧ xN−{i,j} ⊗ b.
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The formulas for a differential in the coinduced resolution Q• of A are
similar: 2 the differential dn : Qn � Qn+1 is given by the formula

dn(a⊗ xN ⊗ b) = Δ1
r(a)⊗Δ2

r(a)∧ xN ⊗ b− a⊗ xN ∧Δ1
l (b)⊗Δ2

l (b), (3.3)

where Δ1
r(a)⊗Δ2

r(a) (resp., Δ
1
l (a)⊗Δ2

l (a) ) denotes the projection of Δ(a)
to Ug⊗ g (resp., to g⊗ Ug).

Now Gerstenhaber-Schack cohomology of A = Ug can be expressed as

HGS(A) = HomTetraA(P•, Q
•), (3.4)

where Hom denotes the complex of morphisms in TetraA

The right-hand side of the equation can be easily calculated. This is
H = ∧g⊗∧g∗ as a graded commutative algebra, with the differential d = adλ
where λ ∈ H3 is the tensor defining Lie bracket on g, and adλ makes use of
the Lie bracket defined by the pairing g∗ ⊗ g � k.

In particular, if g = V is a commutative Lie algebra, one has

HGS(A) = Hom(∧V,∧V ) = H. (3.5)

We will now describe the Yoneda multiplication in HGS(Ug).

Since tetramodules form a monoidal (even braided monoidal) category,
Yoneda product can be expressed via the monoidal stucture as follows.

If α and β are cycles in Hom(P•, Q•) of degrees m and n, one has a cycle

α⊗ β ∈ Hom(P• ⊗ P•, Q
• ⊗Q•)

of degree m+n which yields an element in Hm+n
GS (A) as P•⊗P• and Q•⊗Q•

are also resolutions of A. One can further simplify the formulas using the
coalgebra structure on P• and the algebra structure on Q• described as
follows.

The forgetful functors TetraA � BicomodA and TetraA � BimodA
are monoidal. Thus, Ind is colax monoidal functor, that is one has a natural
morphism

Ind(X ⊗ Y ) � Ind(X)⊗ Ind(Y ).

Similarly, Coind is lax monoidal, that is one has a canonical morphism

Coind(X)⊗ Coind(Y ) � Coind(X ⊗ Y ).

Taking this into account, we can define a quasiisomorphism P• � P•⊗
P• of complexes of tetramodules as follows. For n = p + q one has a map

2But simpler as there is no term coming from (co)bracket.
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∧nV → ∧pV ⊗ ∧qV (of trivial bicomodules over SV ) which add up to the
commutative comultiplication in the algebra ∧V . This yields the map

Pn
� Ind(∧pV ⊗ ∧qV ) � Pp ⊗ Pq.

The comultiplication on P• defined by these maps commutes with the
differentials Pn

� Pn−1 defined by the formula (3.2). Dually, one has a
multiplication Q• ⊗Q• � Q• (co)induced by the multiplication in ∧V .

The complex HomTetraA(P•, Q
•) has, therefore, a dg commutative alge-

bra structure which induces the Yoneda product in cohomology.

3.2.1. g = V is commutative. In this case the complexHomTetraA(P•, Q
•) =

Hom(∧V,∧V ) has zero differential and is isomorphic to H. An easy calcu-
lation shows that the Yoneda product in this case is simply given by the
commutative product in the presentation

H = ∧V ∗ ⊗ ∧V.

3.3. The Lie bracket. Here we assume A = S(V ). Since Lie bracket on
H should satisfy Leibniz rule, it is uniquely defined by its value on algebra
generators, that is on W = (V ⊕ V ∗)[−1]. Since the bracket has to have
degree −2 and H0 = k, it has to be given by a symmetric bilinear form on
V ⊕ V ∗.

Let us show that the bracket has to be proportional to the one defined
by the formulas (1.3). In fact, the group GL(V ) acts by automorphisms
on the bialgebra A = S(V ). Any automorphism g ∈ GL(V ) gives rise to a
braided autoequivalence of the category TetraA. Therefore, the (homotopy)
E3-algebra structure on H has to be GL(V )-equivariant. But the formula
(1.3) is the only, up to scalar, GL(V )-invariant symmetric bilinear form on
V ⊕ V ∗ as

S2(V ⊕ V ∗) = S2(V )⊕ S2(V ∗)⊕ V ⊗ V ∗,

S2(V ) and S2(V ∗) have no invariants and V ⊗ V ∗ has one-dimensional
invariant subspace.

This proves our claim.

4. Speculations

The calculation of Gerstenhaber-Schack cohomology of Ug presented in
the previous section yields, in particular, a canonical map

RHomUg(k, g) � RHomTetraUg
(Ug, Ug)[1] (4.1)

(compare to [14], Theorem 2′).
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We want to look at this map as a categorification of an embedding

T � ∧ T (4.2)

from the Lie algebra of vector fields on a smooth affine variety to the algebra
of polyvector fields endowed with the Schouten bracket.

Our reasoning is as follows. The left-hand side of the formula, cut and
shifted by one, is the dg Lie algebra governing deformations of Lie algebra
g. The whole shifted left-hand side RHomUg(k, g)[1] has a dg Lie algebra
structure since it identifies with the dg Lie algebra of coderivations of the
standard Chevalley-Eilenberg chain complex of g. This is the dg Lie al-
gebra governing deformations of the category of g-modules considered as
symmetric monoidal category.

The shifted right-hand side of (4.1), RHomTetraUg
(Ug, Ug)[2], is expected

to govern deformations of the same category of g-modules considered as
monoidal category. 3

Thus, the map (4.1) corresponds to the embedding of symmetric monoidal
deformations of if the monoidal category Modg into its monoidal deforma-
tions.

There is no doubt the following claim should be true.

Conjecture 1. — The map (4.1) preserves Lie bracket in cohomology,
where Lie bracket in the left-hand side comes from its interpretation as the
complex of coderivations, whereas the Lie bracket in the right-hand side is
induced from the E3-algebra structure on the GS cochains.

This conjecture immediately implies that the Lie bracket inH = HGS(S(V ))
is in fact given by the formula (1.3).

Actually, we believe a much stronger conjecture is true.

Recall the version of Kontsevich formality for smooth commutative dg
algebras proven in [7]:

Theorem.— Let A be a smooth commutative dg algebra over a field of
characteristic zero. Then the Hochschild cochain complex of A is equivalent
to the dg algebra of polyvector fields as (homotopy) Gerstenhaber algebras.

We believe that a categorified version of the above result should be valid.

3This is not precise. It should be rather responsible for deformations of 2-category of
categories, left-tensored over Modg.
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The complex L = RHomUg(k, g)[1] is a Lie algebroid over the commu-
tative dg algebra A = C∗(g, k). This implies that, similarly to the algebra
of polyvector fields acquiring a Gerstenhaber algebra structure, the shifted
symmetric algebra SA(L[−2]) = SA(RHomUg(k, g)[−1]) acquires a struc-
ture of P3-algebra.

Recall that the operads P3 and E3 are equivalent in characteristic zero.

Keeping in mind this equivalence, we believe the following to be true.

Conjecture 2. — The E3-algebra RHomTetraUg
(Ug, Ug) is equivalent

to the algebra SA(L[−2]) where L is the dg Lie algebroid RHomUg(k, g)[1]
over C∗(g, k).

Our formality result of Section 2 shows that in case g is commutative,
Conjecture 1 implies Conjecture 2.
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