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CM STABILITY AND THE GENERALIZED 
FUTAKI INVARIANT II 

by 

Sean Timothy Paul & Gang Tian 

Dedicated to Jean-Michel Bismut on the occasion of his 60th birthday 

Abstract, — The Mabuchi K-energy map is exhibited as a singular metric on the 
refined CM polarization of any equivariant family X S. Consequently we show 
that the generalized Putaki invariant is the leading term in the asymptotics of the 
reduced K-energy of the generic fiber of the map p. Properness of the K-energy 
implies that the generalized Futaki invariant is strictly negative. 

Résumé (CM-stabilité et invariant de Futaki généralisé II). — On interprète la K-énergie 
de Mabuchi comme une métrique singulière sur la CM-polarisation raffinée d'une 
famille équivariante X S. Nous montrons que l'invariant de Futaki généralisé est 
le terme principal de l'asymptotique de la K-énergie réduite de la fibre générique de 
l'application p. Si la K-énergie est propre, alors l'invariant de Futaki généralisé est 
strictement négatif. 

1. Introduction 

1.1. Statement of results. — Throughout this paper X and S denote smooth, 
proper complex projective varieties satisfying the following conditions. 

1. X c S x FN; FN denotes the complex projective space of lines in C N + 1 . 
2. p := pi : X —> S is flat of relative dimension n, degree d with Hilbert polyno­

mial P. 
3. L|x 2 is very ample and the embedding Xz := Pi1(z) ^ FN is given by a 

comnlete linear svstem for z G S. 
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340 S. T. PAUL & G. TIAN 

4. There is an action of G := SL(N + 1,C) on the data compatible with the 
projection and the standard action on P N . 

It is well known that (1) and (3) imply that 

(1.1) P(Pi.£) = SxFN. 

Which in turn is equivalent to the existence of a line bundle £2 on S such that 

(1.2) + l)vu\Xi (¥>Off 

AT+1 

Below Chow(X/S) denotes the Chow form of the family X / S , fi is the coefficient of 
kn-i in and Mn is the coefficient 0 f (™) in t h e CGKM expansion of det(pi+L®m) 
for m » 0. A complete discussion of these notions is given in "CM Stability and 
the Generalized Futaki Invariant J". We refer the reader to that paper for the basic 
definitions and constructions that are used in the present article. 

We define an invertible sheaf on S as follows. 

Definition 1 (The Refined CM polarization— We have 

(1.3) Li (X/5) := {Chow(X/5) <g> g ^ ^ 1 ) Chow(X/5 ® M~2(n+1) 

With the family pi : X —> S fixed throughout, we will denote Li (X/5) by Li in 
the remainder of the paper. 

Our first result exhibits the Mabuchi energy as a singular Hermitian metric on Li. 

Theorem 1. — Let || || be any smooth Hermitian metric on L^M 2 ) Then there is a 
continuous function i&s ' S\A —• (—oo,c) such that for all z € S/A 

(1.4) d(n + l)vu\Xi (¥>ff) = log 'g(n+l)*S(<72) II ll
2W 

II l l 2 W 
Here c denotes a constant which depends only on the choice of background Kahler 
metrics on S and X, A denotes the discriminant locus of the map pi, and u>\xz 

denotes the restriction of the Fubini Study form ofFN to the fiber Xz. 

Remark 1. — This should be compared with the main result in Section 8 of [17]. The 
principal contribution of our present work is the observation that the whole theory in 
Section 8 of [17] should be recast from the beginning with the sheaf'Li. 

Let X «->• FN be an n dimensional projective variety with Hilbert polynomial P. 
Let Hilbm(X) denote the mth Hilbert point of X (see [12] for further information ). 
If A is a one parameter subgroup of G then it is known (see [12] ) that the weight, 

We use this terminology in order to distinguish this sheaf from one introduced by the second 
author in ([17]). 
(2) L71 denotes the dual of Li. 
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CM STABILITY AND THE GENERALIZED FUTAKI INVARIANT II 341 

w\(m), of Hilbm(X) with respect to A is a polynomial in m of degree at most n + 1. 
That is, 

w\(m) = a n+i(A)ra n + 1 + an(\)mn + • • 

Then the ratio may be expanded as follows. 

mP(m) 
= FQ{\) + F1(\)- + 

m 
+ Fl{\)—1+. 

Definition 2 (Donaldson ([5])). — Fi (A) is the generalized Futaki invariant of X with 
respect to A. 

In our previous paper we have shown the following. 

Theorem (The weight of the Refined CM polarization). — i) There is a natural G lin­
earization on the line bundle Li . 

ii) Let X be a one parameter subgroup of G. Let z G fli№pN(C). Let w\(z) denote 
the weight of the restricted C* action (whose existence is asserted in i)) on "L^l\ZQ 

where z0 = \(0)z. Then 

(1.5) wx(z) = F1(X). 

The main result of the paper is the following corollary of (1.4) and (1.5). 

Corollary 1 (Algebraic asymptotics of the Mabuchi energy). — LetipX(t) be the Bergman 
potential associated to an algebraic lpsg A of G, and let z G S \ A. Then there is an 
asymptotic expansion 

(1.6) d(n + l K , X z (<px(t)) - * s ( A ( t ) ) = Fi(A)log(|t | 2) + O( l ) as \t\ -+ 0. 

Moreover Vs(\(t)) = ^(A) log(|*| 2) + 0(1) where ^(A) G Q > 0 . Moreover, ip(\) G Q+ 
if and only z/A(0)X^ = X ^ o ) ^ (the limit cycled of~Kz under A ) has a component 
of multiplicity greater than one. Here O( l ) denotes any quantity which is bounded as 
1*1 - o. 

Moser iteration and a refined Sobolev inequality (see [11] and [7]) yield the follow­
ing. 

Corollary 2. — / / ^u;|Xz is proper (bounded from below) then the generalized Futaki 
invariant o / X 2 is strictly negative (nonnegative) for all A G G. 

Remark 2. — We call the left hand side of (1.6) the reduced K-Energy along A. We 
also point out that while it is certainly the case that F\ (A) may be defined for any 
subscheme of¥N it evidently only controls the behavior of the K-Energy when A(0)X2 

is reduced. 

<3> See [12] pg. 61. 
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342 S. T. PAUL & G. TIAN 

Remark 3. — The precise constant d(n + 1) in front of is not really crucial, since 
what really matters is the sign of Fi(X) + ^(A) . That \I>s(A(£)) has logarithmic sin­
gularities can be deduced from [13]. 

Remark 4. — We emphasize that we do not assume the limit cycle is smooth. 

2. Background and Motivation 

Let (X, LJ) be a compact Kahler manifold (a; not necessarily a Hodge class) and 
P(X,u) := {if e C°°{X) : LJ^ := u + ^ddip > 0} the space of Kahler potentials. 
This is the usual description of all Kahler metrics in the same class as u (up to 
translations by constants). It is not an overstatement to say that the most basic 
problem in Kahler geometry is the following 

Does there exist ip G P(X,LJ) such that Sca^u;^) = /x? (*) 
This is a fully nonlinear fourth order elliptic partial differential equation for ip. /i is 
a constant, the average of the scalar curvature, it depends only on c\(X) and [a;]. 
When ci(X) > 0 and u represents the anticanonical class a simple application of the 
Hodge Theory shows that (*) is equivalent to the Monge-Ampere equation. 

det((7i7 + <р.ч) 
àet(gi3) 

= eF-«* (* = 1) (**) 

where F denotes the Ricci potential. When K — 0 this is the celebrated Calabi problem 
solved by S.T.Yau and when K < 0 this was solved by Aubin and Yau independently 
in the 70's. It is well known that (*) is actually a variational problem. There is a 
natural energy on the space P(X,u) whose critical points are those tp such that UJ^ 
has constant scalar curvature (esc). This energy was introduced by T. Mabuchi ([10]) 
in the 1980's. It is called the K-Energy map (denoted by v^) and is given by the 
following formula 

* W ) '= 
1 

~v f 
f <Pt(Scal(<pt) - yi)^dt. 

Above, (ft is a smooth path in P(X, u) joining 0 with (p. The K-Energy does not 
depend on the path chosen. In fact there is the following well known formula for 
where O(l) denotes a quantity which is bounded on P(X,u). 

Vw(Q) = f log 
^ 0JN J 

ay" 
V -i*(iM-M<p)) + o{i) 

Jw(Q) = 1 
: v 

f n-1 

i=0 

>/=î < + 1 
2TT n + 1 

d(p A d(p A ^ A ^ N " I _ 1 

Iw(Q) = 1^ 
V Ix 

tp(un - wv

n). 

We have written down the K-energy in the case when u = ci(X). Observe that vu 

is essentially the difference of two positive terms. What is of interest for us is that 
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the problem (*) is not only a variational problem but a minimization problem. With 
this said we have the following fundamental result. 

Theorem (S. Bando and T. Mabuchi [1]). — If u = c\(X) admits a Kahler Einstein 
metric then > 0. The absolute minimum is taken on the solution to (**) (which is 
unique up to automorphisms of X). 

Therefore a necessary condition for the existence of a Kahler Einstien metric is a 
bound from below on In order to get a sufficient condition one requires that the 
K-energy grow at a certain rate. Precisely, it is required that the K-Energy be proper. 
This concept was introduced by the second author in [17]. 

Definition 3. — z/w is proper if there exists a strictly increasing function f : R+ — • 
R+ (where limy KX> f(T) = oo) such that v^ip) > F(JW(Q)) for M <P € P(M,u). 

Theorem ([17]). — Assume that Aut(X) is discrete. Then UJ = c\(X) admits a Kahler 
Einstein metric if and only if uu is proper. 

The next result was established by the second author and Xiuxiong Chen. It holds 
in an arbitrary Kahler class u. An alternative proof of this was given by Donaldson 
for polarized projective manifolds. 

Theorem ([3]). — If 'UJ admits a metric of esc then > 0. 

In this paper our interest is to test for a lower bound of along the large but 
finite dimensional group G of matrices in the polarized case. When we restrict our 
attention to G we make the connection with Mumfords' Geometric Invariant Theory. 
The past couple of years have witnessed quite a bit of activity on this problem due 
to this connection. 

To put things in historical perspective consider the various formulations of the 
Futaki invariant. 

i) 1983 Futaki ([6]) introduces his invariant as a lie algebra character on a Fano 
manifold X 

Fu, : rj(X) — C. 

ii) 1986 Mabuchi (see [10] ) integrates the Futaki invariant with the introduction 
of the K-energy map. The linearization of the K-energy along orbits of holomorphic 
vector fields is the real part of the Futaki invariant. 

hi) 1992 Ding and Tian ([4]) introduced the generalized Futaki invariant. Here 
the jumping of complex structures is introduced. The limit of the derivative of the 
K-Energy map is identified with the generalized Futaki invariant of Xx^ provided 
this limit has at most normal singularities. 

iv) 1997 The CM polarization is defined (see [17]) for smooth families, as the 
relative canonical bundle is explicitly involved in the definition. K-Stability is defined 
in terms of special degenerations and the generalized Futaki invariant. 
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344 S. T. PAUL & G. TIAN 

v) 1999 Yotov formulated the generalized Futaki Invariant in terms of equivariant 
Chow groups of a normal variety. 

vi) 2002 For an arbitrary scheme Donaldson ([5]) defined the weight ^ ( A ) . This 
is identified with the limit of the derivative of K-energy (by [4]) when the limit cycle 
is a smooth (or normal) scheme. 

Remark 5. — We hope that we have clarified the role of the CM polarization. The 
main point is that once the CM polarization is extended to the Hilbert scheme ([14]) 
the polarization computes the precise asymptotics of the K-energy of any generic fiber 
of the map X —• S. This extension was made possible by an application of the Knudsen 
Mumford expansion of the determinant of direct images of perfect complexes of sheaves 
(see [8]). In fact, already appeared in work of the second author (see [17]). 
Despite this, the role oftp(X) becomes more precise in the present work. 

3. Algebraic potentials 

In order to connect these notions to the K-Energy map we now give an account of 
how to associate an admissible potential if\(t) to a one parameter subgroup of G. In 
order to detect properness (conjecturally) one restricts attention to the subspace of 
Bergman metrics inside P(M,u>) since these metrics are dense in P(M,u>) (see [16], 
[15], [19], [2]). By definition these metrics are induced by the Kodaira embeddings 
furnished by the polarization L. The construction is as follows. We have an embedding 

X • F(H°(X1L)*) = FN 

furnished by some basis { S o , . . . , SN} of if°(X, L). Observe that with the natural 
Hermitian metric on H°(X,L), the induced Pubini-Study metric on FN is related to 
the curvature of the initial metric on L by the formula 

WFS\X = V-{ 

V-1 

2TT 
ddlog 

N 

,i=0 
P i l l 2 

We conclude that 

log E I I ^ I I 2 

,¿=0 
eP(X,u). 

Let a G SL(N + 1, C), then 

(T*(U)FS) — W F S + 
EII^II2 

Where is given by the formula 

(fa- = log 
' ] M J ! > 

> I N I 2 > 
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We let (Tn,... Tjsf} denote the corresponding change of basis 

0"oo 

0"io 

^N0 

0~lN 

°~NN y 

SO 

SN 

> o N 

\TN/ 

Then we have 

<P*\x = log 
'Scolpili2 

'Scolpili2 

Putting these ingredients together gives 

(3.1) <T*VFS\X = U + 

V--1 

2TT 
9dlog E l W I I 2 

Therefore, if we fix a basis of (JV 4-1, C). L) we get a natural map 

SL(iV + l ,C )^P(X,u ; ) . 

A one parameter subgroup of SL(N + 1, C) is an algebraic (4) homomorphism 

A:C* ->SL(JV 4-1, C). 

Any such X(t) can be diagonalised. That is, we may assume that A(t) takes values in 
the standard maximal torus H *Ê (C*)* of SL(N + 1, C). 

X(t) = 

TMO 

0 

, о 
R 1 

0 
0 
TMN 

The exponents mi satisfy 

^2 ™i = °-
0<i<N 

We arrive at the following formula. 

¥>A(t)(*) : = log 
0<j<N 

l*l2 m jl|S;ll2(*) 

Now we may consider the K-energy map as a function on SL(N + 1, C). 

<4> "Algebraic" means that the matrix coefficients X(t)i,j G C[t, t 1J. 
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346 S. T. PAUL & G. TIAN 

4. Singular Hermitian metrics 

Proof of Theorem 1. — In part I of this work the authors provided the following 
formula for the first Chern class of Li. 

(4.1) 
ci(U) = Pu ((« + l)ci(ff X /s)ci(L) B + l*ci(L)n+1) Kx/S :=Kx®pl(K%). 

(4.1) allows us to exhibit the K-energy map as a singular metric on the CM polar­
ization (see [17]). Recall that p~x{z) = Xz c P N , where z e Soo := S \ A. We 
define 

GXZ :={(a,y)eGxFN :yeaXz}. 

Observe that GXZ is biholomorphic to G x X z . Then we have the following diagran 
where pz denotes the evaluation map, i.e. pz(a) := az. 

p*x(X) * GXZ X C ^ SxFN FN 

G ——• S 
Given z G B \ A we can consider Ky^z, the canonical bundle of the fiber Xz. These fit 
together holomorphically into a line bundle K^ on X \ p - 1 ( A ) . On the other hand, 
the relative canonical bundle Kp of the map p exists and lives on all of X. 

Kp:=Kx®p*K^ 

When we restrict this sheaf to X \ p _ 1 ( A ) we have an isomorphism 

Kp = KQQ. 

L*P2^FS restricts to a Kahler metric on p~x{z) {z G Soo) and hence induces a 
Hermitian metric on the bundle K^. We denote its curvature by R^p^d^FS))- Let 
<7x and gs denote two Kahler metrics on X and S respectively. In this way we obtain 
a metric on the relative canonical bundle Kp. We let Rf denote its curvature 

Rp:= R(gx)-p*R(gs). 

In this way we obtain two metrics on the relative canonical bundle over the smooth 
locus. The crucial point is the following fact. 

The curvatures of these metrics are not the same. 

The relation between them is given in the following proposition (see [17] Lemma 8.5 
pg. 31). 
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Proposition 1 ("dd lemma along the fibers")- — There is a smooth function \I> : X \ 
p _ 1 ( A ) —• R such that 

1) R(9x) -P*R(9s) + ¿=±859 = R(i*pi(u>FS)); 
2) 9 <C, for some constant C. 

Example 1. — (The universal family of hypersurfaces of degree d in CP71*1) 

S :=F(H°(CPn+\9(d))) 

X:={([f],[z])eSxCPn^ \f(z) = 0} 

p := pi (projection onto the first factor). 

Let \\\.\\\ denote any norm on iJ°(CP n + 1 , 9(d)), with associated Fubini-Study metric 
LJS . Then a computation shows that 

*( ( [ / ] , [*])) = log 
(R(7r$(u;Fs))) 

([/], [*])) = 2(D-1) 

The next result is a pointwise version of (4.1). 

Proposition2. — There is a continuous Hermitian metric \\ \\ on L 2

1 such that, in 
the sense of currents we have 

V-1 

2?r 
9dlog(|| | | 2 ) (n + 1)p.(Ä(ÄX) - P*R(9s))p*2(uFs)n + №*Pl(uFs)n+1 

Proof. — See Proposition 4.3 pg. 2576 of [13]. 

Now we pull back the curvature form of Koo to GXZ 

Rg\*z :=p*Zy2(R(7r$(u;Fs)))-

Recall that for cr G G we define ipa by the relation 

CT*LJFS — WFS + 
V-1 

2TT 
ddipa. 

Let Vu,z(v) denote the K energy of (X^CJPS) applied to the potential (pa. With these 
notations in place we have the following result. 

Proposition 3 (The complex Hessian of the K-Energy map on G) 
For every smooth compactly supported (N2 + 27V — 1, AT2 + 2N — 1) form n on G 

we have 

d(n + 1) 
G(R(7r$(u;F GX 2 

((n+ l)ÄG|x, + PI%(VFS)) ^PK^FST ApîflÎJ. 

The proof of Proposition 3 appears in the next section after some standard prelim­
inaries on Bott Chern classes. 
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4.1. Bott Chern secondary classes. — Let 0 be a GLN(C) invariant polynomial 
on MJVXJV(C) homogeneous of degree d. <t>\ denotes the complete polarization of <f>. 
Let E be a holomorphic vector bundle of rank N over a base X. Let hi and ho 
be two Hermitian metrics on E and ^^-R(hi) the curvatures. Then we define the 
Bott-Chern class BC(<f>, E\ ho, hi) by the expression 

(4.2) BC(<l>,E;h0,hi) : f <t>i(ht

 1ht 

d-i 

V-1 Rt)dt 
2TT ^V-1 Rt)dt 

2TT 
V-1 Rt)dt 
2TT 

where ht is any piecewise C1 path of Hermitian metrics joining ho and hi. The point 
of the construction is the following identity: 

^ÇJddBC(c/>1E;ho,hi) = 
V-1 

2тг 

d 
(c¡>(Rho) - <t>(Rhl)). 

Let d = n + 1 where, n = dim(X) in this case BC((f), E\ ho, hi) has top dimension 
and we may introduce the Donaldson Functional associated to (f). 

(4.3) DE(h0,hi) :•• 
Jx 

BC((t>,E; h0, hi). 

When ho is fixed, we consider it to be a functional on Me (the space of hermitian 
metrics on E). In what follows we take </> = C/in+i, the n+lst component of the chern 
character. We can extend the Donaldson functional to "virtual bundles" & — E — F 
by observing that a Hermitian metric h on S is just a pair of metrics, one on E and 
one on F: 

h=(hE,hF). 

We set 

(4.4) BC{(j>, 6; h0, hi) := BC{<t>, E; /if, hf) - BC(0, F; h£, /if). 

Let h :Y —> Ms be a smooth map, where Y is a complex manifold of dimension m. 

Lemma 4.1. — Let <\> be homogeneous of degree n + 1 and ho a fixed metric on 6. 
Then for all smooth compactly supported forms ifr of type (m — 1, m — 1) we have the 
identity 

(4.5) 2TT I Ds(<t>;h0,h(y))dYdYÏ> = 
'YXX 

^V-1 Rt)dt° (h'y)))ATT*1 (W) 
2TT 

Next we want to realize the Mabuchi K-energy as the Donaldson functional, with 
respect to the polynomial (j> = Chn+i, of a certain virtual bundle to be defined below. 
Then proposition (3) follows at once from the preceding lemma. 

Let X be a complex projective manifold (in our present application X is a smooth 
fiber of X 5), and let L be the restriction of O(l) to X. Let (p be a kahler potential. 
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The two metrics hps and e'^hps induce metrics on the canonical bundle tfc. We 
consider the virtual bundle 

(4.6) 2 n + 1<§ := (n + 1 ) ( ^ _ 1 - X)(L - L-X)n - fi(L - l'1)"*1. 

Here /i is the average of the scalar curvature. We need to calculate the following 
terms. 

(4.7) ВС{ф\Ж®Ьп-2'ММ) 

ВС{ф;Ьп+1-2\КМ)-
The path of metrics for the first two expression are given as follows. 

(4.8) 
BC(Ln+1-2j, h0, /n) = -(n + 1 - 2j) d2 

dzadzp 
A,B€Mk(C) 

'At<p<P ~(n- 2j)(p) d2 

dzadzp 
BC(tt®Ln-2jMM) 

The complete polarization of è is given by 

(4.9) (j>1(B,A...A) = tr(BAn) A,B€Mk(C). 

Therefore, 

(4.10) 

BC(tt®Ln-2jMM) = -
f 
Jo 

'At<p<P ~(n- 2j)(p)((n - 2j)vt(p + Ricadi 

BC(tt®Ln-2jMM) = - - I 
Jo 

{Attp<p + (n - 2j)<p)((n - 2j)u>t(fi - Ricadi. 

Similarly we have 

(4.11) BC(Ln+1-2j, h0, /n) = - ( n + 1 - 2j)n+1 

f 
Jo 

i<n+lori = n + 2 

We see that 
(4.12) 

BC((L - L~1)n+1, hFS, e-*hFS) = -
n+l 

J=0 

(-1)j n + Is 

( n + l - 2 j ) n + 1 

Jo 
(fuj^dt 

Now we need the following numerical identity. 

(4.13) 
n+l 

j=0 

n+1 
j 

n + l 

> 3 , 
( n + l - 2j)' = 

|0 

L(n + l ) ! 2 n + 1 t = n + 1. 

i < n + l o r i = n + 2 

It follows at once that 

(4.14; 
Jx 

BC((L - L-1)"*1^, e-*hFS) = - (n + l ) ! 2 n + 1 

ВС(ф;^С~1 <g> Ln~2jMM) 

Jo x 
ipuj?dt. 
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350 S. T. PAUL & G. TIAN 

It follows from (3.9) that 

BCWC'1 ® Ln~2j) = 

f 

Jo 

AtQQ 
n 

i=0 

n 
i (n-2j)iRi$-iu,i- f 

Jo 

n 

i=0 ( I ) 
[n - 2j)i+1<pRic?-iu>i 

We use the identity (4.13) to see that 

(4.15) 
n 

Y 
3=0 

AtQQ n 
BCW1 ®Ln-2j) = n\2n 

f 

Jo 

At<pwt - ipnRictUt 1 ) dt. 

Similarly we have the second term 

(4.16) 
n 

j=0 

AtQQ n 

J. 
BC{& ® Ln~2j) = n!2n 

Jo 
(At(fUt - ipnRictUJt *) dt. 

The next lemma follows at once from summing up (4.15), (4.16), and (4.14). 

Lemma 4.2. — Let D(6^hFS^~iphps) denote the Donaldson functional of Chn+i 
with respect to 6. Then the following identity holds. 

(4.17) D(6, hFS, e-«hFS) = y M 

Let <p = iff, and apply 4.5 to Lemma 4.2 to conclude the proof of Proposition 3. • 
Next we observe that the identity 

(4.18) # G | X Z = P*2,z R(gx)-p*R(gs)-
V-1 

2TT 
aaW 

together with the previous lemmas yields the following corollary. 

Corollary 3. — The function 

a € G -> D(a) := d(n + 1)I/W)2((T) - log e(n+l)*s(«) II l l 2 M ^ 
II TO ' 

is pluriharmonic. Where we have defined ^s(z) •= I{yef-1(z)} i&(y)P2(UJFs)n• 
Moreover ̂ s(z) < C on S\ A, extends continuously to the locus of reduced fibers, 

and limz^Zoo ^s(z) = — oo whenever X Z o o is non-reduced. 

Remark 6. — The construction of 9 and as well as their behavior on the locus 
of singular fibers can be seen directly in Example 1. The general case is treated in 
Lemma 8.5 pg. 31 in [17]. 

Since 7TI(G) = 1 there is a (nonvanishing) entire function £ on G such that 

D(<7) = log(|£(a)|2). 

An analysis of the growth of this function on the standard compactification G 

G := {[(wijyz)] e P ( N + 1 > 2 : d e t ( ^ ) = 

reveals that it must reduce to a constant. 
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Tying everything together establishes our main result. 

Theorem 1 (The K-Energy as a singular metric on h1

1). — We have 

(4.19) d(n + l)uUiZ(a) = log e(n+l)*S(<T2) II \\2{<rz)\ 
h re > 

We proceed to the proof of Corollary 1. First substitute a = X(t) in (4.19). Then 
we have the string of identities. 

d(n + I K , , (A(t)) = log fe(n+Ws(\(t)z) II 1I2(A(*)*)\ 
l i r e / 

= (n + l)#s(A(*)z) + log 
• I l l l 2 ( z ) J 

= (n + l)*s(A(t)z) + log 
'| | | | 2 ( t^^-^WA(t )z) 

II l l 2 (*) 
= (n + l)*s(A(0«) + log(|*|2) + O(l) 
= FX(A) log(|t|2) + (n + l)*s(A(t)z) + O(l). 

The passage from line 3 to 4 follows from the defining property of the weight (see 
the introduction to [14]). The passage from line 4 to 5 is the statement of (1.5). 

Rationality of the contribution from \£s(A(£);z) follows easily from [13] Theorem 
3.5 pg. 2564 and Zhiqin Lu's explicit computation of the asymptotics of the K-Energy 
on hypersurfaces (see [9]). This completes the proof of Corollary 1. C 

4.2. Properness Implies that Fi(X) < 0. — Let X := X 2 a smooth fiber of p. 
Recall that the algebraic potential associated to a one parameter subgroup A is given 
by 

4>t •= 4>\{t) = log 
N 

i=0 
i 2 * l l £ l l 2 ) -

Then, as we have seen, ipt G P(X,UJ). Following Yau [18], our plan is to use the 
standard Moser iteration to control Osc((pt) by I^i^t)- Define 

cp- := Max{—(pt, 1} > 1. 

Let p € Z + . Then we have the (obvious ) inequality 

Q-p V-1 

27T 
ddf A w£ <ddf A w 

rivially this implies 

fx 
Qp V-1 

2тг 
ddf A wAQZEE 

'x 
ddf A w 

Jx 
ddf A w 
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Next integrate by parts on the leftmost side of this inequality 

Of (p+L)n ( ,N ^ 

Jx 

Of (p+L)n ( ,N ^ 

Jx 

d<p J A dtp J A^-1 

4p 
(p + iy 2TT X 

£±i - E±l 
d<p J A dtp J A ^ - 1 . 

Since <p- > 1 we deduce the gradient estimate 

4p 

( p + 1 ) 2 

V-1 

2<n fx 

2±1 — E±l 
dtp J A dip J AUJ% < x 

V^!f||^-i 
Jx 

V^!f||^-i 

We concentrate on the outermost inequality 

4p 
n(p+l) 2 

'x 
2±1 — E±l 
dtp J A dip J 'x 

qP+1Wmp 

Now we invoke the Sobolev inequality 

Of (p+L)n ( ,N ^ 
n-l n 

< c5qT° 
lx 

l | V ^ ! f | | ^ - i 
lx 

d<p J 
DAEZA 

*6{ipt) is the Sobolev constant of the metric u + ^Ç^dd(pt. Concerning this constant 
we have the crucial 

Proposition 4 ([11], [7]). — There is a positive constant 5 = S(n) such that for all 
a € SL(N + 1, C) we have 

%(<P*) < S. 

This follows from the fact the complex projective subvarieties are minimal as Rie-
mannian submanifolds of FN and hence have vanishing mean curvature. 

Therefore, 

Of (p+L)n ( ,N ^ 
n-l n 

< n(p + 1)6 
lx 

v~ VO 

Now extract the p + 1st root of both sides to get 

Of (P+l)n w «> 
n-l 

n(p+l) 
< (n(p + 1)5) Of (P+l)n  

w«> 

1 
p+1 

Now we start the standard iteration: Let po := 1 and p J + i + 1 := ^ri(Pj + 1)- Then 
we have that 

1^ + 1)^11^-1121^ + 1)^11^-1121^ + 1)^ 

< cESo + 1 

n 
i=0 

1^ + 1)^11^-112. 

ASTÉRISQUE 328 



CM STABILITY AND THE GENERALIZED FUTAKI INVARIANT II 353 

That is to say 

\\f-\\Pi+l+i < 
>i + l)^

 + 1 3 

n 
i=0 

> i + l )^ + 1||V-||2. 

It is not hard to check that the infinite product converges. Taking limits as j —> oc 
gives 

Ik-Hoc <C 
X 

« Lu™ 
V 

L 
2 

< \\<p-\\2o c 
fx •

 v - v . 

1 
i 5 

Which implies 

liV-lloo < C 2 

Jx 

« Lu™ 
V 

Since <ft < C as t —> 0 we have 

-infx^t < Ci 
fx 

(-Q)wnp + C2 
V 

Now, by the Green identity we deduce 

Oscx(^t) := Supx(<^) - Infx(<Pt) < C] / <Pt<*n 

^Jx 
-1 *K 

Jx 
+ C 2. 

Using the properness assumption gives: 

/(Oscx(^t)) < i>w(y>t). 

Now we are prepared to complete the proof of the corollary. 

Case 1: Assume that Xx^ ^ X and moreover that Xx^ is reduced, then by the 
same argument as in [17] we have 

lim t _ 0 Oscx(^) -> oo. 

Consequently we deduce that 

l im t _ 0 ^(^t) —• oo. 

Corollary 1 yields the precise asymptotics (5) 

v„(<Px(t)) = F1(\)\og(t2) + 0(l). 

This forces the desired sign Fi(X) < 0. 

Case 2: If Xx^ is nonreduced, then \I>(A(£)) —• —oo, however, under the properness 
assumption the K-Energy is bounded from below, and we again have that .Fi(A) < 0. 
This completes the proof of Corollary 2. • 

<5> Recall that when XXW is multiplicity free ^(A(t)) = O(l). 
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