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Refined composite invariants of torus knots
via DAHA

VAN CHEREDNIK("), Ross ErLioT(?

Dedicated to Vadim Schechtman on the occasion of his 60th birthday

RESUME. — Nous définissons les DAHA-superpolynémes composites
associés aux noeuds toriques, en fonction des paires de diagrammes de
Young qui généralisent les polynémes de HOMFLY-PT composites dans
la théorie de skein de I'anneau. Nous donnons divers exemples. Nos su-
perpolynomes étendent les polynomes (raffinés) de DAHA-Jones et satis-
font toutes les symétries standards des DAHA-superpolynoémes des nceuds
toriques. Ces derniers sont conjecturalement liés a I’homologie de
HOMFLY-PT. A la fin, nous construisons deux DAHA-hyperpolynémes
en étendant les polynémes de DAHA-Jones de type E. Ils sont étroitement
liés a I’approche de Deligne-Gross des systémes de racines exceptionnels ;
ce theme est de nature expérimentale.

ABSTRACT. — We define composite DAHA-superpolynomials of torus knots,
depending on pairs of Young diagrams and generalizing the composite
HOMFLY-PT polynomials in the skein theory of the annulus. We pro-
vide various examples. Our superpolynomials extend the DAHA-Jones
(refined) polynomials and satisfy all standard symmetries of the DAHA-
superpolynomials of torus knots. The latter are conjecturally related to
the HOMFLY-PT homology. At the end, we construct two DAHA-hyper-
polynomials extending the DAHA-Jones polynomials of type E closely
related to the Deligne-Gross approach to the exceptional root systems;
this theme is of experimental nature.
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0. Introduction

We introduce and study the composite DA HA-superpolynomials for torus
knots and arbitrary composite weights [17], i.e. pairs of Young diagrams.
They depend on a,q,t and unify the corresponding n—series of (refined)
DAHA-Jones ¢,t— polynomials of type A,; all symmetries of superpoly-
nomials from [3, 4] hold for them. When ¢ = ¢ and a — —a, we estab-
lish their relation to the composite HOMFLY-PT polynomials, studied in
13, 20, 1, 11].

The topological composite theory is based on the full HOMFLY-PT skein
of the annulus, which is an algebra generated by link diagrams drawn there.
The adjoint representation is the simplest composite weight, which connects
our results with two examples of adjoint DAHA-superpolynomials for the
Deligne-Gross exceptional series of root systems considered at the end of
the paper.
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Topological origins. In the full HOMFLY-PT skein, the orientations
of the components of the links can be simultaneously clockwise and coun-
terclockwise around the annulus, which eventually results in pairs of Young
diagrams. It is isomorphic to the tensor square of the ring of symmetric func-
tions. The (non-full) skein has all orientations in the same direction, which
is insufficient for the composite theory. The diagonalization of the meridian
maps in the full skein of the annulus provides a natural and systematic way
to define the composite HOMFLY-PT polynomials for any knots and colors.

The role of the annulus can be clearly seen in the theory of satellite links,
which is of fundamental value in low-dimensional topology (including our
paper). Given a knot K C S® and a Young diagram, such a link is generally
constructed from both a diagram D(K) of K, called a companion, and a link
diagram @ in the annulus, called a pattern. The annulus inevitably emerges
here due to the framing of K, an important ingredient of this construction
(which influences the output).

Superpolynomials. The uncolored DAHA-superpolynomials of torus
knots in 52 are conjectured to coincide with the Poincaré polynomials for the
reduced HOMFLY-PT homology or, equivalently, stable reduced Khovanov-
Rozansky polynomials. See e.g. [8, 14, 15, 16, 24, 28] for the corresponding
knot homology theories and categorification. This is expected to hold for
any rectangular Young diagrams, though adding colors to HOMFLY-PT
homology is a theoretical and practical challenge. Rectangular diagrams are
natural here, since the DAHA-superpolynomials are conjecturally positive
for such diagrams and arbitrary algebraic knots.

We note that the DAHA-superpolynomials were recently defined for iter-
ated torus knots [6], which includes all algebraic knots (links are in progress).
This is a natural setting for the composite DAHA-superpolynomials, but we
focus here only on torus knots.

The theory of DAHA-Jones polynomials is uniform for any root systems
and arbitrary weights; accordingly, the DAHA-superpolynomials are defined
for any Young diagrams. They are studied reasonably well by now; at least,
all conjectures about them from [3] are verified, but the positivity. This is
generally beyond what topology provides, especially upon adding arbitrary
colors to the theory.

The key open question in the composite direction we present concerns
the relation of our composite DAHA-superpolynomials to HOMFLY-PT ho-
mology in the case of annulus. A theory in the annulus is in progress, and
it seems capable of practically producing invariants for simple knots and
colors; see [22]. However, we hesitate to conjecture any explicit connection
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because of the absence of such examples so far. Also, the composite DAHA-
superpolynomials lack positivity, as do those for the non-rectangular dia-
grams and non-algebraic knots. It is not clear how to address this challenge,
though we provide some approach of experimental nature in [6].

Exceptional series. We conclude this paper with hypothetical adjoint
(quasi-minuscule) DA HA-hyperpolynomials for the torus knots 732, T*3 for
the exceptional “magic” series:

{eCc Ay C Ay Cc Gy CDyCFyCEgCE; CEg}

from [7]. This is for the maximal short root ¥, which is the highest weight of
the adjoint representation. Thus, for the root systems of type A, we make
contact with the composite DAHA-superpolynomials.

The root systems Gs, F; are beyond our reach so far and we managed to
find such hyperpolynomials only for simple torus knots (though 7'(4, 3) is not
too simple). Nevertheless, we believe that even such examples demonstrate
that the final theory of DAHA-hyperpolynomials will eventually incorporate
all types of root systems (not only classical).

The hyperpolynomials we found based on the functoriality from [7] are
non-positive but have rich symmetries. We note that there are (quite a few)
other series where the existence of the superpolynomials can be expected,
not only for those of Deligne-Gross type. For instance, we found (joint with
Sergei Gukov) the minuscule superpolynomials for {Eg, Ag, D5}. Here, as
for the exceptional series above, only small torus knots and the simplest
weights can be managed.

Generally, deg,+1 root systems are needed to determine the correspond-
ing polynomial uniquely. They provide its evaluations at the corresponding
values of a, which was used in [3] to define superpolynomials and hyperpoly-
nomials for ABC'D (infinite families). This is not the case with E. However,
a very small number of evaluations appeared sufficient in the examples we
managed. For instance, only Eg and FE; are needed to determine the ex-
ceptional DAHA-hyperpolynomial of 73?2 (assuming that it satisfies some
natural properties). There is no general understanding at the moment of
how to proceed for arbitrary torus knots and weights for exceptional root
systems.

The structure of the paper. In Section 1.1, the composite weights
[A, u] (pairs of Young diagrams) and the corresponding representations are
defined, following [17]. Then we provide the definition of composite HOMFLY-
PT polynomials Hy ) (K) for any knot K from [13], via the full HOMFLY-
PT skein algebra C of link diagrams in the annulus. Finally, Proposition 1.1,
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a generalization of the Rosso-Jones formula, gives effective means of pro-
ducing Hpy ) (T"°) for T"* via. It essentially coincides with formula (C.6)
from [11]; we give its proof.

In Section 2, we recall the main definitions and results from the DAHA
theory used to introduce the DAHA-Jones (also called refined) polynomials
and DAHA-superpolynomials from [3, 4]. Then, we offer the main body of
results of this paper. Theorem 2.3 is the existence (stabilization) of com-
posite DAHA-superpolynomials and their evaluations at ¢ = 1. Theorem
2.4 is the composite super-duality, which is proved using a reduction to the
DAHA-Jones polynomials, closely related to the color exchange from The-
orem 2.5. The connection to the composite HOMFLY-PT polynomials is
Theorem 2.6.

Section 3 is devoted to various examples of composite DAHA superpoly-
nomials and discussion of their symmetries from the previous section. Our
examples confirm the stabilization, connection, super-duality and evalua-
tion theorems for a selection of seven composite partitions and simple torus
knots. Section 4 is devoted to the examples of hyperpolynomials for the
“magic” exceptional series from [7] (the bottom line of the triangle consid-
ered there).

The key construction. We begin with the definition of (reduced, tilde-

normalized) DAHA-Jones polynomials jﬁi(b; q,t), associated to any torus
knot T"°, root system R, and (dominant) weight b € P, for R. This is
unchanged vs. [3, 4]. We mention that they conjecturally coincide with the
corresponding Quantum Group invariants for torus knots upon ¢t = ¢ (for
both ¢, in the non-simply-laced case). This was checked for A, for any
Young diagrams in [3] and in various other cases, including the formulas
conjectured there for Eg (by R. E.).

When R is of type A,, the DAHA-Jones polynomials are uniform with
respect to n; see [3, 10]. Namely, the corresponding superpolynomials are
defined as follows:

— A,
HD, (X5 q,t,a— —t"Th) = JD, ¢ (A5 q,),

where the Young diagram A is interpreted naturally as an A,—weight for
any sufficiently large n. This definition is generalized in the present paper
to the case of the pairs [\, u| of Young diagrams, placed at the ends of the
corresponding Dynkin graph for A,,.

The uncolored case corresponds to the adjoint representation:
~An
HDr’s([Wl,wl] 5 qatu a _t7l+1) = JDF’S (Wl + Wn 5 q7t)
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The stabilization is a more subtle issue in the composite case. We prove that
all symmetries from [3, 4] of the resulting composite DA HA-superpolynomials
hold. The key result of this paper is the coincidence of HD, s([\, 1] ; ¢, ¢, —a)
with the HOMFLY-PT polynomials defined in [13] for any composite dia-
grams [\, u] via the skein theory of link diagrams in the annulus S* x 1.

1. HOMFLY-PT polynomials

1.1. Composite representations

An irreducible (finite-dimensional) representation V' of sl (C) is uniquely
specified by its highest weight:

N—-1 N—-1
b= bwi € Py =& P Ziwi, Zy = Lso,
=1

i=1

where {w;} are the fundamental dominant weights for Ax_;.

Equivalently, we can represent b (and V') by a partition or its correspond-
ing Young diagram X = Ay > Xo... Ay_1 > Ay = 0 with at most N — 1
nonempty rows and ktn row of length Ay def bi + -+ + by_1. The highest
weight b is recovered from A by taking b; = A\; — A\;41; i.e. b; is the number
of columns of A of height i.

The dual representation V* is specified by the highest weight b* def (b),

where ¢ : w; — wy_;. Alternatively, the Young diagram A\* has rows of
length Af = A\ — Ant1— (this operation depends on N).

A weight b € Py for sly(C) can be interpreted for slps(C) by setting
b; = 0 for i > min{M, N}. Accordingly, we can interpret the corresponding
Young diagram A as a dominant weight for sl;(C) by removing any columns
of height > M. It is precisely this sort of “packaging” of representations for
all ranks that leads to the HOMFLY-PT polynomial and its generalizations.

One can generalize this procedure to any number of Young diagrams,
“placing” them in the Dynkin diagram of type Ay_1 with breaks in be-
tween. The composite representations are labeled by pairs of partitions (or
Young diagrams) “placed” at the ends of the Dynkin diagram. Namely, for
Young diagrams A and g with ¢(\) and £(u) rows, N > £(X\) +¢(p) (always
assumed), and Py of type An_1, let

Nuly=b"+ce Py = Pf’v’l for b,c associated with A\, . (1.1)
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We call the pair [\, u] a composite diagram/partition and will constantly
identify dominant weights [\, u]y and the corresponding Young diagrams
(with no greater than N — 1 rows).

1.1.1. Schur functions. In what follows, we will require some basic facts
about Schur functions and their generalization to composite representations
in [17].

Let A, def Z[x1,...,x,])%" denote the ring of symmetric functions in
n—uvariables, where the action of S, is by permuting the variables. For any
m > n, the map which sends x; — 0 for ¢ > n, and x; — z; otherwise, is the
restriction homomorphism A,, — A,,. Then the ring of symmetric functions
is

o
h

e

e

lim A,
n

where the projective limit is taken with respect to the restriction homomor-
phisms.

If A\ is a partition with length at most m, one can define the corre-
sponding Schur function sx(z1,...,2,) € A,. The set of Schur functions
for all such partitions is a Z—basis for A,,. We may naturally interpret a
given sy (z1,...,2,) as having infinitely-many variables, for which we write
sx(Z) € Ay. The set of all s5(Z) is a Z—basis for A,.

The Schur functions satisfy many interesting properties. For our pur-
poses, we will interpret sy (Z) € A, as a character for the irreducible polyno-
mial representation V). Consequently, the Littlewood-Richardson rule, that
is

sx(@)su(T) = Y N (D), (1.2)

shows that the multiplicity of an irreducible summand V,, in the tensor
product decomposition of V\ ® V,, is equal to the Littlewood-Richardson
coefficient NY .-

1.1.2. The composite case. In [17], the author introduces sy ,(7,%) €
Ay ® Ay, which generalize the Schur functions and provide characters for ir-
reducible representations V], ;) corresponding to composite partitions. Their
natural projection onto the character ring for sl is the (ordinary) Schur
function 8[)\7#]]\](181, .o, ZN—1) € An—1. Recall that we always assume that
N > () + £(p) for the length £(N\) of A; see (1.1).
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The following formulas, proved in [17], will be used as definitions in our
paper:

sl (@9) ST (D) TIND NE s, () s¢ (7). (1.3)

T,

where s, (Z Z ﬁa Was[ﬁ),y](:ﬁ v); (1.4)
a,f3,0

the sums here are over arbitrary triples of Young diagrams.

1.2. Skein theory in the annulus

1.2.1. Composite HOMFLY-PT polynomials. The colored HOMFLY-PT
polynomial for a knot K and a partition A is the integer Laurent polyno-
mial Hy(K;q,a) € Z[gt!, at!] satistying Hy(K;q; ¢V ) = j;[N (K;q) to the
corresponding Jones polynomial for sl and partition (dominant weight)
A. The latter is also called the Quantum Group knot invariant or WRT
invariant.

The composite HOMFLY-PT polynomial for [A, u] is defined similarly via
the specializations Hy ) (K;q,¢") = j[f\“/\; I (K; q) for all sufficiently large
N. In particular, H|g ,j(K) = H,(K). Recall that the composite diagram

[A, p]w is from (1.1).

The HOMFLY-PT polynomial has two normalizations. For connection
with DAHA, as in Theorem 2.6, we will be interested in the normalized
polynomial ‘H. However, for many of our intermediate calculations, we will
also need the unnormalized HOMFLY-PT polynomial H. These are gener-
ally defined and related by:

H(K) = HU)YH(K), H(U) = dim,.(V), (1.5)

where K is any knot, U is the unknot, and dim,, is defined in Section
1.3.5 for V' = V] ;). Observe that with this definition, #(U) = 1. In the
specializations described earlier in this section, the normalized (resp. unnor-
malized) HOMFLY-PT polynomials coincide with the reduced (resp. unre-
duced) Quantum Group knot invariants.

We will briefly recall the approach to composite HOMFLY-PT polyno-
mials from [13]. The full HOMFLY-PT skein algebra C is a commutative
algebra over the coefficient ring T = Z[v*!, s ({s* — s7*}1>1)7L. Tt con-
sists in Y—linear combinations of oriented link diagrams in S' x I.
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The product of two diagrams in C is the diagram obtained by identifying
the outer circle of one annulus with the inner circle of the other; the identity
with respect to this product is the empty diagram (with coefficient 1).

The relations in C are the (framed) HOMFLY-PT skein relation

A {) ()

together with the relation that accompanies a type-I Reidemeister move on
a positively (resp. negatively) oriented loop with multiplication by a factor
of v~ (resp. v). As a consequence, observe that

vl —w
<KU©> = (_1> (K).
5—5s
Furthermore, for a given diagram D = D(K) of a knot K,
(D) = a2wr(D)’H,(K q,a) under s — v a?,
tying the variables s, v used in [13] to the variables ¢, a used elsewhere in
this paper; wr(D) is the writhe of D (see there).

1.2.2. The meridian maps. Let ¢ : C — C be the meridian map induced by
adding a single oriented, unknotted meridian to any diagram in S* x I and
extending linearly to C. Let ¢ be the map induced by adding a meridian
with an orientation opposite that of ¢. Then, ¢, » are diagonal in their
common eigenbasis {Q ,} C C indexed by pairs A, 1 of partitions.

The subalgebras of C spanned by {Qx o} and {Qg ,} are each isomor-
phic to the ring of symmetric functions in infinitely many variables. Under
these isomorphisms, these bases are identified with the basis of Schur poly-
nomials. Accordingly, the full basis {@» ,} is the skein-theoretic analog of
the characters for composite partitions in [17] that we discussed in Section
1.1.

Now to a diagram D of a knot K and a composite partition [\, u], asso-
ciate the satellite link D % @5 ,, whose companion is D and whose pattern
is Qx,.- We then have that

Hinu (K) = vWVIPND % Q) ), wr(D) = writhe of D,

i.e. the corresponding composite, unnormalized HOMFLY-PT polynomial
for K is equal to the framed, uncolored HOMFLY-PT polynomial for D x

Q)\,px
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The pattern @, can be computed explicitly as the determinant of a
matrix whose entries are certain idempotents {h;, hj} C C. For the conve-
nience of the reader, some patterns for [\, u] considered in this paper are
included in the table below.

’ [)‘7/4 ‘ Q/\,u
0,0 hihi —1
o,d hihihi — hih3 — by
[co,0] | hehi — Ry

.8 | hahiRihy + hah + B — hahiht — hahihs — RIhS
[P | hihaht — hihy — hsh}

The idempotents h; are closures of linear combinations of upward-oriented
braids b; € Y[B;]:

bi=1=1eT[Bi], b= ﬁ(l + 501) € T[Ba),

o
5%(2](3]

in the annulus by homotopically nontrivial, counterclockwise-oriented strands.

Here B; is the ordinary braid group on ¢ strands, and the quantum integers
are denoted by [k] def S:_’j__lk (only in this section). The elements h! are

then obtained by rotating the diagrams for h; about their horizontal axes.
That is, b are linear combinations of closures of downward-oriented braids
by clockwise-oriented strands.

by = (14 s01)(1 + so3 + s20901) € Y[Bs],

In fact, the pattern @y , for a composite partition [\, u] is distinguished
by the fact that, in general, it contains strands oriented in both directions
(clockwise and counterclockwise) around S! x I. On the other hand, the
pattern @ = Q| g for an ordinary partition will consist in strands oriented
all in the same direction.

def (KxQx )
Let Ky ) = WW

a framing coefficient, i.e. power of v. In [13] the authors compute

, which is well-defined on diagrams for K up to

Kig(z,v) =v* — 4ot + 40 + 22(1 4 20% — Tot + 40%) (1.6)
+ 24 (v? = 201 4 0%) for K =T3?

. . def _ . . .

in terms of variables v and z = s — s~ '. The relation to a, ¢ we use in this
. 1 1 _1

paper is v =a~ 2 and z = ¢2 — ¢~ 2; see below.
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1.3. Rosso-Jones formula

1.3.1. The usual theory. The Rosso-Jones formula [23] and its variants,
e.g. [9, 18, 27, 20], expand the HOMFLY-PT polynomial for the (r, s)—torus
knot and a partition A - n in terms of the quantum dimensions of certain
irreducible representations:

ORHA(T™S) = >k, Ojdimg o (V). (1.7)

pnhHErm
The formulas for 0y, 0, and the coefficients c‘)f , are provided below in (1.10),
(1. 13) ch,, is nonzero only if V, is an irreducible summand of VE". Here

0%, 0[1 are powers, fractional for the latter. Note that (1.7) gives the unnor-
malized polynomial as defined in (1.5).

1.3.2. The composite theory. We are going to generalize the Rosso-Jones
formula to the case of composite partitions [A, u]. The stabilization of the
corresponding expansion is not a priori clear. We will use the results of [17]
described in Section 1.1. The following proposition matches formula (C.6)
[11] (Chern-Simons theory).

PROPOSITION 1.1. — For any torus knot T"° and composite partition
[\, 1] the corresponding (unnormalized) HOMFLY-PT polynomial admits

an erpansion:

r 1/ rsy [57 1 ot ;
O3 Hina (T7%) = I, Z] 41 dimg.a(Vig,), (1.8)
[8:7]

into finitely many terms for which the c{f;ﬂr are nonzero. Here 0, and

01,4 and the coefficients c%ﬁ ;Hr are provided in (1.11) and (1.15).

Proof.— First of all, it is clear from (1.15) that CK;Hr is nonzero for only

finitely many [/3,]. Then, by construction, the resulting expansion (1.8) will
satisfy the (infinitely many) specializations

Hin (T4, 6N) = Hpnp (T7%50,0%) = T30 (T7%59), (1.9)

which (uniquely) define the corresponding composite HOMFLY-PT poly-
nomial.

We will divide the proof of (1.8) into several intermediate steps. In what
follows, any occurrences of ¢’ will be replaced by «; all fractional exponents
of N will cancel in the final formula.
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1.3.8. Braiding eigenvalues. The constants 0y € Z[g™!, a™'] in (1.7) are
braiding eigenvalues from [1] , and they are

n2 e
0y = g~ (TN =R)/2 o o e 220(,@)7 (1.10)
TEN

where the content of the box x € A in the ith row and jen column is ¢(z) def

j—i.

Now, for a composite partition [A, ] such that A - m and p - n, observe
that [\, pln F e def (n—m+ A1 N). We would like to construct a [y, such
that r[y j|n=k = K[x,p, for any k. To this end, we divide the Young diagram

for [\, u]n into two natural parts and count their individual contributions
to ki )y - Namely,

(1) p contributes r,, + 2A1|u| to £y ), and
(2) A* contributes ky+ =kx+NA1 (A1 +1) =M N(N+1)—2[|A\|(A; = N).

Thus, we can set

K] 2= Koy + i+ N (A 4+ 1) = AAN(N + 1) + 20 || — 2A[(A — N),
so that r[x .| N=k = K[r,p, for any k, as desired. Furthermore we can define
the composite braiding eigenvalues:

C2
Oy == g N =F)/2, (1.11)

a—qy .
One has that 0 ,) == 0|,y by construction.

The following is the key part of the proof of Proposition 1.1.

1.8.4. Adams operation. We will use Section 1.1, where we explained that
the Schur functions sy (%) € A, are characters for the irreducible polynomial
representations V) and described some of their properties. For applications
to the Rosso-Jones formula we need to understand the r—Adams operation
P, on sy; see [9, 20].

Let p, gef Zx; € A, be the degree-r power sum symmetric function.

i>i

Then the r—Adams operation on sy may be defined formally by the plethysm
Ur(sy) def pr o sx. This means that 1,(sy) is determined by the coefficients
X, € Z in the expansion

sA(Z") = ZCK;Tsy(f), (1.12)
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o def . . ..
where " = (xf, %, 25,...). The coefficients here are given an explicit

description in [18]:

[Culx (C)x* (Cry)
Z m' , (1.13)

where x* is the character of the symmetric group corresponding to \, and
C\, is the conjugacy class corresponding to u.

We need an analog of 1, for composite partitions [\, u], which must agree
with the ordinary Adams operation upon specification of N. Thus, we need
to switch from (1.12) to the expansion

S (T ZC 51841 (Z5 ), (1.14)

where s ) (Z,7) € Az ® A is the universal character of [17], described in
Section 1.1. Applying here the natural projection onto Ay_1, one recovers
the following specialization of (1.12):

B,
WA A | Zc{/\g]m S18n (1, -, TN—1).

This demonstrates that c{fZ}T from (1.14) are exactly what we need, i.e.

this formula agrees with (1.12) upon specification of N and therefore can
be used for the proof of Proposition 1.1.

Now using (1.3), (1.4) and (1.12) we obtain an explicit expression for
these coefficients:

B _ 7| ATA 5
e = D (DTN N el g N (NS, (1.15)

T,1,8,m,0,0

where the sum is over arbitrary sextuples of Young diagrams. Recall that
N, are the Littlewood-Richardson coefficients from (1.2).

v, T?

Although this formula appears rather complicated, observe that the terms
are only nonzero for relatively few (and finitely many) choices of (7, v, &, 1, d, «).

In light of (1.13) and the combinatorial nature of the Littlewood-Richardson

rule, these formula provides a completely combinatorial description of c{fﬁr

The following is the last step of the proof.

1.8.5. Quantum dimensions. We define the ¢, a—integer by

u v L v

_u v
def aiqi —a 2q 2
[UN"’ULL& - 1 1 )

q2 —q 2

- 445 -



van Cherednik, Ross Elliot

for u,v € Z, where N is “generic”, i.e. it is treated here as a formal vari-
able. Setting here a = ¢ for N € N, we obtain the ordinary quantum
integer [uN +v],. We will suppress the subscript “g,a” in this and the next
subsection, simply writing [ - ].

For an irreducible representation V,,, its stable quantum dimension is
given by the quantum Weyl dimension formula

dimg (V)= ] W, (1.16)

where the Young diagram p is interpreted in the usual way as a weight for
sly for generic N and p = %Z(x>0 o for An_1.

T
aEAN_,

Then it only depends on the diagram p, which includes the actual number
of factors due to the cancelations. We note that such a stabilization holds
in the theory of Macdonald polynomials of type An_1 as well; see formula
(2.12) and Theorem 2.3, (i).

The stable quantum dimension for a composite partition [3,~] is defined
as follows:

dimg(Vis o) =[] [([ﬂ’?(]gi)]p’a)]. (1.17)

Similarly to (1.16), we claim that there is no actual dependence of N in this
formula (including the actual number of factors). However the justification
is somewhat more involved because the weight

I
aEAN

£(v) £(B)
[ﬁa’Y]N = Z( ’71-&-1 Wi +Z /63+1 WN—j,
j=1

depends on N (in contrast to the case of one diagram). We will omit a
straightforward justification; see table (1.19) below and the general formula
(C.3) from [11] (a calculation of normalized open-string stretched annulus
amplitudes). Finally, the relation dimgy q(Vig,4))lasqy = dimg(Vig.4)y) con-
cludes the proof of Proposition 1.1. O

Formula (1.8) provides a purely combinatorial and computationally effec-
tive way of producing HOMFLY-PT polynomials for arbitrary torus knots
and composite representations. See examples below and also Section C from
[11].

1.3.6. Simplest examples. First, we evaluate the (ordinary) Rosso-Jones
formula (1.7) for the trefoil 732 and A = [. The necessary values are
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contained in table (1.18):

T

’ H ‘ 0, ‘ C5;2 ‘ dimg,q(Vy,) ‘

o |a2¢>N | O V]

o lagF 1 [N][[12\§+1] (1.18)
—-1,2 N—1][N

H a 1qN+1 —1 %

Inserting the components of (1.18) into formula (1.7), we obtain the familiar
expression:

E3 3
05 ° (02sdimy.q (Vi) — 63 dimg.a (V)
dim, o (75)
-1

= aq~ ' —a® +aq,

HD(T372; q,a)

the normalized HOMFLY-PT polynomial of T%:2. Note that although [J
appears with coefficient 0 in the expansion (1.7), we include it in table
(1.18) since both 65 and dim, ,(V3) are needed to give the final, normalized
polynomial, as defined in (1.5).

Similarly, we evaluate our composite Rosso-Jones formula (1.8) for the
trefoil 732 and [o,0] using table (1.19):

7, :
’ [8,7] ‘ 018,11 ‘ C{D,];y[]];Q ‘ dimg,a(Vig.4) ‘

[o,0 a=! 0 [N —1][N +1]
o, | ¢ 2a2 1 [N—l][[éV];[N%]
N 02 1 [N—2][N—[; é\fH”NH] (1.19)
B, a2 1 [N—2][N—[1 1\}7+1][N+2]

9 2][2

_ N—=3][N]?)[N+1

[a H} q2a 2 1 [ ][[2] []2][ ]
[@,2] | 1 1 1

Inserting the components of (1.19) into formula (1.8), we obtain
Hiog (T*%q,a0) =a®*(q >+ +2)+a®(—2¢ > + ¢ " +q—2¢° - 2)
+a'(q?=2¢7" =2+ ¢* +3)+a°(¢ " +q—2),

where we include [o,0] in table (1.19) for the same reason that we included
O in table (1.18).

Observe that we can touch base with formula (1.6) from [13] by

Nl=

T2 (g2 — g7

(mka)

) a_%) = H[D,D] (T3’2§ q,a).
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Our expression for Hy(T%?;¢q,a) agrees with that obtained in [21]. See
also examples (C.8-16) from [11], obtained there via Chern-Simons theory
(open-string amplitudes); they match our ones.

2. DAHA superpolynomials

2.1. Definition of DAHA

2.1.1. Affine root systems. Let R = {a} C R™ be a root system of type
A, ...,Gy with respect to a euclidean form (, ) on R”, normalized by the
condition (a, a) = 2 for short roots. Let W = (s,) be its Weyl group, and
let Ry be the set of positive roots corresponding to a fixed set {ay, ..., ap}
of simple roots for R. The weight lattice is P = @], Zw;, where {w;} are
fundamental weights: (w;,af) = d;; for the coroots o = 2a/(a, a); Py =
O Ziw;, for Zy = {m € Z,+m > 0}.

Setting v, = (o, @) /2, the vectors a = [a,vaj] € R" x R ¢ R*F!
for « € R,j € Z form the twisted affine root system ROR (z € R™ are
identified with [z,0]). We add ag def [—9,1] to the simple roots for the
maximal short root ¥ € Ry. The corresponding set §+ of positive roots is

Ry U{[a,vaj], « € R, j > 0}.

The set of the indices of the images of ag by all automorphisms of the

affine Dynkin diagram will be denoted by O; let O’ det {r € O,r #0}. The
elements w, for r € O’ are minuscule weights. We set wg = 0.

2.1.2.  FExtended Weyl group. Given a = [, v,]j] € R, be P, let
Sa(a = Z- (270\/)&7 b/(z) = [Z7< - (va)] (21)

for z = [2,{] € R*"™L. The affine Weyl group W = (ss,@ € Ry) is the
semidirect product WX @ of its subgroups W = (s,,« € R4 ) and @, where
« is identified with

SaS[a,va] = S|—a,v.]Sa for a € R.

The extended Weyl group W is WX P, where the corresponding action
is
(wd)([2,¢]) = [w(z), — (z,b)] for weW,be P (2.2)

It is isomorphic to W XTI for T 2 P/Q. The latter group consists of my =id

and the images m, of minuscule w, in P/Q.
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The group II is naturally identified with the subgroup of W of the ele-
ments of the length zero; the length is defined as follows:

U(®) = |A@)| for MN@) 2L R, na 1 (—Ry).

One has w, = mu, for r € O, where u, is the element v € W of minimal
length such that u(w,) € P_.

Setting @ = ma0 € W for m, € I, w € W, I(w) coincides with the
length of any reduced decomposition of w in terms of the simple reflections
si, 0 <1 <n.

2.1.3. Parameters. We follow [4, 3, 5]. Let m, be the least natural number
such that (P,P) = (1/m)Z. Thus m = |II| unless m = 2 for Dy and
m =1 for sz,Ck.

The double affine Hecke algebra, DAHA , depends on the parameters

¢,t, (v € {vo}) and is naturally defined over the ring Z, , def Zlg* /™, tfl/z]

formed by polynomials in terms of ¢='/™ and {t,l,/Z}.
For a = [o, v,]] € R, 0 <i<n, we set

ta=ta=ty, =q, ¢a=0", ti=ta,, @G =qa:

Also, using here (and below) sht, ing instead of v, we set

def 1 1
Pk = EZ kaa = kslltpsht+k11,gp1;‘g, Pv = 5 Z o = Z Wi .

a>0 Vo=V vi=r,1>0
For pairwise commutative Xq,...,X,,
def z li 7 ¢ 1 . —~
X; = x5 it b=1[b4), 5(Xp) = Xaa, (2.3)

i=1
n 1 _
where b = Zliwi eP je—7Z, weW.
i=1 m

. def _
For instance, Xg == X,, = ¢X; '

2.1.4. The main definition. Recall that w, = mu, for r € O’ (see above).
We will use that m ! is T,(i), Where ¢ is the standard involution of the
nonaffine Dynkin diagram, induced by a; — —wo(«;). Generally, ¢(b) =
—wp(b) = b*, where wy is the longest element in W. Finally, we set m; =
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2,3,4,6 when the number of links between «; and «; in the affine Dynkin
diagram is 0,1, 2, 3.

DEFINITION 2.1.— The double affine Hecke algebra Hi is generated over
Zgy by the elements {T;, 0 < i < n}, pairwise commutative {X;, b € P}
satisfying (2.3) and the group II, where the following relations are imposed:

(o) (T, =t T+, = 0,0 < i < n;

(i) TT,T;... = T;T;Tj..., mi; factors on each side;
(ii) mTim b = T if m(a;) =aj;

(iii) T;Xy, = X XMT7" if (baY)=1, 0<i<ny
(w) T; Xy, = XpT; iof (byay)=0 for 0<i<n;

(V) mXomt = Xeg) = X,zigyq“@ o, re0.

Given w € W, r € O, the product

Tr & def Ty - Ty, where w=gs; ---s; for [ =I(w), (2.4)

does not depend on the choice of the reduced decomposition. Moreover,
TsTs = Tso whenever 1(00) = (D) + [(@) for 0,5 W.  (2.5)

In particular, we arrive at the pairwise commutative elements
£ T E £
v, v if b= lwieP v, =T, beP. (2.6)
i=1 i=1

When acting in the polynomial representation, they are called difference
Dunkl operators.

2.1.5. Automorphisms. The following maps can be (uniquely) extended to
an automorphism of 7, fixing ¢,, ¢ and their fractional powers; see [5],
(3.2.10)-(3.2.15). Adding ¢*/®™ to Z, 4,

_ (wr,wr)

Ty ! Xy —= Xy, Ty — T, (’L > 0), Y, — X.,Y.q 2 s (27)
X, (re0),

(wr,wr)

Yy Y, T T, (i>0), Xpe Y, X,q 20, (2.8)

. (wr,wp)

T+ Tp— g ! quTO_l, T — q

—1p—1, def -1 -1 -1
T (Xy) =qlo Xy T, 0= 147 T4 = 7 747,

o(Xy) =Y, Y, o(Vs) = T,' X, Ty, o(T3) = Ti(i > 0). (2.9)
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The group PSL%(Z) generated by 7., the projective PSLy(Z) due to
Steinberg, has a natural projection onto PSLs(Z), corresponding to taking

e e S (O e A S ]

0 1 0

2.2. DAHA-Jones polynomials

2.2.1. Coinvariant. Following [5], we use the PBW Theorem to express
any H € #{ in the form .~ dy.w.cXpTWwY. for w € W, b,c € P (this
presentation is unique). Then we substitute:

{(Jev: Xy = gD Y, 5 g0 Ty s /2 (2.10)

The functional H{ > H — {H }.y, called coinvariant, acts via the pro-
jection H +— H(1) of 74 onto the polynomial representation V, which is the
‘Hi—module induced from the one-dimensional character T;(1) = t_l/ 2

V(1) for 1 <4 <mand To(1) = _1/2 . Recall that tg = tn; see [5, 3].
2.2.2. Macdonald polynomials. The polynomial representation is isomor-

phic to Z4[X;] as a vector space, and the action of T;(0 < i < n) there is
given by the Demazure-Lusztig operators:

T = t1%; + (12—t (X, — 1) (s — 1), 0<i<n.  (2.11)

The elements X, become the multiplication operators and m,.(r € O') act
via the general formula @(X;,) = Xg ) for w € W.

The Macdonald polynomials P,(X) are uniquely defined as follows. Let
¢+ be the unique element such that ¢ € W(c) N Py. For b € Py,

Po= > Xy € @, pe,enrq,Qq. )Xo and CT (P X p(X;q,t)) =0
b €W (b)
rm (1-Xagl)(1- X‘lq”l)

def
for such ¢, where u(X;q,t) T
QQHHO (1= Xata@d)(1—X5 g5

Here C'T is the constant term; p is considered a Laurent series in X; with
the coefficients expanded in terms of positive powers of ¢. The coeflicients
of P, belong to the field Q(g,t,). One has:

Py(X™") = Pu(X) = Pb( k) = By(¢™) (2.12)
(¥ ,b)—
(o, q o Xa ()
— ) a[[o ]Ho ( T ) (2.13)

See [5], formula (3.3.23); recall that +(b) = b* = —wq(b) for b € P.
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2.2.3. DAHA-Jones polynomials. We begin with the following theorem,
which is from [3, 4].

Torus knots T"* are naturally represented by s € PSLy(Z) with the
first column (r,s)!” (tr is the transposition) for r,s € N, assuming that
ged(r,s) = 1. Let 4, s € PSL(Z) be any pullback of 7 s.

For a polynomial F in terms of fractional powers of ¢ and t,, the tilde-
normalization F will be the result of the division of F by the lowest ¢,t,—
monomial, assuming that it is well defined. We put ¢®¢® for a monomial
factor (possibly fractional) in terms of ¢, ¢, .

THEOREM 2.2. — Given a torus knot T, we lift (r,s)!" to v and then
toy € PSL(Z) as above.

(i) The DAHA-Jones (or refined) polynomial for a reduced irreducible root
system R and b € Py is defined as follows:

JDR (b5 q,t) = JD,s(b; q,t) &= {F(R)},.. (2.14)

(i) It does not depend on the ordering of r;s or on the particular choice
of v € PSLy(Z), 7 € PSLS(Z). The tilde-normalization JD, s (b; q,t) is

well defined and is a polynomial in terms of q,t, with constant term 1.

(#i) Specialization at the trivial center charge. For b =" bjw;,

JD\ s (b; qzl,t) =TI JD s (wi qzl,t)b" for any r,s. (2.15)
O

It was conjectured in [3] in general (and checked there for A,) that
JD. s (b; ¢, t, — q,) coincide up to ¢° with the reduced Quantum Group
(WRT) invariants for the corresponding 7" and any colors b € P,. The
Quantum Group is associated with the twisted root system R. The shift
operator was used there to deduce this coincidence from [18, 27] in the case
of A, and torus knots. The papers [27, 2] provide the necessary tools to es-
tablish this coincidence for D,,. Quite a few further confirmations for other
root systems are known by now; the second author (R. E.) checked such a
coincidence with the DAHA formulas provided in [3] for the minuscule and
quasi-minuscule weights for Fg (unpublished).

- 452 -



Refined composite invariants of torus knots via DAHA
2.3. DAHA superpolynomials

Theorem 2.2 leads to the theory of DAHA-superpolynomials, which are

n

the result of the stabilization of fBA (b; ¢, t) with respect to n. This sta-
bilization was announced in [3]; its proof was published in [10]. Both ap-
proaches use [26]; we note that the stabilization holds for arbitrary torus
iterated knots.

Following [26] (see also [10, 4]), we can generalize the stabilization con-
struction to the torus knots in the annulus.

The pairs {r,s} remains the same, but now colored torus knots 7T"° will
be treated as link diagrams in the annulus; see Section 1.

THEOREM 2.3. — We switch to A,, setting t = taw = ¢*. Let b,c €

Py dof Pf“’ and X\, i be the corresponding Young diagrams (with no greater

than n rows). Recall that [\, pu]n € Py ' is b* +c, where N > £(\) + £(p)
and (w;)* =wy—_;; see (1.1).

(i) Stabilization. Given a pair {r,s} as above, there exists a polynomial
HD, s ([\, 1] q,t,a) from Zlg,t*1, a] such that its coefficient of a® is tilde-
normalized (i.e. in the form Zu,UZO Cluwq"t” with Coo=1) and

~ An_
HD, <([\, 1] 5 ¢, t, a=—tV) = JDr,SN 1(lf"Jr c;q,t) for any N>n. (2.16)

This polynomial does not depend on the ordering of r,s or that of A, p.

(1) Specialization at ¢ = 1. Setting HD, s (\) = HD, s ([@, \]),
HD, s([\ p1];9=1,t,a) (2.17)
=HD,s(A\;q=1,t,a) HD, s (n;9=1,t,a), where

HDrys(A;q:Lt,a) :HHDr,S(wi;q:Ltaa)bi fOT’ b:Zbiwia
i=1 i=1
b corresponds to A and w; means the column with i boxes. (I

2.83.1. Degree ofa and duality. Assuming that r > s, we conjecture that
deg, HD:y s ([A, p] 5 ¢ t,a) = s(IA| + |ul) — [AVal, (2.18)

where AV (the join operation) is the smallest Young diagram containing
them, |A| is the number of boxes in A. This is based on the numerical evi-
dence and on a generalization of the construction from [10] to the composite
case (though we did not check all details).

- 453 -



van Cherednik, Ross Elliot

Let us generalize the DAHA-duality from [3] (justified in [10]) to the
composite case; see also [12, 4].

THEOREM 2.4. — Composite super-duality. Up to a power of q¢ and t,
HD. s ([\ 5 0,t,0) = ¢*t*HD s (N, 1" ]3¢0, 71 a), (2.19)

where X" is the transposition of \.

Proof.— According to the remark after the super-duality formula (1.44)
from Section 1.6 of [4], the standard type A (one-diagram) duality is equiva-
lent to ¢®-proportionality between jr‘i"()\ ;q,t) and jr‘gm()\” ;171 g7 for
t = ¢~ (mID/ (D) (e, for k = f%) and all possible relatively prime

m+ 1,n+ 1 € N. This is directly connected with the generalized level-rank
duality . Using that ¢, n,m are essentially arbitrary, we conclude that these
proportionality conditions (all of them) are equivalent to the duality. The
latter was proved in [10]; the above argument (and the theory of perfect
DAHA modules at roots of unity from [5]) can be used for the justification
of the standard super-duality as well (unpublished).

This reformulation of the super-duality in terms of the DAHA-Jones poly-
nomials (i.e. without a) gives the composite super-duality upon considering
the diagrams in the form [\, u]x. O

Combining the evaluation formula (2.17) with the duality:

HD,s ([A\ 1] q,t=1,0) (2.20)
= HDs()\; ¢, t=1,a) HD, s (115 q,t=1,a).

2.3.2. Color exchange. The following theorem can be proved following Sec-
tions 1.6, 1.7 from [4].

THEOREM 2.5. — Color Exchange. Let t = ¢* for k € —Q,. For A\, u
as above, we assume the existence of permutations v,w € S, satisfy the
following conditions. Setting A= {ly >1s...>1, >0},
N o= {5, 0 2 ey + k(i — (i), i=1,2,...,n} (2.21)
must be a diagram, i.e we require lj > i | and lj € Z . Similarly, p' defined
by p,w (for the same k) is assumed a Young diagram. Then HD, s ([A\, u]; ¢, t,a) =
HD, ([N, 1']; q,t,a) for such q,t and anyr,s.
(I

- 454 -



Refined composite invariants of torus knots via DAHA

Let us provide an example for ¢t = ¢~ ", k € N (see [4], formula (1.47) for
details). For any p > 0 and i € {1,2} > j, one has:

HD, o( [kb, k695 q,q7%,a) = ¢* HD, 5( [kc'), kc\]; ¢, ¢ ", a) for
B = g1, eV = (p+ Doy and B = pupy1, e = (p+ 1y,

where the weights are identified with the corresponding diagrams. If k = 1,
then ¢ = ¢~ ! and these relations follow from the duality.

2.3.8. Obtaining HOMFLY-PT polynomials.

THEOREM 2.6. HOMFLY-PT via DAHA. Forr,s and A, as above,
HD, ([N p]; gt = q,a = —a) = Hix (T ¢, a), (2.22)

where Hix, ) (T"%; q, a) is the composite HOMFLY-PT polynomial for [, ]
normalized by the condition H(U) =1 for the unknot U.

Proof. — This theorem formally results from the coincidence of the JD—
polynomials in type A with the corresponding (reduced) Jones polynomials
for torus knots under the tilde-normalization. Generally, this claim is from
Conjecture 2.1 in [3]; it was verified there for Ax_q using the DAHA shift
operator (Proposition 2.3) and papers [18, 27]. The weights were arbitrary
there; we need them here for [\, p]y. O

3. Examples and confirmations

We provide here examples of the composite DAHA-superpolynomials and
discuss their symmetries. The first 5 particular composite representations
considered below are contained in the following table.
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[b,c] || w1, w1] | [wi,wa] | [2w1,w1] | [w1,ws] | [w1 + wa,wi]

o, E] [Bj, 0

>
=
=)
=)
(=)

oo
A TE [ F [ = &
4 | B | B[ B | B -
. T P
% §

3.1. The adjoint representation

The adjoint representation has the weight w; + w,, and is represented in
our notation by the pair [wy,w;] = [0,0]. We consider this representation
for two knots.

3.1.1. Trefoil. The adjoint DAHA superpolynomial for the trefoil is given
by the formula

HDys([wr,w1]iq,t,a) = 14+2gt+¢** +a(3¢> —¢* +2qt ™ —¢*t ™' =g’}
+2¢%t) + a (¢ + P72 = 26372 + Mt 2 + 2437 — 2¢M ) + aP (¢t
F O g ).
Recall that it is defined by the relations
~—Ap
HD,s([A, s gt a0 —t"4Y) = JD, S (X + 54, 1) (3.1)
for A\=wi,u=w; and all n > 1.

The corresponding normalized adjoint HOMFLY-PT polynomial for the
unframed trefoil is given by formula (2.17) from [21]; see also Section 1.3.6.
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One has:

Hioo (T%7) = a®(¢ 2 +¢* +2)+a*(—2¢ >+ ¢ " +¢—2¢°—2) +a’(¢?
=207 =2¢+¢*+3) +a°(¢" +q-2),
and we have the following confirmation of Theorem 2.6:
a’q *HD3o([wy,w1]; q,t — ¢ a— —a) = Hpm(T*?).
The super-duality from (2.19) in this case is as follows:
t"?HD3 5([w1,w1];¢,t,a) = ¢*HD3 o ([wr,wn]; 7,71, a).

The evaluation formula (2.20) reads

2
HDs5([wi,wil;q,1,0) = (14q+aq)” = HD3a(wi3q,1,a)”.

3.1.2. The case of T*?. The adjoint DAHA superpolynomial for the (4,3)—
torus knot 7'(4,3) is given by the formula

HDy 3([w1,w1]5 q,t,a) =
1+2qt+2¢%t+3¢°t* + 2%t + ¢* > +4¢°t° + 2¢™ 3 + 3¢ t* +2¢°t* +2¢°t° +¢°1°
+a(5¢® +5¢° —q* —3¢° —2¢5 + 2t L+ Pt — Bt — gt — Pt 8¢5
F7qM 4 Pt — 3¢5t — g7t + 9gM2 + T¢P12 — 512 — qT12 + 8¢5 + 5¢55 — 73
+5¢%t* + ¢Tt +2¢7t°) 4+ a®(T¢* +9¢° —2¢° — 8¢" + *t 72 +2¢°t 72 —2¢*t 2
3Pt T B AP 5 T — 25t — 8¢St 4 Bt 8¢5t
+9¢°t—2¢7t—3¢%t+7¢5 1%+ 5¢7t2 — 2432 +4¢" 3+ 2% 13 + 314 + a3 (3¢° + 547
B3 M — Pt =30t 3Tt B — PP 2 4352
— 072 =8¢t 2+ 4¢3t 2+ 2t 242t 450t —2¢Tt T —8¢B T -3¢t !
+2¢"t +3¢% — Pt + 32 + )+ a* (¢° — ¢t 287 — Ot + 53
AP A g O T 2 B2 4% 2 12 0 R B g Y

P (—ql 0 4 gt 0t 2¢Ot gl Pt — 10,
defined as for the trefoil. Computed using (1.8), the corresponding normal-
ized HOMFLY-PT polynomial is

Hiog (TH?) = ¢7°(a%(¢"? +2¢" +2¢° + 3¢ + 247 +5¢° + 2¢° + 3¢" + 2¢°
122+ 1) a7 (2" — ' —4g10 —4g° —64° —4q7 — 8¢° —4q° —6¢" — 4g° — 4
—q—2)+a8(q12+2q11+2q10+2q9+5q8+2q7+7q6+2q5+5q4+2q3+2q2+2q
+1)+a’ (=" —4¢® +2¢" — 4¢° +2¢° — 4¢" — ) +a'°(2¢° — 44" +5¢° — 4¢°

+2¢") +att(2¢" — 4¢° + 2q5)).
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We have the connection formula
a®q HDy3([wy,w1]; ¢, t — q,a > —a) = Hpo (T4%).
The super-duality reads
tOHD, 3([w1,w1]; ¢, t,a) = ¢° HDy g([wr,wi];t ", ¢, a),
and the evaluation at ¢t = 1 is as follows:

2
HDy3(wi,wiliq,1,a) = (1+q+2¢° + ¢ +a(qg+2¢* + 2¢°) + a’¢*)
= HDy3(w15q,1,a)°.

3.2. Column/row and a box

Such diagrams correspond to the symmetric and wedge powers of the
fundamental representation.

3.2.1. Two-row and a box: [2wy,w;] = 1,0

Then the composite DAHA superpolynomial for the trefoil is

HDj35([2w1,w1]; ¢, t,a) = 1+ qt +¢*t + ¢t + ¢Pt* + 2¢** + ¢°t> + a(3¢
+3¢* —2¢° — "+ gt Pt — gt = Pt Mt + 4¢P+ 25t — ¢t + ¢
1 20712) +a?(2¢° + 47 — ¢ — 247 + P2 — Pt — 512 4 B2+ gt
+3¢°t 1 ¢St —4q Tt =203t 0t 28+ t) +aP (¢ — Tt B g%t
Ot T 2B 2 — 20 2 g O g 2 2Bt 0t =210

MY et (=gt g g2 4 102 122,

defined by (3.1) for A = 2wy, p = w; and all n > 1.

The corresponding normalized HOMFLY-PT polynomial is given by for-
mula (A.1) from [21], as well as computed using (1.8). It is

Hoo(T2?) = ¢ 3 (P (P +28+ P+ + P+ +1) +a* (-1 - g —2¢°
2t — P —2¢° — q7 —2¢°) + aB(q+2¢* + ¢® — ¢® + 247 + ¢1°) +aS(—¢® +¢°
—2¢° +¢°) +a’(—¢" + ¢ +¢° — ¢'7)),
and we have the relationship

a’q P HDs 5([2w1,w1]; q,t = q,a — —a) = Ho o (T°2),
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confirming Theorem 2.6. The super-duality here requires [wy,ws], which will
be considered next. The evaluation at ¢ = 1 reads

HDs5([2w1,w1]5 ¢, 1,a) = (1+ g+ aq) x (1+¢*+ ¢’ +¢" + a(q®
+4°+q'+¢°) +a’¢°) = HD35(wi3¢,1,a) x HD35(2w154,1,a).
8.2.2. Two-column and a boz: [wy,w,] = [0,H].
The DAHA superpolynomial for the trefoil reads
HD3o(lw1,wa]; g, t,a) = 1+42gt+qt* + ¢°t* + ¢°t* + ¢*t* + ¢*t° + a(4¢®
2t = P = P gt 22 =2 + P43 — M+ 3
PP gt +a2(3¢  — PPt 23 gt 1 2g% 7 — Pt — 2t
F P A g 2 g — P M+ 1)+ aB (—g O
+ PO+ P =2 T+ Pt gttt = 2¢°t T Ot 27 R 2458
F P2 - O P at (—Pt T+ BT 4 Pt — ¢B70),
where the specialization relations for all n > 2 are
HD35([w1,wa]; q,t,a — —t"Th) = fD?; (wa 4+ wp;q,t).

The corresponding normalized HOMFLY-PT polynomial is given by formula
(A.4) from [21], as well as computed using (1.8):

Hop(T) = ¢ (@ (@420 +0"+ 0 +0 +0 +0") +a' (-20 " -2
—¢°=2¢°~24"=¢"—4"*) +a°(1+2¢° —¢" +¢°+2¢° +¢°) +a® (4— 24" +¢" —¢°)
+a’(=1+q+4*—¢%),
and we have the connection formula
a®q P HD3 5([w1,ws); ¢, t = q,a — —a) = H[DE] (T32).
The super-duality and evaluation are as follows:
t 7 HDy 3([2w1,w1]; ¢, t,a) = ¢ HDy g([wy,wol5t ™1, g7 ", a),

2
HD3 5([w,w2]; ¢, 1,a) = (14 ¢+ aq) (1 + ¢+ aq)
= HD32(w15q,1,a) x HD32(w2; 4,1, a).

The corresponding standard superpolynomials are

HD35(w1;q,t,a) = 1+ qt + aq,

a2q2

t
See e.g. [3] and references therein.

HDs3 5(w2;q,t,a) = 1+

at+ at+ it a (o 4 gt ).
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3.2.3. Three-column and a box: [w1,ws] = [0, E] This example is of deg, =
5, which matches our conjecture. The corresponding DAHA-superpolynomial
for the trefoil is as follows:

HD35([wi,wsl;q,t,a) =
142t +qt* + P2+ gt + PP 22 + PO+ P+ PO+ P+ B3t + 310
+ 0 a5 +¢* =20  + 2t — Pt — PP 27— 2652
+at 43¢ =Bt = Mt T 2Pt 5Pt 2 t + P AP AP B
P+ B 3¢M — Pt PP 4 2¢4° + 3¢S +q5t7+q5t9) +a2(q3—|—6q4
=3+t — 2Pt MO 2% — Pt — 2N T 4+ Pt 4 245
+ 3t —ag T P+ P 53T — 5t TP 5032 — 3¢Pt 2 4O
+ 33t +4gMt T — 4¢Pt FAqMt 4 Ot — Ot + 2 + 20717 + 3¢5t — 513
TPt 4ot _|_q6t6) +a3(q5 1= =g+ PO+ B8 —2g4 8 4 Pt 8
+ @3t =2¢ T T+t T+ 230 — 4Pt O+ 2¢0 O + 4¢P — 5Pt +¢5t
+3q4t74_2q5t74_q6t74+2q4t73+2q5t73_3q6t73_~_q7t73+4q5t72_2q6t72
245! —th_l+q6t+q6t2)+a4(—q5t_n Bt P10 o610 4 4449
_ 2q5t79 —|—q6t79 —|—q5t78 _ 2(]62578 —|—q7t78 —I—q5t77 _ 2q6t77 —|—q7t77 +2q5t76
—2g5476 4 ¢85 — qTt5 4 St — Tt 4 qﬁt—3) + a5(_q6t—12 T g7t
+q%t —¢"t79),
which is defined by (3.1) for all n > 3 and A = 2wy, p = ws:
HDs o([wr,wsls 4.t a s —£"7) = JDy (w3 + wig.).

The corresponding normalized HOMFLY-PT polynomial is

U E(T3,2> _ q716(a4(q20+q18+q16+q15+2q14+q13_|_2q12_|_q11_|_2q10
(A

4205+ %) + a7 (—q?0 — g — 310 — ¢15 — 3¢ —2¢"3 _4q'? —2¢" —4q"®
— 2% —4g® — " —24° —2g") +a5 ("5 +¢"0 +3¢" + ¢ +3¢"2 + ¢ +3¢'0 4 2¢°
3447+ 20420+ )+ a7 (P =P = — P = =0 — g — )+ B ((
¢+ "2 -+ q-1)+d(¢" ¢’ —q+1)).
One has: a'q '°HDj3 5([w1,ws);¢,t — q,a > —a) = HE (T32) and
O]

3
HD35([w1,ws); ¢, 1,a) = (1+ g+ aq) x (14 q+ aq)
= HDs35(wi5q,1,a) x HD32(ws;q,1,a).

- 460 -



Refined composite invariants of torus knots via DAHA

3.3. Three-hook and a box

The last case is [w) + wo,w;] = [H,0].

The corresponding DAHA-superpolynomial for the trefoil is

HDs 5([w1 + w2, wi]; ¢, t,a) =

14 3qt — qt* + 4% + 3% — 2% + 4313 + '3 — 23t + 4g™t* — M5 +3¢°t°
+ 51 +a(—2¢2 +12¢° —4¢° — ® +2qt 2 — Pt — Pt 6% — 245!
— 2"t — Pt — 4Pt + 16¢  + ¢°t — 465t — Tt — 6% 4+ 16¢°t% — 2¢7 12
— 453 +12¢%8% — 29713 — 313 — 24511 +-6¢"t* — *t* +-2¢51%) + 0 (—6¢° +26¢°
—8¢" =6+ + At =23 Mt 45032 —5gtt TP — 205t 3 4 %3
+qt 3 Pt 4 13¢ 2 =8¢t T2 =640t 2+t 2+ Bt — 4t 42240t
—8¢°t —9¢"t T + %t + ¢t —6¢°t +22¢"t —8¢°t —2¢°t —dq"t? +13¢°¢°
. 5q9t2 —|—q10t2 . q8t3 +5q9t3 . 2q10t3 +(]10754) +a3(_3q8 + 14q9 o 9q10 +q11
_q4t—6+q5t—6 +2q4t*5 —4q5t*5 +q6t—5 +q7t*5 +6q5t*4 _9q6t—4+3q8t—4
—2¢°t % +14¢% 70 = 144747 = 3¢% 7 +5¢"t 77 =3¢t 2 42197t —18¢% 7
= 3"t +3¢"t 7% = 5q"t T+ 21¢% T = 14¢°t " + ¢M T — 267t + 64"
—4q11t+q12t—|—2q11t2 —q12t2) +a4(q12 _q13 —qﬁt_7+q7t_7—|—q6t_6 _3q7t—6
+ 3t Pt gt =TSO+ 2% 2¢Ot — g T — T 8B

. 11q9t_4 + 2q10t_4 + 2q11t_4 . 2q8t_3 + 10q9t_3 . 11q10t_3 + 2q11t_3
Jr(1121573 B 2q9t*2 JrSqlofz - 7q11t*2 Jrqlzfz B qlofl Jr4(111t71 - 3q12t*1
+q13t_1) +a5(_q9t—7+q10t—7+q9t—6 —2q10t_6+q11t_6+2q10t_5 —3q11t_5

+ q12t75 . q10t74 + 2q11t’4 . 2q12t’4 + q13t74 + q12t73 . q13t73),

defined by (3.1) for A = w1 + wo, p = wy and all n > 2. The corresponding
normalized HOMFLY-PT polynomial is

H[Bj,m](T&z) _ q’s(a4(q14 +3q12 _q11 +4q10 —q9 +4q8 _q7+4q6 —q5
—|—3q4—|—q2)—|—a5(—2q15+ql4—5q13—|—4q12—10q11—|—5q10—12q9—|—6q8—12q7
+5q6—10q5+4q4—5q3+q2—2q)+a6(q16—2q15+6q14—6q13+11q12—11q11
+17¢*° —13¢° +18¢% —13¢" +17¢° —11¢° + 11¢* —6¢° + 64> —2q+1) +a" (¢*°
—3¢"%+4¢" —7¢" +10¢"% —14¢"" +14¢"° —18¢° +18¢° —18¢" + 14¢° — 14¢°
—|—10q4—7q3—|—4q2—3q—|—1)—|—a8(—q15—|—2q14—3q13—|—5q12—7q11—|—10q10—11q9
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F11¢% — 11¢7 +10¢° — 7¢° + 5g* — 3¢® +2¢2 — q) + a®(¢*% — 2! +2¢1* — 3¢°
+4¢% —3¢" 4+ 2¢° — 2¢° + q4)),
which reduces to the HOMFLY-PT polynomial as follows:
a*q O HD3 5([wy + wa,w1];¢,t > q,a — —a) = H[Hj’]:‘] (T32).

The exact super-duality identity from (2.19) is
t O HD3 5(Jw1 + w2, w1]; ¢, t,a) = ¢ HD3 o ([wy + wa,wi];t7 1, ¢ a).
The evaluation at ¢t = 1 from (2.20) reads
HDs 5([w1 +w2,w1]5 ¢,1,a) = (14 ¢+ aq)
x(1+q+aq) 1+ +¢+¢* +a*C +a(®+ ¢ +q¢"+°))
= HD3(w13q,1,a) X HD32(wi+ws;q, 1, a).

3.4. Two-rows and two-columns

One of the two diagrams in the previous examples was always a box. Let
us discuss the cases when two-row and two-column diagrams are combined.
They match well our conjectural formula (2.18) for deg,; we also checked
directly the super-duality and other properties provided by the theorems
above.

3.4.1. Two two-columns: [wa,ws] = E’ H]
HDj3o(lw2, w2]5 q,t,a) =

8 9 8 10 9 10 9 10 6
6(4 q q q q 2q q q q q q 5
I+a (W—W—W‘Ftﬁ—m‘i‘tﬁ—ﬁ'i‘m—ﬁ—m‘f‘ 1o)+a (—tT3+
7 6 7 8 6 7 8 9 6 8 9 8 9
q 3q 2 q q q q q 5q 59 2q 2q
t137_ t128+ 129_ t128 + t191 - t;l - 511 ™+ tlg {10 + t140 10 + t96 - t97 +
2q 4q 2q q q q a 4(_29° | 2q q 49 | 4q q
tT_T'i_T_ﬁ'i_T"’_tTi_th)—’_a (_ﬁ‘i‘ﬁ‘f'tl*o_tw‘i‘tﬁ_tﬁ"‘
6 8 5 6 7 8 5 6 7 7 8 6 7
q q 4q 10q 7q q 2q 6q 4q 6q 9q 3q 3q 6q
tT_tT+ 8 tB +T_t +77_t77+ t7 +tT_tT+ 6 +T_tT+
3¢° | 3¢7 _3¢° | 207 2¢° | a®\ L ooh 1 9042 4 1242 1 9,243 | 3,244 4 9,345
Tt ot ) T+ +q°t° +2q°1° +3q°t" +2¢°t° +
4 5 3 4 5 3 4 6 7 4
346, 448 3( 6, 7T ¢ q 2q 5q 3q 2q 4q 3q q 6q
2°°+qt°+a (¢ —tpt Iy Gttt T e —
12¢° | 7¢°  ¢7 | ¢t 11¢° | 2¢° | 247 | ¢* | 7¢°  124° | 44 10¢°  124°
t6 +T_tT+tT_ t5 +tT+tT+T+tT_ t4 +T+ t3 - t3 +
6

2 3 2 3 2 3 4
3q4t—q5t+6q3t2+q4t2—q5t2+7q4t3_q5t3+5q4t4_q5t4+2q5t5+2q5t6).
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Note that the specializations @ = —t"*! to A,, begins here with A4,_s.
We omit the formula for HDj o([2wr,2w1]; ¢,t,a), since it can be readily
obtained via the super-duality (checked numerically). Also,

HDj35([w2,wa]; ¢, t=1,a) = (1 + g + qa)™.

8.4.2. Two-column and two-row: |ws,2w;] = [H,r1]. Note that the a—degree
is 5 in this example vs. 6 in the previous one; AV contains now 3 boxes (it
is a 3—hook) in (conjectural) formula (2.18). This formula is self-dual with
respect to g+t~ t— g1 a > a (up to ¢°t*).

HD3 5([w2,2w1]; ¢,t,a) =

11 13 8 10 9 10 11 12 7
e g e e e T
q8 qQ 2(]10 12 10 11 12 13 9 10 11 q12 qll 13

2q q
+5 15 15 + +t4+77t747t74+ t4+ +t737t737t73+ e t2+

7 8 7 8 9 10 11

g A 272 +‘1t4 +t3+ +‘g—37‘§—37%—2§—3+3—3+ o + Ly
8 9 10 11 7 8 9 10 11

%—3—2—43—2—%?#27#6%+:7+ZT—:T—G—+q9t+q“t2)+a (q5 +4q +

L L I R A A
8 10 4 5 6 7 8

%+%+2%+%+4%+3%—4%—3i+q5t+q6t+q7t+4q8t q10t+2q7t2
812 1 943 1043 944 6 7_74_

3q 2+ + B+t +a(® + 383 +2¢" +2¢° — 5 —2¢"+ L+ %

G g4 20 4200 20° 4T 244 9044 BBt 2¢5t—q Tt — q8t+3q4t2

2q5t2+2q6t2+2q7t2 8t2+3q6t3+2q7t3+q5t4+q6t4+q8t4+q7t5 +q8t5)
The evaluation at ¢ = 1 from formula (2.17) now reads as follows:
HDB,Q([(’UQ, 2("-)1} v 4, t= 17 CL)
=(1+q+a0)’ A+ +¢ +q" +al@®+¢ +d" +¢°) +a’¢,
where the standard superpolynomial for 2w is

HD35(2wi; q,t,a) = 14 a®¢°+ ¢*t+ ¢*t+ ¢*t* + a (P + ¢*+ ¢*t+ ¢°t) .

Here and above we omit the formulas for the composite HOMFLY-PT
polynomials; they do satisfy the Connection Theorem 2.6.
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4. DELIGNE-GROSS SERIES

4.1. General procedure

Here we consider the “exceptional series”:
eCA  CAyCcGyCDyCFy,C EgC E;C Eg,

discussed in [7]. This is actually the bottom row of the triangle considered
in that paper; we are going to discuss it in full elsewhere.

Recall that the algebraic groups G in this series are given a parameter v
in this paper as follows:

where h" is the dual Coxeter number of G. This very quantity provides the
specializations of our hyperpolynomials.

The E—hyperpolynomials we will construct below unify the DAHA-Jones
polynomials (also called refined polynomials) for 732, T43 “colored” by the
adjoint representation for the groups of type ADFE in this series. The root
systems G5 and Fy play an important role in the exceptional series, but we
cannot incorporate them so far (see also the end of this section).

As with the (colored) superpolynomial and hyperpolynomials of [3, 4] and
the present paper, this unification works by packaging the corresponding
DAHA-Jones polynomials into a single polynomial, denoted by H, r“f (¢,t,a),
with an additional parameter a, where the individual polynomials are re-
covered via the following specializations:

—~G
H(q,t,a = —t(@)) = JD, ((ad;q,t), excluding Go, Fj. (4.1)
Thus a is associated with the (dual) Coxeter number, rather than with the
rank. Relations (4.1) appeared sufficient to determine H® for 732 and T3,
but this cannot be expected for arbitrary torus knots.

In general, such polynomials cannot be uniquely determined via these
specializations for sufficiently complicated torus knots; one needs an infi-
nite family of root systems in (4.1) to restore a for any knots. Practically
speaking, however, only two specializations to Fg and E7 are enough for
the trefoil. We will demonstrate this in detail below. Even more convinc-
ingly, the three specializations to Eg, F7, and Eg were enough for T%3; the
resulting polynomial has hundreds of terms.

Here we construct H?? for two knots, the trefoil 732 and T*3. We will call
this polynomial the adjoint exceptional hyperpolynomial, since we consider

- 464 -



Refined composite invariants of torus knots via DAHA

only the adjoint representations. As in [4], we use the name “hyperpolyno-
mial”, since “superpolynomial” is commonly reserved for the root systems
of type A.

For the trefoil we will show explicitly how HS% is obtained from the
relevant DAHA-Jones polynomials for Fg, 7 and the adjoint representation
a0 whose highest weight is the highest short root 9.

For T%3, we obtain HZ,% using the same procedure, though Fg is also
required to find some coefficients. Since the DAHA-Jones polynomials in
these cases are rather long, we do not include them and instead refer the
reader to [4] where they are posted.

Both H$% and H{% will satisfy all six of the defining specializations
from (4.1), even though they are only constructed using two and three of
these specializations, respectively. This is a convincing confirmation that
the formulas we found are meaningful. See Section 4.3, where we discuss
this relations and some further interesting symmetries.

4.2. E-type hyperpolynomials

4.2.1. Trefoil. Here we will demonstrate how H§°2 (g,t,a) is obtained from
only the specializations (4.1) for G of types FEg, E7. The relevant DAHA-
Jones polynomial for Eg from [3] is

—~E

JD3;(wg;q,t) = 1 q(t 104110 — 20 24 y29) 4 g2(12 4 416 4 420 426

120 330 434435430 | 444 4 449 4 458) | 3420 | 435 436 4 430 440 441

A5 9449 4 450 453 4 454 4 455 458 4 9459 4 463 4T3) | od(458 459 464 465
_f08 | 469 4 478 4TO | 482 483y 4 o5( 487 | 488)

and the relevant DAHA-Jones polynomial for E7 is

fDSE;(wl; Gt) =14 qt+t* 4+ — "2 — £ —t17) p (18 4 10 412 — 416
T 3418 420 g2 423 1426 4420 4 S1y 4 3417 421 42208 424 425
42T 9429 4 430 431,432 4 433 4344 0435 4 43T 443y od(;34 435 438 430

A0 | ALy 46 AT | 4d8  449) 4 o5( 451 | 452)
The (lexicographic) order in which these two polynomials are printed gives

a perfect, one-to-one correspondence between their terms. Furthermore, this
correspondence respects the signs + of these terms.
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For example, in this correspondence —g¢?t3° in the Eg polynomial is paired
with —¢%t?3 in the E; polynomial. Determining the common exponent x of
a that satisfies the right specializations from (4.1) readily reduces to finding
a solution to 39 — bz = 23 — 3z, since v(Eg) =5 and v(E;) = 3. Evidently,
this solution is x = 8, and the corresponding term in H§‘°2 will then be
—q2t_1a8.

Applying this procedure to every pair of terms in these two polynomials,
the adjoint exceptional hyperpolynomial for the trefoil is

H$%(q,t,a) = 1+q(t—ta+a®—a*+t7'a® —t7'a®) + ¢*(tPa® — ta® + a*
a4+t a8 —3a8 a4 aT — e — a0 — 20 ) 1 P (¢
AT taT it aB —a® —taPa® — 2t g0 1021l 11l 11 42,12
12t lal 120 4 20 gt (2 — e e 0! 2

bt laM 172010 — 171016 — 173017 4 42017) 4 P (—t 308 4 ¢ 2a8).

4.2.2. The case of T*3. As it was mentioned above, we will not provide
the corresponding formulas for DAHA-Jones polynomials for Eg g from
[3] here, since they are long. The adjoint exceptional hyperpolynomial for
the torus knot 743 can be constructed using essentially the same method

~E
as that for the trefoil. However, since the DAHA-Jones polynomials JD47Z

~FE
and JD4,; have now different numbers of terms, their lexicographic order-
ings are (for some powers of ¢) insufficient to determine a correspondence
between their respective monomials. These few ambiguities are resolved by

S —~ Es
also considering JD, 5.

Once such a correspondence between triples of monomials is established,
the a—degrees are uniquely restored using the relevant specializations from
(4.1), as for the trefoil. The resulting hyperpolynomial is long, but we think
that the formula must be provided, since it has various symmetries beyond
those discussed in the paper and we expect that further relations will be
found. For instance, its connection to the root systems Fy, G5 is an open
problem. One has: H{%(q,t,a) =

1—|—q(—t71a6+t71a5—a4+a2—ta+t)+q2(—t72a11+t71a10—t71a9—t71a8+
t_1a7+a7—4a6+ta5—|—t_1a5+a5—ta4—ta3+t2a2—|—ta2+a2—t2a—ta+t2+t)+
q3(t_2a15—t_2a13—|—3t_1a12—3t_1a11—t_2a11—a11—|—t_2a10+3a10—t_lag—tas—
t71a® —3a® +4ta” +2t7 0" + 247 — t2a° — 4ta® +t7a® — 4a® +#2a° + 2ta® + a® +
a4—t3a3—t2a3—2ta3+t3a2+2t2a2+ta2—t3a—t2a+t3)+q4(2t72a17—2t71a16—
17310 1 op— 115 412010 4o 1gM 21 _op— 1013 912018 _ 3013 44012 4
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3t a'? +6a'? — 3ta't — 5ttt + ¢ % —datt +2ta'® — 2t 7160 + 2410 +t2a° +
2ta’ +t71a® +2a° —4t2a® —5ta® + 17 1a® —6a® + 13" +4t%a” +Tta" +t 7 a" — 308 —
4t2a8 —2ta® +17'a® —ta® +t'a + 30 + 3t%a? +ta? + o' —t1a® — 2t3a® —t2a® —ta® +
t*a® +t3a® + t2a2) +q° (7t72a21 +t73020 41720 -3t e — 30 3 e
4172017 — 31T 12017 — 247110 — 472416 _ 3416 4 0p— 1415 _ 942415 4 34414 4
5t*1 W _y=2014 4 41442018 61013 gy—1018 Q18 4 342,12 L gy 12 gp=1,12 ¢
902 — 21201 — 4ta™ —t a4+ 2201 4! — 3010 — 242410 _ 4410 — 941410
3at0+4t2a® +5t%a° + Tta® +171a® +a°® —t*a® —4t3a® — 7% a® — 2ta® +2t 7 a® — 2a° +
t*a"+2t%a" +26%a" +ta” —2a" +t*aC +t2aC +tab +t e +ab —tPa® —tta® —2t3a® —
205 — 10 + 5% + %4 + 134 + 20 — t4a3) 44 (—t*2a23 4122 423022
12t 942020 432l 120 4 42020 4 op=119 4 =219 43,19 4 3,19
2ta'® — Tt g8 £ 242018 _ 47318 _ 418 4 3117 4 4t~ — 2017 — 243017 +
5at7 + 4t a0 4173010 — 2410 — 3120t —4ta'® —t7ta® — 3t 2a® — 6a'® + 30t +
6t2at* +8tatt — 2t 24 +6a** — 3t3at® — 4t%a'® — 9ta’® 4+ 3t 2at® + a*® 4+ 2t%at? —
a2 — 7102 4472012 — 012 140 136301 £ 21201 4 3ta el 20 +
U 44410 _ 03010 _6p2410 _ 410 4 41410 910 4 45,9 L yd 09 4 44309 4 0409
3a° —t3a® +2ta® +t7 0¥ +a® —t°a" —t3a” —ta” —a” +t%a8 +t*a® + %’ + aG) +
q7(—t_3a26—|—t_1a24+t_3a24—t_1a23—4t_2a23+2t_3a23—a23—|—3t_1a22—t_2a22—|—
£73022 44022 4 022 41021 | 942021 L op=B,21 4 21 33,20 5u—1,20 4 94—2,20
£73020 — 2420 4+ 9242019 1 31419 142019 — 343019 1 7019 — 242418 —2¢q'8 43¢~ 118 4
5t*2 18_4=3418 _ 4018 012017 4 0417 41017 612017 447317 _ 4017 4343416 +
£2016 4 51016 15 1g16 312016 4 16 44415 _ 343415 _ 34215 _ 44,15 L op—1,15
t—2a15 + M L5120 — 3tgM — T LM +t_2a14 Fthal 313 42213 _ 413
113 41218 713 512 _pAg12 4312 4212 gpn12 41012 4 y-2,02
a2 4151 42831 — 1201 4 talt — alt — #4010 4 3010 2010 4 2410 441410
209 — a? +ta8) gt (_tfsazs 17227 32T 44120 012025 43425 _ 025 4
Fa2t A2t 3202 £ B2t gt 1023 5323 9128 _ 92 _
22 gp-1,22 2t_2a22 3022 4 22 4 912020 _op 1420 4342021 _ 343521 4
402" — 320 — 4220 — 71420 4 672420 — 2473420 12420 4 2419 4 1419 — 51019 —
72019 447319 _g19 4 t3 18 _ 42,18 4 01018 L =118 _ 532418 _ 4417 042,17 4
tal + 3t 0l — 12017 4473017 — 3017 4 3016 — 17116 — 2016 _ #3415 4 42415 _
1015 13015 —2talt 1 lgM p 20 gl 113 L g8 12 12) +q° (t*2a29 o
£73g29 47128 412028 4328 4 44028 94=3,27 L 9y=4,27 L 4-1026 42,26
2t 1025 — 72025 1313025 214025 — 2025 41424 4+ 124 — 5t 2024 4 5t 3024 —
£ g2 o123 223 4323 422 41022 4 94-2,22 943,22 4 (22
2021 — 102! — 367121 42172020 4 g1 — 71420 — 172420 4 9420 4 41519 _ 19 _
2018 4+ r3al$) + qu(_t73a29 Lot 420 1529 442028 _0p 3428 4 44,28
+2026 404326 _ 4426 L 41425 _ 94=2025 4 t_3a25) +qtt (t_4a30 . t_5a30).
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4.3. Specializations

For {r,s} € {{3,2}, {4, 3}}, the following specializations, which are spe-
cial cases of (4.1), are easily verified:

ad 5 7 Es
Hr,s (g, t,a=—t") = JDr,s (ws;q,t),

—~ Er
H(q,t,a = —t3) = JD, ¢ (w13 q,t),

3
ad 2 A Fe
Hr,s (q7 t7 a = _t ) = JDr’s (WQ, q7 t)?

—~ Dy
HY(q,t,a = —t") = JD, ¢ (w23 q,1),

»S
— A
HE2(g.t,a = ~t2) = JD, (w1 +wsi g 1),
—~ A
HR(q,t,a = —t3) = JD, ; (2w1:q.1).
The DAHA-Jones polynomials for the first four specializations may be found

in [4]. The last two DAHA-Jones polynomials are specializations of the
DAHA superpolynomials from Section 3.1.

In addition to these defining specializations, the expressions for H,“g pos-
sess two structures that resemble the “canceling differentials” from [8] and
other papers. On the level of polynomials, these canceling differentials cor-
respond to specializations of the parameters with respect to which Hr“f

becomes a single monomial.

The simplest such specialization corresponds to the evaluation at t = 1
of DAHA-Jones polynomials. On the level of hyperpolynomials, we set a —
—t¥ = —1, which readily results in the relation

H¥R(qt=1a=-1)=1

The following example of a “canceling differential” is more interesting.
We set t = qa®. Then

Hg,aQ(qa ta CL) = q3t71a6 + (1 - qt71a6)93,2(qa ta a)a

H§%(q.t,a) = q"t"a® + (1 — gt~ 'a®)Qu3(q,t, a)

for some polynomials Q, (¢, t,a). Observe that gt—1a® — —qt" ~! in the
specialization a +— —t”. Upon this specialization, the above relations re-
flect the PSL%(Z)—invariance of the image of nonsymmetric Macdonald
polynomials Fy in the quotient of the polynomial representation of the cor-
responding DAHA under the relation qthv*1 = —1 by its radical. However
we did not check all details.
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Let us also mention potential links of our hyperpolynomials evaluated at
a = —t""and a = —1 to the root systems Dg and respectively Az, which
we are going to investigate elsewhere.

Finally, let us touch upon the root systems Go, F; in the Deligne-Gross
series. For v(G2) = 2 and for v(Fy) = 3, the corresponding specializations

of H' resemble the polynomials jbg;(wl; q,r,t) and ﬁgz (w13 q,7,t) from
[3] at = t, but do not coincide with them. Hopefully, these specializa-
tions are connected with the untwisted variants of these two DAHA-Jones
polynomials, but they are known so far only in the twisted setting.

Conclusion. Let us mention that we do not touch in this paper the
physics aspects of the composite superpolynomials (and those for other root
systems). See [11] concerning the corresponding theory of resolved conifold;
we thank Masoud Soroush for a discussion. In the refined case (related
to open Gromov-Witten invariants), this approach reached so far only the
simplest examples (our composite DAHA-superpolynomials are well ahead),
but this is an important motivation of what we did in this paper. In con-
trast to conventional Gromov-Witten invariants, a systematic theory of open
Gromov-Witten invariants is not yet developed. See e.g. [19] for a compre-
hensive account of this field.

Finally, we note that the counterparts of the HOMFLY-PT polynomials
for the classical series of root systems, for instance Kauffman polynomials,
can be generally addressed via Chern-Simons theory. Recall that DAHA
provide a uniform theory of (refined) DAHA-Jones polynomials for any
root systems and arbitrary weights (for algebraic knots/links), including
the hyperpolynomials for the classical series (conjecturally for B,C). The
exceptional DAHA-hyperpolynomials are quite a challenge for us (see the
last section).
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