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VERSAL DEFORMATION OF THE ANALYTIC 

SADDLE-NODE 

by 

Frank Loray 

To Jean-Pierre Ramis for his 60th birthday 

Abstract. — In the continuation of [10], we derive simple forms for saddle-node sin­
gular points of analytic foliations in the real or complex plane just by gluing foliated 
complex manifolds. We give a miniversal analytic deformation of the simplest model. 
We also derive a unique analytic form for those saddle-node having an analytic central 
manifold. By this way, we recover and generalize results earlier proved by J. Ecalle 
by using mould theory and partially answer to some questions asked by J. Martinet 
and J.-P. Ramis at the end of [11]. 

Résumé (Déformation verselle d'un nœud-col analytique). — Dans la continuité de [10], 
nous construisons une forme normale simple pour un feuilletage analytique au voisi­
nage d'une singularité de type nœud-col dans le plan réel ou complexe. Nous obtenons 
une telle forme en recollant des variétés complexes feuilletées. Nous en déduisons une 
déformation analytique miniverselle dans un cas simple. Nous donnons une forme 
unique pour un nœud-col possédant une variété centrale analytique. Nous retrou­
vons ainsi géométriquement et nous généralisons des résultats obtenus par J. Ecalle 
à l'aide de la théorie des moules. Ce travail répond partiellement à des questions 
ouvertes posées par J. Martinet et J.-P. Ramis à la fin de [11]. 

Introduction and results 

Let X be a germ of analytic vector field at the origin of C2 

X = / ( . r . y)dx + ,/(.,-. y)c)!r /, g e y} or C{x, y} 

having a singularity at 0: / (0 ) = g(0) = 0. Consider T the germ of singular holomor-

phic foliation induced by the complex integral curves of X near 0. A question going 

back to H. Poincaré is the following: 

Problem. — Find local coordinates in which the foliation is defined by a vector field 

having coefficients as simple as possible. 

2000 Mathematics Subject Classification. — 32S65. 
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168 F. LORAY 

In this problem, the vector field is considered up to analytic change of coordinates 

and up to multiplication by a germ of analytic function. For instance, if the vector 

field X has a linear part (in the matrix form) 

'a 
(ax + by )(),,. + (cx + dy)dy 

having non zero eigenvalues Ài,À2 G C with eigenratio À2/A1 0 M, then H. Poincaré 

proved that the vector field X is actually linear in convenient analytic coordinates. In 

this situation, the eigenvalues {Ai, A2} (resp. the eigenratio A2/A1) provide a complete 

set of invariants for such vector fields (resp. foliations) modulo analytic change of 

coordinates. 

In this paper, we consider unramified saddle-nodes, i.e. foliations defined by a vec­

tor field having (exactly) one zero eigenvalue and multiplicity 2. Following H. Dulac, 

such a foliation is defined in convenient coordinates by a vector field of the form 

( i ) X = x20X + ydy + xf(x, y)dy, I e C{x, y}. 

and one can further formally reduce the vector field X to a unique form 

(2) A';/ = x2dx + ydy + fjxydy, // C- C 

The complete analytic classification of those singular points has been given by 
J. Martinet and J.-P. Ramis in 1982 (see [11] or section 1), giving rise to infinitely 
many invariants additional to the formal one ¡1 above. The resulting moduli space 
is huge and we expect that a generic saddle-node cannot be defined by a polynomial 
vector field in any analytic coordinates (although this is open, as far as I know). 
A direct application of our recent work [10] provides the following 

Theorem 1. Let T be a germ of saddle-node foliation at the origin of M2 
(resp. of C2) in the form (1) above. Then, there exist local analytic coordinates 

in which T is defined by a vector field of the form 

(3) Xf = x2dx + ydy + xf(y)dy, f e C{y} 

where ff(0) — / 1 . 

This statement is a particular case of a general simple analytic form independantly 

announced by A.D.Bruno and P.M. Elizarov for all resonant saddles (A2/Ai £ Q~) 

and saddle-nodes in 1983 (see [3, 6]). So far, only the case of Theorem 1 with ¡2 = 0 

has been proved: it is presented by J. Ecalle as an application of resurgent functions 

and mould theory at the end of [5], p. 535. In 1994, P.M. Elizarov made an important 

step toward the analytic form announced by solving in [7] the associate cohomological 

equation. One can immediately deduce from his computations that the family Xf of 

Theorem 1 is miniver sal at / = 0: the coefficients of / play the role of Martinet-

Ramis' invariants at the first order. This will be rigorously stated in section 1, once 

we have recalled the definition (and construction) of Martinet-Ramis1 invariants. 
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VERSAL DEFORMATION OF THE A N A L Y T I C SADDLE-NODE 169 

It is important to notice that the form (3) is not unique. Of course, we can modify 

the functional coefficient / by conjugating the vector field with an homothety y ^ c-y, 

c G C*. But even if we restrict to tangent-to-the-identity conjugacies, the form (3) is 

perhaps locally unique at XQ (f = 0), but not globally for the following reason. By 

construction (see proof of Theorem 1), the form (3) is obtained with / (0 ) 7̂  0, even if 

the saddle node has a central manifold (see below). For instance, the model XQ has 

also another form (3) with / (0 ) ^ 0. 

From preliminary form (1), we see that {x = 0} is an invariant curve for the vector 

field that we will call strong manifold throughout the paper. Tangent to the zero 

eigendirection, there is also a unique "formal invariant curve" {y — ip(x)}, (p G 

or C[[#]], which is generically divergent. When this curve is convergent, we call 

it central manifold. A remarquable result of Martinet-Ramis' classification is that 

saddle-nodes having a central manifold form an analytic submanifold of codimension 

one (in the unramified case). For instance, saddle-nodes in the form (3) with / (0 ) = 0 

have the central manifold {y = 0} . Conversely, a natural question is: 

Problem. — Given a saddle-node like in Theorem 1 having a central manifold, is it 

possible to put it analytically into the form (3) with / (0 ) = 0 (i.e. simultaneously 

straightening the central manifold onto {y = 0}) ? 

For generic the answer is yes: 

Theorem 2. — Let T he a germ of saddle-node foliation at the origin of M2 
(resp. of C2 ) like in Theorem 1 with /i G C — M~. If T has a central manifold, 

then there exist local analytic coordinates in which T is defined by 

(4) Xf = x2dx + ydy + xf(y)dy, with / ( 0 ) = 0. 

Moreover, this form is unique up to homothety y 1—>• c • y, c G C*. 

In the remaining case // G R~, we will give necessary and suffisant conditions in 

section 4 in terms of Martinet-Ramis' invariants (see Theorem 8), thus providing a 

complete answer to the question above; in the case /1 = 0, the condition was al­

ready given by J. Ecalle in [5], p. 539. It turns out that these conditions are very 

restrictive (infinite codimension). For instance, when ¡1 G —N*, only the saddle-nodes 

analytically conjugated to the formal model (2) can be normalized to the form (4). 

In particular, for each ¡1 G —N*. the subfamily of those Xf satisfying / (0 ) = 0 and 

/ ; (0) = fi provides a codimension two analytically trivial deformation of the formal 

model (2). 

Accidentally, our method to prove Theorem 2 provides in turn a simple form for 

saddles: 

Theorem 3. — Let T be a germ of saddle foliation at the origin of M2 (resp. of C2) 

with eigenratio —¡1 < 0. Then there exist local analytic coordinates in which T is 
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170 F. LORAY 

defined by a vector field of the form 

(5) Xf = ~xdx + + x)ydy, with / ( 0 ) = 1. 

This latter form is not unique: for generic //, all Xf are conjugated. For saddle-

nodes having a central manifold that cannot be transformed into the form (4), it is 

possible to give an alternate unique form as follows. 

Theorem 4. — Let J7 be a germ, of saddle-node foliation at the origin of W2 
(resp. of C2) like in Theorem 1 having a central manifold. Let n £ N be such 

that /ji-\-n 0 M~. Then, there exist local analytic coordinates in which T is defined by 

a vector field of the form 

(6) Xf = x2dx + ydy + xyf(xny)dy, where f(0) = /i. 

Moreover, this form is unique up to homothety y C • y, c £ C*. 

Acknowledgements. — Many thanks to Bernard Malgrange who helped us to improve 
the presentation. 

1. Martinet-Ramis' invariants 

We recall the construction of [11]. Consider a saddle-node in Dulac preliminary 

form (1) 

x = x2dx + ydy + xf(x, y)dy. f e C { x , y } . 

The Sectorial Normalization Theorem due to Hukuhara, Kimura and Matuda reads 
as follows. For a sufficiently small r, e > 0, there exists on each of the two sectorial 
domains V+ and V~ 

V± := {\x\ < r, \y\ < r, 0 - s < a r g ( ± x ) < n + s} 

a unique holomorphic diffeomorphism $ ± : V± —* <^>±(VA±) C C2 of the form 

$>(x,y) — (x, <fi(x, y)), which is tangent to the identity at (0 ,0) and conjugating the 

saddle-node above to its formal normal form (2) 

XM := x2dx + ydy + jixydy. 

The model X^ admits the first integral Hf2(x,y) \= yx~^e 'x. Once we have fixed 

determinations of on the sectors V± coinciding over {—e < arg(x) < we 

immediately deduce sectorial first integrals H± := H^o^ for the initial saddle-node. 

On the overlapping fi V~, the two first integrals H+ and H~ factorize in the 

following way. Over V° = {TT—e < arg(x) < TT+C}, the first integrals H+ and H~ both 

identify the space of leaves with a neighborhood of 0 £ C, the size of which depending 

on the radius r: one can write H~ = </?° o for some germ of diffeomorphism if0 £ 

Diff(C,0). Over the other overlapping V°° = {—e < arg(x) < + £ } , the first integrals 

H+ and H~ both identify the space of leaves with C: one can write H~ — Lp°° o 

for some affine automorphism if00 of C. From the asymptotics of ^ and the choice 
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of the determinations , one easily deduce that the linear parts of IP° and (P°° are 

respectively E2L7T^1 and 1. 

We have thus defined the moduli map: 

(7) X i—> 
/ ( C ) = e 2 i ^ f + En^2 GnCn ^ Diff (C, 0) 

^°°(C) = C + ¿ e C (a translation) 

The main result of [11] is 

Theorem (Martinet-Ramis). — Any two saddle-nodes into the form (1) are conjugated 

by a tangent-to-the-identity diffeomorphism $ : (C2,0) —> (C2,0), D$(0) = I, if, and 

only if, they have the same image through the moduli map above. 

Moreover, the moduli m,ap is surjective: any pair ((p°,(p°°) G Diff(C, 0) x C can be 

realized by a saddle-node of the form (1). 

Two saddle-nodes X and X in the form (1) can be conjugated by a diffeomorphism 

<£> : (C2, 0) —» (C2, 0) with a non trivial linear part, namely an homothety in variable y. 

In this case, the corresponding pairs are conjugated by an homothety: 

( c - Í ^ O . c - ^ O ) = (<P°{C-0,<P°°(C-Q), for some c € C*. 

This equivalence relation on Diff(C,0) x C provides a complete set of invariants for 

saddle-nodes with multiplicity 2 with respect to the analytic conjugacy. 

The classification above is a foliated version of Ecalle-Malgrange-Voronin classifi­

cation of tangent-to-the-identity maps. Let us recall the Martinet-Ramis presentation 

in the case of multiplicity 2. Any p(x) = x + 2'IITX2 + • • • G Diff (C, 0) is conjugate by 

formal change of the coordinate to the 1-time map p^ := exp(2i7T x* dx) for a unique 

¡1 G C. On sectors V^1 like the ones above (without variable y)1 Leau's Theorem says 

that one can conjugate the dynamics of p with that of p^ by tangent-to-the-identity 

sectorial diffeomorphisms After composition with convenient determinations of 

the ipu-invariant function H^(x) := x"Me1//,T, one deduce sectorial invariant functions 

H± identifying the quotients of V± by the dynamics with C*. On V° (resp. V°°) 

defined as before, the functions H± identify the set of (^-orbits with a punctured 

neighborhood of 0 (resp. oo) whose size depend on the radius of the sectors V±. 

Therefore, one can write H~ = pP o (resp. H~ = (p°° o H+) for some germ of dif­

feomorphism (p° G Diff(C,0) (resp. (p°° G Diff (C, oo)). The respective linear parts of 

those diffeomorphisms are e2l7T^ and 1. The Ecalle-Malgrange-Voronin Theorem can 

be stated like Martinet-Ramis Theorem above except that <p°° can be any convergent 

power series C + En<o anC• 

Theorem (Martinet-Ramis). — The analytic invariants (<£°, (p°°) of a saddle-node into 

the form (1) coincide with the analytic invariants of the holonomy map p{x) = x + 

2i7TX2 + • • • of the strong manifold {x = 0 } . 
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172 F. LORAY 

Therefore, any two saddle-nodes in the form (1) are analytically conjugated if and 

only if the holonomy maps of the corresponding strong manifolds are analytically 

conjugated in Diff(C,0). 

Another consequence is that very few tangent-to-the-identity maps (p(x) = x -f-

2mx2 + • • • G Diff(C, 0) are the holonomy map of the strong manifold of a saddle-

node into the form (1). 

Theorem (Martinet-Ramis). A saddle-node into the form (1) admits a central man­

ifold if and only if the translation part of the analytic invariants if00) is trivial. 

In this case, the holonomy of the central manifold coincide with tp°. 

When there is a central manifold, we note that the analytic class of the saddle-node 

is given by (f° up to linear conjugacy; the conjugacy class of cp{) in Diff (C, 0) does not 

characterize the saddle-node in general. 

We also note that any germ of diffeomorphism <p°(C) = e2l7r^( + • • • G Diff(C,0) 

is the holonomy map of the central manifold of a saddle-node of the form (1) with 

formal invariant //. 

There are similar constructions and results for saddle-nodes 

X = xMdx + ydy + xf\f(x. y)dy. f G C{.x, y}. 

with higher multiplicity, k G N*, and for tangent-to-the-identity germs <p(x) = x + 

2iixxk+l H G Diff(C.O) giving rise to multiple moduli (<p?, ^?°)z=i,...,fc 

(8) X i—> 
v??(C) = e2i7r^/fcc + • • • G Diff(C, 0) 
^ r ( C ) = ( + ••• G D i f f ( C . o c ) 

where, in the saddle-node case, all (ff° are translations. Those 2/e-uple have to be con­

sidered up to simultaneous conjugacy by an homothety and up to a cyclic permutation 

of the indices { 1 , . . . , k}. We omit the precise statements here. 

Let us now consider the following family of saddle-nodes (e > 0) 

XE x2 

1 + /XX 
dx +ydy +sf(x,y)ydy, f 

m<0, n<1 

frn.nXmyn G 
1 

£{x,y} 

with /0,0 = /0,1 = /1,1 = 0, so that multiplicity is 2 and formal invariant ¡1, and 

consider its Martinet-Ramis' invariants (depending on e) 

<p°(0 
e2iPµS 

n>0 

<pnC+1 and ^°°(C) = C + * 

Then, the main result of [7] reads 
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VERSAL DEFORMATION OF THE ANALYTIC SADDLE-NODE 173 

Theorem (Elizarov). The derivative (in the sense of Gateau) of Martinet-

Ramis 'moduli at e = 0 is given by 

d(f7l 

de 
£ = 0 

77/m_1e_2¿7rn/x 

m>0 

m 
r ( l + m + fin) 

/ m , „ ( - n ) m 

and 
dt 

de 
£ = 0 ( - l ) - ^ 2 ^ 

m>0 

m 

r ( l + m - ¿ O 
/ m , - l ( - n ) m 

where T is the Eider's Gamma Function. 

For instance, if we restrict to the family (3) of Theorem 1, we have 

f(y) 

n>0 
anyn i—> 

if°(C) = E2I™'( •n>2 anCU 

^ ° ° ( C ) C + ao 

In particular, the derivative at XQ is bijective. The theorem above motivates the 

following analytic form announced in [3] 

Conjecture (Bruno-Elizarov). Any saddle-node in the form (1) with formal invari­

ant fi can be analytically reduced to the form 

(9) x2dx + ydy + x FO + № + 

(m,n) e Es 
frn,nXmyn+1 Gy 

with support in the strip Es = {(m, n); n > 0, ^ + 1 ^ m < ^ + 2} /or an?/ s/ope 0 < 
s ^ +oo such that Es does not intersect the set of resonances {(m, n);m + fin G —N}. 

For s = +oo, Bruno's form (9) coincides with our (3) without restriction on fi 
(E^oo contains resonances for //, G Q*). 

2. Proof of Theorem 1 

We repeat the geometric construction of [10]. Consider the germ of foliation TQ 
defined by a vector field XQ of the form (1) 

X0 = x2dx + ydy + xf{x, y)dy, f G C{x, y}. 

Maybe replacing y by x + y, the linear part of X0 is given by 

'0 0N 
c 1, 

{cx + y)dy with c = / ( 0 ) ^ 0 . 

Therefore, the vector field XQ is well-defined on the neighborhood of any small hori­
zontal disc A0 = {\x\ < e} x { 0 } , £ > 0, and transversal to A0 outside the singular 

point. Consider inside the horizontal line L = C x {0} the covering given by Aq and 

Aqo = {|x| > e/2) x { 0 } , and denote by C — A0 fl Aoc the intersection corona. By 

the flow-box Theorem, there exists a unique germ of diffeomorphism of the form 

$ : (C2,C) — (C2,C) ; (x,y) (<t>(x,y),y), <P(x,0) = x 
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174 F. LO RAY 

straightening JF0 onto the vertical foliation (defined by dy) at the neighborhood 

of the corona C. Therefore, after gluing the germs of complex surfaces (C x C, Ao) 

and (C x C,Aoo) along the corona by means of <3>, we obtain a germ of smooth 

complex surface S along a rational curve L equipped with a singular holomorphic 

foliation T and a (germ of) rational fibration y : (5, L) —>• (C, 0) (an holomorphic 

fibration whose fibers are biholomorphic to C). Following [8], there exists a germ 

of submersion x : (5, L) —> C completing y into a system of trivializing coordinates: 

(x,y) : ( S , L ) - > C x (C,0). 

FIGURE 1. Gluing (bi)foliated surfaces 

At the neighborhood of any point p £ L, the foliation T is defined by a (non unique) 

germ of holomorphic vector field, or equivalently by a unique germ of meromorphic 

vector field of the forrr: 

X = f(x, y)d, + dy 

with / meromorphic at p. By unicity, this meromorphic vector field is actually globally 

defined on the neighborhood of L and is therefore rational in x, i.e. f is the quotient 

of two Weierstrass polynomials. For y fixed (close to 0), the horizontal component 

f(x.y)dx defines a meromorphic vector field on the corresponding horizontal line 

C x {y} whose zeroes and poles coincide with the tangencies between T and the 

respective vertical and horizontal fibrations. By construction, we control the number 

of poles: in the second chart, T = is transversal to y, although in the first chart, 

JF = JF0 has exactly one simple tangency with any horizontal line. It follows that, for 

y fixed, the meromorphic vector field f(x,y)dx has exactly 1 simple pole and thus 3 

zeroes (counted with multiplicity). 

Of course, in restriction to L, the pole vanishes together with one zero at the 

singular point of T. We conclude that the vector field X defining the foliation T 

takes the form 

(10) X 
My) + fi(y)x + f2(y)x2 + MyW 

9o(y) + gi(y)x 
dx dy 
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{x = 0} 
{x = 00} 

F I G U R E 2. Uniformization 

with fi,gj G C{y}. Up to a change of projective horizontal coordinate x : = 
{t(y)xtd{y]} 011 ^ ' one can assume that = 00 } is a vertical leaf of T, that {x = 0} 
is the invariant curve of the saddle-node tangent to the non zero eigendirection and 
that T has a contact of order 2 with the vertical fibration along {x = 0} (likely as in 
the local form (1)). Therefore, /0, /1, /3 = 0 and, reminding that T§ is an unramified 
saddle-node with O-eigendirection transversal to L, we also have /2(0) ^ 0, #i(0) / 0, 
#o(0) — 0 and <7n(0) 7̂  0. After division, T is actually defined by a vector field of the 
form 

X = x2dx + (f(y)x + yg(y))dyi / (0) ,g(0) ± 0. 

After change of ̂ /-coordinate, one may normalize the holomorphic vector field yg(y)dy 
to g(0)ydy; after division by ^(0) and linear change of the x-coordinate, we finally 
obtain the form (3). 

3. Gluing Lemmae 

Although Theorems 2, 3 and 4 can be shortly proved by using Savelev Theorem 
[15] like in [10], we provide an alternate proof more "down to the earth" where we 
simultaneously construct the auxiliary fibration during the gluing construction. In 
order to do this, we need some lemmae allowing us to glue pairs of non transversal 
foliations. 

The order of contact between two germs of regular holomorphic vector fields X\ 
and X2 at 0 G C2, or between the corresponding foliations, is by definition the order 
at 0 of the determinant det(Xi,X2). For instance, X\ and X2 are transversal if and 
only if they have a contact of order k = 0. Now, if those two foliations share a 
common leaf, and if moreover there is no contact between them outside this leaf, then 
the contact order k G N* is constant along this common leaf and classifies locally the 
pair of foliations: 

Lemma 5. — Let J7 be a germ of regular analytic foliation at the origin ofC2 (orM2) 
having the horizontal axis L0 : {y = 0} as a particular leaf and having no other contact 
with the horizontal fibration {y — constant}: T is defined by a unique function (or 
vector field) of the form 

F{x, y) = y + ykxf{x. y) with /(() . 0) / 0 

(or X = g(x, y)dx + yhdyi with # (0 ,0 ) + 0) 
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176 F. L O R AY 

where k G N* denotes the contact order between T and the horizontal fibration. Then, 

up to a change of coordinates of the form <3>(x, y) = (<fi(x,y),y), the foliation T is 

defined by the function (or vector field) 

Foix, y)=y + xyk (or X{) = dx + ykdy). 

The restriction of $ to L0 is the identity if and only if f(0pw) = 1. Moreover, the 

normalizing coordinate $ is unique once we have decided that it fixes the vertical axis, 

i.e. cf)(x.y) = xé>(xry). 

Proof Given T as in the statement, choose F(xpy) to be the unique function 

which is constant on the leaves and has restriction F(Q, y) = y on the vertical axis: 

F(xpy) — y(l -h xF(x,y)). The assumption dF A dy — yku(x,y), ¿¿(0,0) ^ 0, yields 

F(xpy) — yk~l f(x,y) with / (0 ,0) 0, whence the form F(x,y) = y + xyhf(x,y). 

Now, we have 

F = F0 o $ o with <I>(,(./\/y) = (xf(x./y)ry). 

Thus, >̂o i« the unique change of x-coordinate which conjugates the functions F 

and F0; in particular, it conjugates the induced foliations. 

Conversely, assume that &(xpy) = (o(.r. y). y) is conjugating the foliations respec­

tively induced by F and F0\ we have 

FQ O $ ( x , y) = po o F(x, y) with (p(y) = y + yko{0. y) 

(the germ po is determined by the equality restricted to {w = 0} ) . If we decompose 

f(xpy) = u(x) + ///'(./'. / / ) . we notice that p) o F(x.y) = y + xyk(u(x) + yv(xpy)), so 

that 0(x',O) = .x'i/,(,r) = xf(xA)). Finally, if o(x. y) = xo{x. y). then <p(y) = i/ and $ 

actually conjugates the functions: we must have $ = $0 whence the unicity. 

Now, if T is defined by X = f(xpy)dx + g(x,y)dy, assumption gives dy(X) = 

g(xpy) = ykg(xpy) with /(() , 0), #(0, 0) / 0. After dividing X by g, we can write 

X — f(xpy)dx + V' fV,,. We have already proved that any two such foliations (in 

particular those induced by X and XQ) are conjugate by a unique diffeomorphism 

of the form $(x,y) — (x(p(xpy):y). Now, if $(xpy) = {(j)(x,y),y) conjugates the 

foliations respectively induced by X and it actually conjugates these vector fields. 

In restriction to the trajectory L0, we see that 0(;r, 0) conjugates X\L0 = f(x, 0)dx to 

the constant vector field dx. Therefore, (j)(xA)) = ^ Q^ d( and é(x, 0) = x if, and 

only if, /(:r,0) = 1. • 

For the next statement, denote by Q C (C x {0}) a connected open domain inside 

the horizontal axis. 

Lemma 6. — Let T and T' be regular holomorphic foliations defined at the neighbor­

hood of ft in C2 both having O as a particular leaf. Assume that the contact between 

each foliation with the horizontal fibration [y = constant} reduces to ÇI, with same 
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VERSAL DEFORMATION OF THE A N A L Y T I C SADDLE-NODE 177 

order k G N*. In other words, T and T' are respectively defined by vector fields 

X = f(x, y)dx + y % and X' = f(x, y)dx + ykdy 

where f and f are non vanishing functions in the neighborhood of ft. Then, T and 

T' are conjugated in a neighborhood of ft by a diffeomorphism of the form $>(x,y) = 

(x + y4>{x, y)i '^(y)) (fixing ft) if, and only if, the two following conditions hold 

(1) / » . ( > ! /'i.r.ll;: 

(2) the respective holonomies p) and p)' of T and T' along il are analytically con­

jugated: 1p o p> = if' o i/;. 

Proof — Following Lemma 5, condition (1) is the necessary and sufficient condition 

for the existence of local conjugacies <£> = (y<fi(x,y),y) between T and T' at the 

neighborhood of any point WQ G ft. Fix one of these points and consider the respective 

holonomy maps ip and p)' computed on the transversal T : {x = .To} in the variable y. 

By condition (2), up to conjugate, say T', by a diffeomorphism of the form {x. r(//)). 

we may assume without loss of generality po(y) — <p'(y). We start with the local 

diffeomorphism &(x,y) = (y<fi(x,y),y) given by Lemma 5 conjugating the foliations 

and fixing T. Since $ conjugates the corresponding vector fields X and X', it extends 

analytically along the whole of ft by the formula <3>(p) : — o $ o &x(p). The 

condition p>{y) = T°'{y) implies that is uniform. • 

Here is a last gluing Lemma for pairs of regular foliations T and Q at the neigh­

borhood of a common leaf ft. Again, ft is a connected open subset of the horizontal 

axis H e (Cx {0}) - When Q is the horizontal fibratiom the following Lemma reduces 

to the previous one. 

Lemma 7. Let T and Q (resp. T' and Q' ) be regular holomorphic foliations defined 

at the neighborhood of ft in C2 both having il as a regular leaf. Assume that the 

contact between T and Q (resp. T' and Q' ) reduces to ft, with same order k G N*. In 

other words, the foliations above are respectively defined by vector fields 

X = dx + ///(./•. y)dy and Y = X + ykg(x, y)dy, 

{resp. X' = dx + yf'{x,y)dy and Y' = X' + ykg'(x,y)dy) 

where g and g' are non vanishing functions in the neighborhood of ft. Then, T and, Q 

are simultaneously conjugated to T' and Q' in a neighborhood of ft by a diffeomorphism 

of the form $(x, y) = (x + yo(x. y)pyxi){x, y)) (fixing point-wise il) if, and only if, the 

two conditions hold 

(i) for any (and for all) XQ G il, we have 

g(x,0) 

e x p ( - / x ; / ( C , 0 ) d C ) 

g'(x,0) 

e * P ( - J * / ' ( C , 0 ) d C ) ' 

(ii) the respective pairs of holonomies (p)j=-.(pg) and ((pF',ifgf) along il are simul­

taneously analytically conjugated: •'([) o pjjr = p>jr; o 0 and if> o p?g — p)g> o -0. 
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Proof. — It is similar to that of the previous Lemma. Up to a change of coordinate 

y :— ip(y) (which does not affect neither / (# , ( ) ) , nor g(x,0) and hence preserves 

equality (i)), we may assume that holonomies ((f^, tpg) = (^', ipg>) actually coincide 

on a transversal T : {x = XQ}. We just detail that condition (i) exactly provides the 

existence of local conjugacies between the given pairs of foliations fixing point-wise Q; 

the unique conjugacy fixing T will extend uniformly along Vt by (ii). 

At the neighborhood of any point (#o,0) £ ^ , say XQ = 0 for simplicity, we 

preliminary conjugate X to XQ = dx by respective local changes of ^/-coordinate 

*(x,y) = {x,y^(x, y)), 0 ( 0 , 0 ) ^ 0 

^*X = X0 = dx and = Y0 = zkg0{x, y)dz + dw 

Doing the same with the pair X' and F;, we see by Lemma 5 that the corresponding 

pairs of foliations are conjugated by a diffeomorphism fixing point-wise {y = 0} if, and 

only if, the differential form cu = go(x10)dx along Q coincide with the corresponding 

one UJ' = gfo(x,0)dx for XQ = XQ and Y$' = dx + ykgo(x,y)dy. This 1-form uo can be 

redefined in the following intrinsic way: the holonomy of Q between two transversal 

cross-sections To and T\ computed in any coordinate y which is J^-invariant (here T 

is defined by dx) takes the form 

A (y) y + x1 

x0 
UJ 

yk 
(higher order terms) 

where (xz, 0) := T% fi £2, i = 0 ,1 . Since 

^X0 = dx 
uv 

ip + YRU 

yAy and ^*y0 = ^XQ 
9o 

4) + yipy 

ykAy, 

(ipx and i/jy are partial derivatives of we derive in restriction to U 

f(x,0) 
ux (x, 0) 

# c o) 
and (jo(x, 0) = il'(x, 0) • g(x, 0) 

yielding the formula for the local invariant of our conjugacy problem 

UJ 
g(x,0) 

exp(- , / ; ; ( i / (c ,o)ric) 
dx. 

4. Proof of Theorem 2 

Given a saddle-node foliation T of the form (4), it is easy to verify that its analytic 

continuation at the neighborhood of the horizontal line L — C x {0} satisfies 

(1) the line L is a global invariant curve for T", the union of a smooth leaf together 

with 2 singular points; 

(2) the point x — 0 is a saddle-node singular point with multiplicity 2, formal 

invariant ¡1 and invariant curve {xy = 0}; in particular, the saddle-node has a central 

manifold which is contained in L; 
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(3) the point x = oo is a singular point with eigenratio — ¡1 and invariant curve 

{x = ^}U{y = 0}; 

(4) the foliation T has a contact of order 2 with the vertical fibration along the 

invariant curve {x = 0} (in the sense of section 3). 

¡1 > 0 : 

{x = 0 } {x = 00} 

¡1 < 0 : 

FIGURE 3. Geometry of the second normal form 

Conversely, a germ of foliation T on C x (C, 0) satisfying conditions above can 

easily be transformed into the form (4). Indeed, T is defined by a unique vector field 

of the form F{x. y)dx -f dy with F meromorphic at the neighborhood of the line L. 

In restriction to the horizontal lines, the vector field F(x, y)dx is rational; its zeroes 

and poles coincide with the points where the foliation T is respectively vertical and 

horizontal. Because wc have two singular points of multiplicities 1 and 2 along L, 

we deduce that F(x, y)dx has 3 zeroes (counted with multiplicity) in restriction to 

each fiber; hence, it it has exactly 1 pole (the divisor of a vector field has degree 2 

on C). From conditions (2) and (4), we actually see that the zeroes are supported by 

the vertical invariant curves, that L gives contribution for 1 pole and one can write 

F(x.y) = •jty( ^or h°l°morPhic functions f\g £ C{y}. It is easy to verify 

that / and g do not vanish at y = 0 otherwise the singular points would be more 

degenerate. Therefore, the foliation T is also defined by the holomorphic vector field 

X = ,r2Ö, + (f(y)x + g(y))yOy, /(()) .5(0) / 0. 

After a change of //-coordinate, one may linearize the holomorphic vector field yg(y)dy 

to g(0)yOy: after division by g(0) and linear change of the ./-coordinate, we finally 

obtain the form (4). 

A necessary condition for a saddle-node to admit a form (4) is that the holonomy 

of the central manifold, which actually coincides with Martinet-Ramis' invariant <p° 
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{x = 0 } 

J x = 00} 

FIGURE 4. Holonomy compatibility 

(see section 1), is also the anti-holonomy of the invariant curve L around the singular 

point x = 00. This gives restriction for p°, and hence for the saddle-node, at least 

when /1 G R~. In the case /1 < 0, the other singular point is linearizable by Poincare's 

Theorem implying the linearizability of the holonomy map ip°. Here, we use prop­

erty (3) above and the fact that, in the resonant (non linearizable) case, the node has 

only one irreducible germ of invariant curve. In the case // = 0, the holonomy (p° 

is tangent to the identity and its inverse (p0)^1 must be the holonomy of the strong 

manifold (the invariant curve tangent to the non zero eigendirection) of a saddle-node 

having a central manifold. Following section 1. this is equivalent to condition (3) of 

Theorem 8 below. 

Theorem 8. Let J7 be a germ of saddle-node with multiplicity 2 at the origin 0/R2 

(resp. of C2) having a central manifold. Then, there exist analytic coordinates in 

which T is defined by a vector field of the form (4) 

Xf - .v2d.i: + ydy + xf(y)dir with ./'(()) = 0. 

(a,nd ¡1 — ff(0)) if, and only if we a/re in one of the following cases 

(1) // G C - R - , 
(2) // < 0 and ifo is linearizable up to conjugacy in Diff (CO), 

(3) // = 0 and Martinet-Bmnis' invariants (r3[).ro'^c), of ip0 satisfy: all ̂  are linear. 

When //. 0 Q~, the form (4) is unique up to homothety y 1—> c • y. c G C*. 

Recall that condition (2) is automatic as soon as // is a Bruno number: 

// G B 

n>0 

log(tf„.+i) 

(In 
< OC 

(where pn/qn stand for successive truncatures of the continued fraction of |/x|). The 

set B has full Lebesgue measure in R. For all other values // G R~ — B, condition (2) 

is very restrictive for po. and thus for the saddle-node. 
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Like in Section 2, we start with a germ of saddle-node T§ defined on the neighbor­

hood of some disc A0 and glue it with a germ of foliation along a complementary 

disc AQO in order to obtain a germ of 2-dimensional neighborhood S along a rational 

curve L equipped with a singular foliation T. The difference with Section 2 is that we 

now glue T§ and along a common invariant curve, in such a way that L becomes 

a global invariant curve for the foliation T. We do it first respect to the vertical 

fibration; this is very easy but we need the difficult Savelev's Theorem to recover the 

triviality of the neighborhood (and the rational fibration). Then, we give an alternate 

gluing using technical (but elementary) Lemmae of section 3 in which we keep on 

constructing by hands the rational fibration. 

FIGURE 5. Gluing picture 

We start with T{\ into Dulac preliminary form 

X0 = x2d.r + ydy + •/•///(./•. y)i)fr f e C{x. 2/}, / ( 0 ) - // 

(when the saddle-node has a central manifold, the form (1) can be achieved with 

the central manifold contained in {y = 0} . see [11]). Consider, in local coordinates 

(x = I / ./'. //) at infinity, a germ of singular foliation defined by 

A \ = I'd, - (//• + fj(x, y))yd,r ry(0) = 0. 

Up to a linear change of .r-coordinate. one may assume that is actually defined 

on the neighborhood of . Obviously, there exists a germ of diffeomorphism of the 

form 

<I> : ( C 2 . C ) (C2, C) ; (.R. y) ^ è{x, y)). <p(x. 0) = 0 
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gluing TQ with Too if, and only if, the respective holonomy maps around the corona 

C = A0 H Aoo are conjugated in Diff (C. 0 ) . 

When \i 0 M, the holonomy map <p° of To around C (or x = 0 ) is hyperbolic and 

hence linearizable by Kcenigs, Theorem. It is therefore enough to choose Xoo linear. 

When /i > 0, then the holonomy map ip° can be realized as the holonomy of a saddle 

Too like above following [12, 14]. When ¡1 < 0 and (p° is linearizable, we obviously 

realize it with Xoo linear. Finally, when ¡1 — 0, condition ( 3 ) of Theorem 2 is exactly 

the one to realize (t̂ 0)̂ 1 as the holonomy of the strong manifold of a saddle node 

Too having a central manifold. After gluing To and Too along C, we obtain a germ of 

surface S containing a rational curve L which, by Camacho-Sad's Formula (see [4]), 
has 0 self-intersection in S. Following Savelev's Theorem [15], there exists a system 

of trivializing coordinates: (x,y) : ( 5 , L) —> C x (CO). Up to a change of trivializing 

coordinates x : = { } and y — (f(y) on S, one may assume properties ( 1 ) , ( 2 ) , 

( 3 ) and (4) of the begining of the section all satisfied. Therefore, T is defined by a 

vector field of the form (4). The existence part is proved. • 

Let us now show how to avoid with Savelev Theorem by using section 3. We first 

choose germs of foliations To and Too with compatible holonomy as in the previous 

proof. Instead of Xq, we define the foliation To by the meromorphic vector field 

x0 
x1 

l + xf(x,y) 
0X + ydy. / (0 ) = FI. 

After a local change of the ^-coordinate, we may assume that the restriction XQ\L — 

i+x/(x o) d.v to L = [y = 0 } coincides with the global meromorphic vector field i+ dx. 

By the same way, the alternate meromorphic vector field 

X8 X 

fi + g(l/x.y) 
dx + ydy. fif(0) = 0 . 

defines Too at the neighborhood of x = oc and its restriction /l+ff( /̂T Q̂  dx coincide 

with ! * dx after a local change of ./--coordinate^ at infinity (they are both conjugated 

to -xdT at x = oc). 

Assume first that XQ and Xoo are defined at the neighborhood of some horizontal 

discs Ao and A ^ covering L. Maybe restricting to slightly smaller discs, one may 

assume that the intersecting corona C = Aq H A x does not contain — 1///, (the pole 

of jjxdx): therefore, the vector fields Ao and Xoo are both holomorphic on the neigh­

borhood of C and can be glued by means of Lemma 6. By this way, we construct a 

surface S equipped with a global foliation T and a rational fibration y : S —> (C ,0 ) . 

By Fisher-Grauert [8], S is a germ of trivial C-bundle and we can end the proof as 

before. 

The problem is that XQ and Xoo are a priori, defined on small respective neigh­

borhoods QQ and Qoo of x = 0 and x = oc. We would like to apply a change of 

coordinate in variable x in order to enlarge ^oc. for instance. We cannot do this with 
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an homothety anymore because we need to preserve the restrition of XOQ to L in order 

to apply Lemma 6. We can only use the changes of coordinates which commute with 
2 ' 2 

1 + M X I . e . those ones given by an element of the flow exp(t ^ <9X), T G C . By this 

way, we will not be able to cover the complement of with the new domain Q^, but 

at least, we may assume that and 0 ^ intersect. Then, we can complete a covering 

of L by adding a third open set Q\ in such a way that the intersections H f^i, 

QQ D and ftI D do not contain neither 0, — 1/// nor oo. We refer to [1] for a 

complete description of the flow expft I+^DX) m function of ¡1. Finally, consider the 

third foliation defined on the neighborhood of ft\ by the rational vector field 
Xy X2 

1 + ¡IX 
DX + УДУ. 

By means of Lemma 6, we can glue the 3 foliations together on the neighborhood 
of L, simultaneously preserving the ^-coordinate. This finishes the second proof of 
the construction of form (4). • 

It remains to prove the unicity (up to homothety) of form (4) in case /i is not 
rational negative. Assume that T and T are of the form (4) and are analytically 
conjugated on a neighborhood of (x,y) — 0. Following [11], they are also conjugated 
by a germ of diffeomorphism of the form 

Ф0 : (C2.0) — * (<C2,0) ; (ж, у) . — . (Х,ф0(Х,У)) 

which must preserve the central manifold: 0o(.i',O) = 0. One can extend analytically 
Фо on a neighborhood of L — {x = oc} in the obvious way, by lifting-path-property. We 
claim that Фо extends until the other singular point x — oc. Before proving this, let 
us show how to conclude the proof. Therefore, we obtain a global diffeomorphism Ф 
along L conjugating T and T. By Blanchard's argument, Ф permutes the horizontal 
lines: for any line V close to L, the restriction of у along the image Ф(Ь') is an 
holomorphic map from a compact manifold into a bounded domain: therefore, у\ф^ьг) 
is constant and Ф(1/) is actually a fiber of y. Therefore, one can write Ф(х.у) = 
(х,ф(у)) and due to the form (4), ф has to commute with ydy and must be linear. 
This concludes the proof of Theorem 8. • 

We first prove the claim in case is in the Poincaré domain (// G C —R~). Recall 
that property (3) implies that is non resonant and hence linearizable by a local 
change of coordinates of the form (x.y) (x. ф!ЭС\x. y)). Therefore, we can assume 
that T and T are defincxl by 

A \ - X();r - ЦуПу. // ^ 0. 

and that ^o(x.y) = (x.0(x.y)) is a self-conjugacy of J7^ at the neighborhood of the 
punctured disc A* := — {.? = 0} . The question is. when does $0 coincide with a 
symetry of 

Ф^(х.у) = (х,с-у). C G C * . 
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Of course, this is the case if, and only if, (p(x: y) is linear in y. In fact, for x fixed, 
4>(x, y) commutes with the holonomy y ^ < 2,77(1 y of and is therefore linear as 
soon as /x is not rational. 

Finally, in the remaining case /1 ^ 0, the fact that <I>o extends at the singular point 
at infinity is due to J.-F. Mattel and R. Moussu ([13], p. 484-485 or [12], p. 595-596) 
in the case /1 > 0 and to M. Berthier, R. Meziani and P. Sad ([2], Theorem 1.1) in 
the case /1 = 0. Actually, in both cases, it is proved that any conjugacy between 
the holonomy maps of two saddles (// > 0) or strong manifolds of two saddle-nodes 
with a central manifold (/1 = 0) extends as a conjugacy of the respective foliations of 
the form <I> x (x. y) = (./'. ox (./'. //)): this will automatically coincide with $0 and 
extend it at the singular point x = 00. The claim is proved. • 

Remark 9. In the case /1 G Q~, it is easy to construct examples of T and T like 
above that are not globally conjugated and giving rise to non unique form (4). 

Proof of Theorem 3. It is the same with // > 0, except that we start with the 
saddle at x = oc. Following Martinet-Rarnis (see section 1), the anti-holonomy 
T°°(y) = ( 2,77,1 y + • • • of can be realized as the holonomy of the central manifold 
of a saddle-node Like above, we can glue those two foliations and obtain normal 
form (4). We deduce the normal form (5) for the saddle J7^ by setting x = 1/x in 
the form (4). • 

5. Proof of Theorem 4 

Let us start by blowing-up a saddle-node of the form (4) 

Xf = x20:R + yOy + xyf(y)dy. / (0 ) = // . 

Along the exceptional divisor, we have one saddle with eigenratio —1 and a saddle-
node, given in the chart (./•. / ) . y = tx. by 

Xf = x20X + tdt + ./•/(/(./•/) - l)0T. 

In particular, Xf takes the form (6) of Theorem 4 with n — 1 and has formal invariant 
Ji = /1 - 1. 

After n successive blow-ups of the saddle-nodes, we obtain an exceptional divisor 
like in the picture below where the new7 saddle-node takes the form (6) of Theorem 4 
with formal invariant Ji = // — n. All other singular points are saddles with —1 
eigenratio. 

The rough idea to put a given saddle-node T into the form (6) is to realize it as the 
nth blowing-up of a saddle-node J7, then apply Theorem 2 to put T into the form (4). 
We first detail the case n — 1. 

Since the holonomy map ^ of the strong manifold of T is tangent-to-the-identity, 
it can be realized as the holonomy map of a saddle with —1 eigenratio following 
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FIGURE 6. Blowing-up a saddle-node 

FIGURE 7. After 3 blowing-ups 

Martinet-Ramis (see [12]). Therefore, one can glue those two foliations along their 
invariant curve like we did in section 4 to prove Theorem 2 (first gluing construction). 
By this way, we obtain a germ of surface S around a rational curve L having self-
intersection — 1 by Camacho-Sad index Theorem [4]. Following Grauert (see [9]), the 
neighborhood of a smooth rational carve with negative self-intersection in a surface is 
rigid: maybe replacing S by a smaller neighborhood of S is biholomorphic to the 
neighborhood of the exceptional divisor after blowing-up the origin of C 2 ( — 1 self-
intersection). After making this identification, the global foliation T on S becomes 
the germ of a saddle-node T at the origin of C 2 . The corresponding formal invariants 
are related by // = Ji — 1 so that if T satisfies the assumptions of Theorem 4 with 
n — 1, then one can apply Theorem 2 to T. Once T is in the form (4), we obtain 
the form (6) for T. Here, we implicitely use the known fact that one can blow up a 
diffeomorphism: the conjugacy from T to its normal form (4) induces after blowing 
up a conjugacy from T to its normal form (6). This proves the existence part. • 
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The unicity also follows from that of form (4) proved in Section 4. Indeed, if two 
such foliations T and T' are locally conjugated, then the corresponding holonomies 
along the exceptional divisor L are conjugated. By Mattei-Moussu [13], this implies 
that the —1 saddles are conjugated; therefore, the holonomies of the saddles along the 
other invariant curve {t = oc} are conjugated as well. This latter means that after 
blowing down, the holonomies of the strong manifold of the corresponding saddle-
nodes T and T' are conjugated. We can apply unicity of Theorem 2. • 

The general case n G N* is proved by the same way. Starting from a saddle-node 
T with formal invariant fi > —n (or fi 0 R), ŵ e glue it successively with —1 saddles 
in order to construct a n-blow-up configuration as in the picture; then, Grauert's 
Theorem permits to blow down successively all irreducible components of the divisor: 
at each step, the component which contains the saddle-node has again self-intersection 
— 1 by Camacho-Sad. After blowing down the whole divisor, we can apply Theorem 2 
to the resulting saddle-node. 

FIGURE 8. Gluing foliations along an exceptional divisor 

For the unicity, given a conjugacy between two saddle-nodes T and T' like above, 
we successively deduce by Mattei-Moussu the conjugacy of all respective —1 saddles 
and finally of the resulting saddle-nodes T and T' after blowing down. The unicity 
follows again from that of Theorem 2. 
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