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SMOOTH DENSITY OF CANONICAL STOCHASTIC
DIFFERENTIAL EQUATION WITH JUMPS

by

Hiroshi Kunita

Dedicated to Professor J.-M. Bismut for his sixtieth birthday

Abstract. — We consider jump diffusion process £t on RY determined by a canonical
SDE:

dée = 7 Vi) 0 dZ; + Vo (&e)dt,
where Z; = (Ztl, ..., Z") is an m-dimensional Lévy process and Vp, ..., Vim are smooth

vector fields. We prove that the law of the solution & has a C°°-density under the fol-
lowing two conditions. (1) The Lévy process Z; is nondegenerate. (2) {Vo, V1, ..., Vin}
can be degenerate but satisfies a uniform Hérmander condition (H). For the proof we
make use of the Malliavin calculus on the Wiener-Poisson space studied by Ishikawa-
Kunita.

Résumé (Densité lisse pour les solutions d’équations différentielles stochastiques avec sauts)

Nous considérons un processus de diffusion & sauts £; dans R? déterminé par une
EDS canonique: )

dés =y im ) Vi(€e) 0 dZ; + Vo(&e)dt,

ou Z; = (Ztl, ...y Z{") est un processus de Lévy m-dimensionnel et Vp, ..., Vi sont des
champs de vecteurs. Nous montrons que la loi de & a une densité C* si les condi-
tions suivantes sont satisfaites. (1) Le processus de Lévy Z; est non dégénéré. (2) La
distribution {Vp, V4, ..., V;m } peut étre dégénérée mais elle satisfait & une condition de
Hoérmander uniforme (H). Pour la démonstration, nous utilisons le calcul de Malliavin
sur I’espace de Wiener-Poisson étudié par Ishikawa-Kunita.

1. Introduction and main results

Let Vy, Vi, - - - Vi be smooth vector fields on R? whose derivatives (including higher
orders) are all bounded. Let Z; = (Z},...,Z™),t > 0 be an m-dimensional nonde-
generate Lévy process. In this paper, we consider a jump diffusion determined by a
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70 HIROSHI KUNITA

canonical SDE based on {Vp,V1,---,Vin} and Zy;

(11) dé, = Z Vi(&) 0 dZ; + Vo (&) dt.

=1
Canonical SDE’s are studied in mathematical finance. Let Z; be a one dimensional
Lévy process. We consider a one dimensional linear canonical SDE.

dSt = St OdZt.

The solution starting from Sy at time 0 is unique and it is written as S; := Sp exp Z;
(See Section 2). It is called a geometric Lévy process. The solution S; describes the
movement of a stock. If Z, is a Lévy process with finite Lévy measure (a compound
Poisson process), the process S; is the Merton model or the Kou model, according
as the normalized Lévy measure is a Gaussian distribution or a double exponential
distribution, respectively. See [16],[8]. The precise definition of the canonical SDE
will be given at Section 2.

The main purpose of this paper is to show the existence of the smooth density for
the law of the random variable £; that is a solution of equation (1.1). For this purpose
we need to assume suitable nondegenerate conditions both for the Lévy process Z;
and the family of vector fields {Vg, ..., Vi }.

We first consider the Lévy process. The Lévy process Z; is represented for arbitrary
6 >0, by

t t
Zy =Wy + / / 2N (drdz) + / / zN (drdz) + bst,
0 J0<|z|<é 0 Jz|>6

where o is an m X m-matrix, W; is an m-dimensional standard Brownian motion.
N(dtdz) is a Poisson random measure which is independent of W; with intensity
N(dtdz) = dtv(dz), v being the Lévy measure. Further, N(dtdz) = N(dtdz) —
N(dtdz) and bs = (b},...,by) is a drift vector. Set A = (ai;) = ooT. It is a
covariance of the Gaussian part oW; (Lévy-Itd decomposition). Throughout this

paper, we assume that the Lévy measure v has finite moments of any order. Set
v(p) := f|z|<p |2|2v(dz). If there exists o € (0,2) such that

lim inf M > 0,
p—0  p&
then the Lévy measure is said to satisfy an order condition. Note that the Lévy
measure v satisfying an order condition is an infinite measure: Indeed, we have
v({z;0 < |z| < §}) = oo for any & > 0. In case of one dimensional Lévy process,
the above order condition is known as a sufficient condition for the existence of the
smooth density of the law of the Lévy process (Orey’s theorem. See Sato [20], Propo-
sition 28.3). Then the law of the geometric Lévy process S; has a smooth density if

the order condition is satisfied.

ASTERISQUE 327



SMOOTH DENSITY 71

Now we set b;;(p) = fIZISP 2i29v(dz)/v(p) and B(p) = (bij(p)). The infinitesimal
covariance B is a symmetric and nonnegative definite matrix, which coincides with
the greatest lower bound of the matrix B(p) as p — 0. If the Lévy measure satisfies an
order condition and the matrix A + B is nondegenerate (invertible), then we say that
the Lévy process is nondegenerate. In this paper, we assume that the Lévy process Z;
is nondegenerate.

We will next consider nondegenete properties for the family of vector fields
{Vo, ---; Vim}. In Ishikawa-Kunita [6], we studied the case where the family of vector
fields {V4, ..., Vin} is uniformly nondegenerate, i.e., there exists a positive constant C
such that the inequality

m

Y ITVi@)? > Cli)’, VzeR4 VieR*

i=1
holds valid, where I7 is the transpose of | and {7V (z) denotes the inner product of
two vectors ! and V(z). We showed the existence of the smooth density of its law by
applying Malliavin calculus on the Wiener-Poisson space.

In this paper we want to relax the above uniformly nondegenerate condition. Let
Vo, ---, Vin be C®-vector fields such that their derivatives (including higher orders) are
all bounded. Then Lie brackets [V;,[--- [Vi,_,, Xi, ] -]y 1,00 € {0,1,...,m} are
bounded vector fields. We introduce families of vector fields. Let 3o = {V4, ..., Vin}
be a linear space of vector fields spanned by Vi, ..., V,,. Given § > 0, we set

m
Ve =Vo+ D biVi

=1
Set £ = %, and define for k = 1,2, ...
) 2] 1 - . Fy
2 ={VVI+35 Y aulVi, V3, VI, Vi VDi=1,.m,V € 4, }.
i,j=1

Theorem 1.1. — Assume that for the family of vector fields {Vy,...,Vin} there exist
a positive integer Ny and a positive number dg such that for any 0 < 6 < dg the
inequality

No
(1.2) NN WTV@E)IP>C@ON?, VreR?Y VieR?
k=0vex!
holds valid, where C(8) are positive numbers satisfying
1i§n151f0(5)/v(5)2 = oo.

Then for any initial random variable & and 0 < Ty < 0o, the law of the solution &
of the canonical SDE (1.1) has a C™-density.
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72 HIROSHI KUNITA

The condition required for vector fields in the above theorem is complicated, since
d’s are involved. We can replace it by a simpler one if we restrict the Lévy process Z;
to a simpler one, namely if we assume

(1.3) bo = }in}) bs exists and is finite.

The existence of by is equivalent to that of lims_,o [ s<|z<1 zv(dz). In this case, it
holds by = b; — lims_,¢ f5<|z|S1 zv(dz). In particular, if the integral f0<|z|51 |z|v(dz)
is finite, by exists and is finite. Hence for any stable process whose exponent is less
than 1, by exists. Further, if the Lévy measure v is symmetric, by exists and is equal
to by even if [ <lzl<1 |z|v(dz) is infinite. Hence for any symmetric stable process, bg
exists and is equal to b;.

Now, assume (1.3) and let § — 0 in the Lévy-Ité6 decomposition of Z;. Then we
obtain

t
Zy = oWy + / / zN(drdz) + bot.
0 J|z|>0

Hence bg can be regarded as the drift vector of the Lévy process Z;. We define a new
drift vector field Vj by

Vo=Vo+ ) bV,
=1
and introduce families of vector fields by ¥ = {V4,...,V;z} and for k =1, ...
. 1 .
Ek = {[‘/O,V] + 5 Z a’ij[‘/i, [Vj,V]]a [V,;,V],Z = la ...,’ITL,V € 2k:—l}'
i,j=1

Theorem 1.2. — Assume (1.3) for the Lévy process Zy. Assume further that the family
of vector fields {Vo, Vi, ..., Vin} satisfy the uniform Hérmander condition (H), i.e.,
there exists a positive integer Ny and a positive constant C such that

No
(1.4) Y TV@P>cl?, vzeRY, VieR?

k=0 VES,
holds valid. Then for any initial random variable & and 0 < Ty < oo, the law of the
solution &1, of the canonical SDE (1.1) has a C*-density.

Observe that Theorem 1.2 indicates that both the canonical SDE with jumps and
Stratonovich SDE (diffusion) have the common local criterion (Hérmander’ condition)
for the existence of the smooth density of their laws. This is partly because that we
restrict our attention to small jumps of the SDE, ignoring the effect of big jumps.
Loosely speaking, under an order condition, the solution of equation (1.1) could behave
like a diffusion if sizes of jumps are small.
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SMOOTH DENSITY 73

Perhaps, Bismut [2] is the first work toward the smooth density of the law of the
solution of SDE with jumps, where he developed the Malliavin calculus for jump pro-
cesses. After this fundamental work, the similar problem has been discussed in some
different contexts by Léandre [13],[14],[15], Bichteler-Gravreau-Jacod [1], Komatsu-
Takeuchi [7] and others. A common feature in the above works might be that they
assumed for the Lévy measure v the existence of a smooth density and an asymptotic
of the density as z — 0. Furthermore, a formula of integration by parts holds valid
in these cases, which are shown through Girsanov’s theorem for jump diffusion.

In our discussion any Lévy measure (singular or not) is allowed, as far as it satisfies
an order condition. Then no formula of integration by parts is known. We take
another approach to the Malliavin calculus, developed in Ishikawa-Kunita [6]. It will
be presented in the next section.

2. Malliavin calculus for canonical SDE

Let Z;,t > 0 be an m-dimensional Lévy process admitting the Lévy-I1t6 decomposi-
tion and let & be an R%-valued random variable independent of Z;. By the solution of
equation (1.1) starting from &, at time 0, we mean a cadlag R%-valued semimartingale
{&;t > 0} adapted to F¢ = o (&0, Zr; T < t) satisfying

m t t
o+ / Vi(6,) 0 dZi + / Vo(&,)dr

= £O+Z/V(£T oit 0 AWE + /Vo(sr

i,k=1

(2.1) &

+ / /Izld{asf(»sr_)—ar_}N(drda
t
+ / /Izl>5{¢f(sr_)—er_}N(drdz)

e[ [, 6= Y Ve aras)

i=1

Here ” o” denotes the Stratonovitch integral. Using It6 integral, it holds

kzmgl/ot Vi(&)osk 0 AW}

Further, for z = (21,...,2™) € R™ ¢?,s € R is the one parameter group of diffeomor-
phisms generated by the vector field Y v, 2'V;, i.e., ¢Z = exps(3; 2*Vi).

SOCIETE MATHEMATIQUE DE FRANCE 2009



74 HIROSHI KUNITA

The equation has a unique solution £2. It holds ¢! = {f, for any § > 0 and §’ > 0.
Hence the common solution is denoted by £;. In the case where £, = z, we denote
the solution by o ¢(z). Then it has a modification such that the maps & ¢; R? — R4
are onto diffeomorphisms a.s. and further the Jacobian matrix V¢ ¢(z) is invertible
for any z a.s. It defines a stochastic flow of diffeomorphisms (Fujiwara-Kunita [3]).
We have & = £o,+(o)-

We will consider a one dimensional linear SDE dS; = S;¢dZ;. In this case we have
Vi(z) = z. Then it holds (exp szV;)(z) = e**z. Hence equation (2.1) is written by

t 1 t t
St = SO + 0'/ Sr_dWr + ‘50'2/ Sr_d’f' + b5 / Sr_d’l”
0 0 0

’ ~ t
+ /0 /0 <lzls5(e —1)S,_N(drdz) + /0 /|z|>a(e ~1)S,_N(drdz)

t
+// (e —1-2)S,_drv(dz).
0 J0<|2|<8

The solution is given by S; = Spexp Z;. Indeed apply It6’s formula to the function
F(z) = €® and the semimartingale Z; (Theorem 2.5 in [10]). Then we find that
S; := exp Z; satisfies the above equation.

Now, for the proof of theorems stated in Section 1, we need the Malliavin calculus
on the Wiener-Poisson space studied in Ishikawa-Kunita [6]. We will quickly recall it.
Let Ty be an arbitrarily fixed positive number and let U = [0, Tp] x R™. Elements of
U are denoted by u = (t, z). Let ¢} be a perturbation of the Poisson random measure
N such that N(4) o = N(AN{u}°) +1a(u). If we apply €(;, , , to the solution &
of SDE (2.1), we have &; o sz;l’zl) =& ift; >tand & o e?}l’zl) =&, 0Py 0 &y, - if
t1 <t, where &+ :=&o,t © E&; are diffeomorphisms of R?, a.s.

For u=(uy,...,un), we set el =¢ef o---oel . Let u=((t1,21), ..., (tn, 2n)) where
t1 <ty < -+ <tp. Then & := & oef is represented by

& =&, 1007 0&, -0 0dit oy, if £ <t <tig.

Malliavin covariances R and K of the random variable 7, with respect to the Wiener

space and the Poisson space are defined by
To

Vé 1, (6 )C(&-)AC(£:-) TV 1, (&) T dt,

To

Vé 1, (6-)C(&-)BC(&-) " Vér 1, (&) dt,

respectively. Here V&, 1, (z) is the Jacobian matrix of the map & 1,(x). The d x m
matrix C(z) is given by C(z) = (Vi(z),..., Vm(2)).

We set Q = R+ K and call it as the Malliavin covariance of £1,. Set Q" = Qocf.
Then Q" is the Malliavin covariance of &F, .

R

K
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SMOOTH DENSITY 75

Now consider Q = Vé&o,1, (0) "1Q(Véo 1, (£0)T) " (modified Malliavin covariance
of &1,). It is written as

To

Q= 5 (V&-)"1C(&-)(A+ B)C(&-)T (VEL) Hdt,

where V& = V& (§). Then the modified Malliavin covariance Qv of £T, equals
Qoef.
A criterion for the existence of the smooth density of the law of {1, is given by the

following.
Lemma 2.1. — Assume that
(2.2) sup sup E[(ITQ")7P] < oo

u€A(1)" l€S4_1

holds for any positive integer n and p > 1. Then the law of £, has a C*°-density.

Proof. — It is shown in [6], Proposition 6.1 that if Q" is invertible a.s. and

(2.3) sup sup E[(ITQ%")7?] < 0o
ucA(1)nleSq—1

is satisfied for any positive integer n and p > 1, then the law of {7, has a C*°-density.
Here, we set A(1) = {(t,2);t € (0,Tp),|2| <1} and S4_1 = {l € R%;|l| = 1}.

We will show that condition (2.2) implies condition (2.3). Note that (2.2) implies
SUPyeA(1)n E[suplesd_l(lTQ“l)"’] < 00. Then the minimum eigenvalue A} of the
matrix QU satisfies sup,¢ Ay~ E[(AY)7P] < oo for any p > 1. Since the equality
QY11= VEg:TO (Q“)_IV&),TO holds and V& 1, € L? holds for any p > 1,

{1TQ )™, 1 € Sa1,u € A(L)"}
is also LP bounded for any p > 1. Thus we have (2.3). 0

Theorem 2.2. — Assume that for any l € Sq_1 and u € A(1)"™, the random variable

> [Clreerven|w

Ve,

is strictly positive a.s. Assume further that for any p > 1 and positive integer n there
exists a positive constant Cy, , such that

(2.4) l( Z/ ‘lT(Vgt lv(gt)l dt) p} < Chp,
Ve,

for anyl € Sq_1 and u € A(1)". Then the law of éx, has a C°°-density.

SOCIETE MATHEMATIQUE DE FRANCE 2009



76 HIROSHI KUNITA

Proof. — Let A\; > 0 be the minimum eigen value of the matrix A+ B. Then we have

To
rQuzn Y [ e e Pa

Vel

Therefore the assertion follows from Lemma 2.1. O

The proof of our main theorem will be completed by checking the above criterion
(2.4). However its process will be quite long. Our program for the proof is as follows.
In Section 4, instead of the uniform Hérmander condition (H), we will present another
criterion that ensures the existence of the smooth density of the law of &1, (Theorem
4.1). Sections 3,4 and 6 are devoted to the proof of Theorem 4.1. Section 3 is a
preliminary part. We will discuss SDE governed by semimartingales (V&) 1V (&),
where V is a vector field. In Theorem 6.1 (Appendix), we obtain an estimate for prob-
abilities of events concerned with these semimartingales, where “Komatsu-Takeuchi’s
key lemma” plays an important role. The estimate is analogous to the one obtained
by Kusuoka-Stroock [12] or Norris [17] in case of diffusion process. The proof of
Theorem 4.1 will be completed by proving criterion (2.4) through these estimates.

In Section 5 we show that the uniform Hérmander condition fulfills the criterion
of Theorem 4.1 and then we give the proof of our main theorems (Theorems 1.1-1.2).

3. SDE'’s for derivatives of stochastic flow

Let V(z) be a vector field. We begin by studying the SDE which governs
(V&) 1V (&)
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Lemma 3.1. — We have a.s.
(V&) V() = V(E) + Y /0 (VEus) " Vi, V](Ea )iy dW (5)
i,j=1
1 & ¢ .
by D ai [ (Ve VIV VI )ds
2 i,j=1 0

n /0 (VEu) [T, V](Eso)ds

+ [ ] (V66 IV 06n) - V(e )M (dsde)
0 J|z|<é

[ ] (V66 V(6 0 60) V(€I N dsds)
0 J|z|>6

+ /0 /lzld(vss_)*l{v¢f(§s-)-1w¢;ogs_)_v(gs_)
-3 £ Vi, V(Ea-) | N (dsdz),

where V3 (z) is the Jacobian matriz of ¢ (x); R? — R? and V¢# (x)~! is its inverse

matriz.

Proof. — Tt is shown in Ishikawa-Kunita [6] that the inverse matrix (V&;) ™! satisfies

V8 =15 [ (V61190 0 w9
-/ (V)T (e )ds
+f | /lzld(vgs_)‘l{wa&s_)-l-I}Mdsdz)
; /0 /lzl26<vss_)—l{V¢f<5s_)-1—I}N(drdz)

i /0 /|Z,<5(V58—)_1{V¢T(§s_)‘l -1

+ 2 VVi(€,-) N (dsdz).
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78 HIROSHI KUNITA

On the other hand, in view of It6’s formula for semimartingale with jumps, we have

V(é‘t) = V(&O) + ZA vv(gs—)Vi(gs—)UU o de(S)

+ [ 9V e i
v [, V61 0601 =ViEs ) W
v t /.M(V(‘bf 0 €4 )~V (Es))N(dsdz)
v [, veioe-vie)

=D #VV (o )Vi(s-) N (dsdz).

For the product of two semimartingales X; = (V&)™ ! and Y; = V(&;), we have the
formula

t t
XY, = XoYo+ / X, 0dYS+ / (0dX?)Y,
0 0
t t
+ / X,_dY2+ / dX%Y,_+[X%, Y,
0 0

where X¢, Y, are continuous parts of semimartingales X;, Y, respectively and X¢, Y2
are discontinuous parts of X;,Y;, respectively. A direct application of the above

formula implies the equation of the lemma. O
Now define
1 m
(31) WV (@) =5 D aylVi [V, V(@)
i,j=1

HEVI@+ [ (Vi@ Vi) -V

0<|z|<é
=Y Vi, Vi@)#* )u(dz),
i=1
and set

(3.2) 0,(2)V (z) = Vi (2) 'V (9i(2)) - V(2).

To simplify notations, we introduce the following. We set = R™UR™U{A}, where
R™ is an m-dimensional Euclidean space. Elements of R™ and R™ are denoted
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z1,...,2™), respectively. We define stochastic process

Ylf‘l,) (t,v) with parameter | € Sq_1, vector field V and v € by

v (¢, A)

= IT(V&) WV (&),

m

YDty = Zl%vst)‘lm,w(et)%,
i=1
YOtz = zT(vst)-l‘I’llT(f)v&t).

Let W(dsdy) be a Gaussian orthogonal random measure on [0,7p] x R™ such

that E[W(dsdy)] = 0 and oW, = fg Jan YW (dsdy). Then the intensity measure

E(W (dsdy)?) = dsw(dy) satisfies ([ ¥y w(dy)) = A. We set @(dy) = |y[>w(dy).
Then, setting Y; v (t) = ITV&V (&), the equation of Lemma 3.1 is written as

t
(33) Yiv®) = Ve + [ Y- A)s

t
[ %= vlulaw
0 JR™
t ~
[ ¥ 2)elan
0 Jjzl<s

t
+// Y,$) (s—, 2)|z|dN.
0 J|z|>6

We will continue the above argument inductively. Let k > 1. We will define a family

of k-th step semimartingales with spatial parameter associated with a given vector
field V. We set W(A)V = ¥V, ¥(y)V = 3 [Vk, V]¥*/ly| and ¥(2)V = &,(2)V/|z|.
Define for vg,...,v1 € J

(3.4) U(vg, ...y 1)V = ¥(vg) 0+ 0 U(v)V.
Apply equality (3.3) to the vector field ¥(vg,...,v1)V in place of V. Then, setting

Y (8, vk, ey 01) = 1T (VE) 1 (g, ey 1)V (£r),

SOCIETE MATHEMATIQUE DE FRANCE 2009



80 HIROSHI KUNITA

equality (3.3) is written as
(3.5) Y, (¢, vk, .., v1) = Y0, v, ooy v1)

t
+/ Y'lff,ﬂ)(s—,A,vk,...,vl)ds
0
"y
+/ /Yl,v (5= Yk+1, Vs -+, V1) |Yk1 | W (dsdyk41)
0
t
L A R 1 (AR P e
0 Y)zk41|<9

t
k
+ / / Y5 (5=, 2kt 1, ks ooy 01) |21 [N (1)
0 J|zk41|>8

4. Alternative criterion for the smooth density

We will now study the existence of the smooth density of the law of &. In this
section we present an alternative criterion which ensures the existence of the smooth
density. The condition will be given at Theorem 4.1. In the next section we will
study how the condition given in this section is related to Hérmander’s condition in
Theorem 1.1.

Let € > 0. Associated with the Lévy measure v, we define a probability measure
e on R™ by

fe(dz) = 515 120 a(v(d2),
where v(p) = [, ., |2|°v(dz). We denote by p. the measure on f such that it is equal
to fic on R™, equals to @ on R™ and equals to d{ay on A.

Keeping Theorem 6.1 (in Appendix) in mind, we introduce some positive constants.
Let a be the exponent of the order condition of v and let 8 and r be positive numbers
such that 3 < a(1+ ) < 2andr > (2—a(1+ B))"!. Let ¢ > 4r and q(k) =
(14 B)rq~*. For a positive integer Ny and €, > 0, define Li\fg (w,z),w,z € RY by

LN wz)= Y {wVE)P+

Ve,

No
+30 [ [0k 00V @) Prtes () e ()}
k=1

(¥ (v, ..., v1) may depend on §).

Theorem 4.1. — For the canonical SDE (1.1), assume that there exists a positive in-

teger Ny, a nonnegative integer ng, g, €g > 0 and a positive number C such that
Clw|?

4.1 LY (w,z) > —+——

D 80 (007) 2 (T3 ol
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SMOOTH DENSITY 81

holds for any 0 < € < €y and w,z € R%. Then for any initial random variable & and
0 < Ty < oo, the law of the solution &, has a C*°-density.

For the proof of the above theorem, we need Norris’ type estimate stated in The-
orem 6.1 in Appendix. We fix dy satisfying (4.1). We define events (with parameter
le€ S;_; and € > 0) by

To
E={ Z /0 |Yl‘v(t—)|2dt<s}.

Ve,

We want to prove that for any p > 1 there exists C, > 0 such that P(E) < CpeP holds
for any 0 < € < ¢ and | € Sy—;. In order to prove this, associated with the vector
field V' we introduce a sequence of events E‘(}c ) (with parameter | € S4_; and €) by

To _
{/ (/ |Ylf(°,)(t—,vk, ey 1) |2 heacwy (dvg) - "#sq(l)(dvl)> dt < e? k}»
0

for k=0,1,2,..., where Ylf?,) =Y, v. Then we have E C ﬂvEEoES)) and the set E‘(,O)
is included in

(ED n(EMUEP NEP)E)U---U BTV NETY)) UGy,
where
Gy =EYNEY N---nEY.
Consequently, in order to prove that P(FE) is small, it is sufficient to prove that both

P(Egc ’n (E‘(/{c *1)e) and P(Nyes,Gv) are small. These two assertions will be shown
in the following two lemmas.

Lemma 4.2. — For any p > 1 there exists a positive constant C, such that
(4.2) PEP n(EFTy) < Cpe?, k=0,1,..,N—1

holds for all0 <e <eg andl € Sg_1.

Proof. — We first consider the case k = 0. We want to apply Theorem 6.1 in Ap-
pendix to the semimartingale Y; v (¢). The integrand functions of the right hand side
of (3.3) have finite moments of any order ([3]), i.e.,

Elsup [Y,5) () +sup [¥,3) (1, 1) '+ sup [¥,5) (¢, 2)["] < oo.
)y ,Z

Therefore the functional 67 defined by (6.2) satisfies E[(sup, 97)?'] < oo for any p'.
Then we can apply Theorem 6.1 and we get

PEY n (EP)*) < Cpe?’

forall0<e<egpandl € S4_;.
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We want to apply Theorem 6.1 again to Yl({c,) (t, vk, ..., v1), which is written by (3.5).
Set v = (v, ...,v1) and 7m(dy) = peaw) (k) - - - ooy (dv1). It can be shown that for
any p’ > 1, E[(sup, 67)?'] < 0o holds. Then the inequality

—(k+1)
b

P(EF N (BEFV)e) < Cper'e k=1,2,..

holds for all 0 < € < gp and | € S4_; by Theorem 6.1. Set p = p’q~No. Then (4.2)

holds valid for any k. a

Lemma 4.3. — Assume (4.1). Then for any p > 1 there exists a positive constant C,,

such that

(4.3) P(ﬂvgzon) < C;,Ep,

forall0<e<landle Sy_;.

Proof. — Set
No To X

K= Z Z / (/ IlefV)(t_v Uk, ~-~avl)|2p'eq(k) (dvk) e ,ueq(l)(dvl)> dt

k=0VeL, 0

Then, if w € G := Nyex,Gv, we have the inequality
No
K. (w) < mZ{-:q_’c < m(No+1)e?
k=0
if €1/9 < 1. Therefore, we have G C {K. < m(No+1)e? °}. Thus, the problem is
reduced to getting the estimate of P(K. < m(No+1)e? " °).
Observe that K, is written as

—No

To
K, LE 2 ((V&—)71, & )dt.

0

Inequality (4.1) implies

To v&- 1l|2
K. > C/ DA Lt ML W7
: 1+ |§t [)ro

Further, for any | € S;_1, we have the inequality

To V _ —ll2 -1 1 To
</o l(“(fftlﬁt)-—l)’lodt) ST_g o [VE&—|?(1+ |&-]) dt,

by using Jensen’s inequality. Therefore

e[ we-rasigras B
0 = = m(No+1)ea™™ |

Then we get by Chebyschev’s inequality, P(G) < C,eP where

, [ m(No+1) O o no =
([ e )]
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We have thus obtained the estimate (4.3) for all0 <e <1 and !l € S4_1. O

Proof of Theorem 4.1. — It suffices to prove (2.4). Inequalities of Lemmas 4.1 and
4.2 imply
To
P Z / Vi v (t-)|%dt < e) ce
ves,
for all 0 < e < gg and Il € S4_;. Consequently we obtain

sup E (Z/ 1T (V&) 1V(§t)|2dt) <G

lESd—l VEE

for any p > 1.

Consider next the case where u # 0. Let u = {(t1,21), ..., (tn, 2n)}, Where we
have 0 < t; < --- < tp, < Tp. We set & = & ol and YV}, (¢) = IT(VEP)TIV(ED).
Then there exists an interval [t;, ¢;+1] such that its length is greater than or equal to
To/(n+1). Choose t; < t;; such that [t],t; ] C [ti,tiy1] and ¢, —t; = To/(n+1).
Then &',t € [t],t;,,] is a solution of SDE (1.1) with the initial data {t We can apply
the argument of this section to the process Y%y, (t),t € [t],t],,]. Then we have

—-p

sup E (Z/ ir(vehHvie )|2dt) <Cpu

l€eSq-1 Ve, i

Note that the family of initial data satisfies

sup E[|¢1P] < c(n, po,p) < co.
ucA(1)»

Then we can choose a positive constant Cy, ;, such that it dominates all Cy, ,. There-

fore,
T “”]
sup  sup E ( >/ uT(vs;‘)-W(a:')Pdt) < Cnp
‘-IEA(I)" leSq_ Veso 0 J
for any n and p. O

5. Relation with Lie algebra

In this section we want to prove the following.

Theorem 5.1. — Under the same condition as in Theorem 1.1, there exists 6g, €y > 0
and C' > 0 such that the inequality
(5.1) Lg”g()(w,w) > C'lw|?, Yw,z e R?

holds for all 0 < e < g.
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If the above theorem is established, Theorem 1.1 follows from Theorem 4.1 and
Theorem 5.1, immediately. Theorem 1.2 is an easy consequence of Theorem 4.1.
Indeed, it is verified as follows.

Proof of Theorem 1.2. — Since by exists by the assumption of the theorem, there
exists g > 0 such that for any 0 < é < §p, the inequality

No
S Y TVE)P > Z > rvE)r: S

k=0 Vezi k 0VeET,

holds. Then Theorem 1.2 follows from Theorem 1.1. O

Before we proceed to the proof of Theorem 5.1, we shall approximate the vec-
tor field ¥(vg,...,v1)V given by (3.4) by a linear sum of vector fields of the form
U Vi, _, - Vg, V where ¥y, are such that ¥y = \Ilgv or U,V =[V;,V],i=1,..,m,
in the case where vy, ...,vx € R™UR™ are small.

We first consider the case k = 1. We have U(A)V = ¥V, ¥(y)V = ¥, [V;, V]yi/|yl
and ¥(2)V = ®,(2)V/|z|. Set z = (2%,...,2™). Then ®4(z) given by (3.2) satisfies
the differential equation

q’—s(%sv(—w) = (V¢§(w))“(Z[W,V]w:(z))zi).

i=1
Hence ®,(2)V () is written as

V(z) - Z[m, V)(z)2*

i=1

(Ve5() ™" D [V3, [Vi, VII(85(2)) 2",

)j

I\DI'—‘

where 0 < 6 < 1, by the mean value theorem. Consequently we obtain
m

|21(2)V (2) - Y[V, V()2 <
i=1

Since ¥(2) = ®1(2)/|z|, we get

ROIE Zm,wz)l || < ailel

for sufficiently small 2.
We next consider the case k > 2. Suppose vy = 2zk,...,v1 = z1. We can show
similarly that there exists dg > 0 such that the inequality

k
\I’(zk’--',zl Z \II'Lk” i1 (m)lzkllz || —-c?leil
i=1

kyenyir =1
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holds for |z;| < 8¢, = 1, ..., k, where z; = (2},...,2"). For the general v, ...,v1, we

have
(5'2) \I’(vkv"')vl)v(w) - Z Wi, ""I’hv(x)‘Pik (vk)' ©Piy (vl)
Tk yeeny81=0
<al X ).
i€{k;vr=2x}

k

Here ‘pO(A) = la(pk(A) = 0,k = 1,..,m and (pO(y) = ‘100(2:) = O’on(z) = r7| and

k
gok(y)=5[yy—l,k =1,..m.
We claim:

Lemma 5.2. — For any § > 0 and ¢ > 0 there exists eg = €o(,c) > 0 such that for
any0<e<egg andl € S4_1, we have

(5.3) /---/llT\Il(vk,...,vl)V(:c)|2u€q(k)(dvk)~~p€q(1)(dv1)
~k

A m
> ( > T, '-%wzn?) -

Thyeeny81=0

where \1 is the minimal eigen value of the matriz A+ B and M=AAL

Proof. — Let us consider F, given by

n 2
JJ( Ym0V o) e (@on) e o).

Thyeeny01=0

Since

i [ [ 10 (00) 01 (00 (0 (01 e (@) o (o)

e—0

k
> H(aiji; + bijir + cijir ),
e

(where ¢;; = 1if ¢ = j = 0 and = 0 otherwise), the inferior limit of F is greater than
or equal to

o> T v, VIt T,V

ikyeenri1 =08 ey8) =0
X(@sp,ip + bipir + Ciar ) - (@ayi + by iy + cigar)-
The above has the lower bound A¥ "7 . _( iITW;, - ¥; V|2 Therefore, we have

~ m c
F.> )\ ( > T, -~-\II,~1V(x)|2) — 5

ikyeneyiz=0
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for sufficiently small €.
On the other hand, we have from (5.2) the inequality

2
S I (179 (0ky oy 00)V =50 iymo T Wi+ Wi, Vipiy (o) - i (02) )

!
L1
X freate (AVE) *  + preacry (dv1) < €2 Y €210 < 5¢

for sufficiently small e, where 3" is the summation for i € {k; vy = zx}. Consequently
we get the inequality (5.3). a

Proof of Theorem 5.1. — We shall first introduce another family of vector fields.
Given § > 0, we define a linear transformation ¥} of vector fields by (3.1). We
may consider ¥3V as a modification of the vector field [V, V]. We define

rf=%, -, ={¥V,[V;,V],i=1,..,m,V €T_,}.

These can be regarded as a modification of £ of Section 1.
Now, apply (5.3) to each term of L. s(I,z). Then for any 0 < € < g¢(d,¢c) and
l € S4-1, Le s(l, x) is greater than or equal to

S\No No m m
(5.4) §:|ﬂqun2+-§—§: SN N T, v, V()
Ve, k=1VEXg ix=0 11=0

Ao
~(m +1)M Noc > %{ > |lTV(x)|2} — (m + 1)™ Noc.
veupo ré
We want to rewrite the right hand side of the above by using vector fields in Ei. We
set

. 1
BV = [V5,VI+5 D ayVi [Vi, V]I
i,j=1

Then we have

2
‘me@-ﬂﬁwﬂ
2

[, (47 @ - e vi@=)uas
< cu(6)2

We can show by induction
17 @)V (@) - (@) V (@)|| < 2Ferv(d).

Therefore,
1
I (25)*V (z)|* > §|lT(<I>3)'°V(9v)I2 — 2¢ey0(6)2.
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Summing up these inequalities, we obtain

No No
S Y @V@)PE > %Z 3 [TV (@)[? - N2Notieyn(s)?,

k=0vers k=0vex?

where N is the number of terms of the sum Z,Icvﬁo ZVezi- Therefore, assuming (1.2),
the right hand side of (5.4) dominates
Ao C(8)
! . 1 _ No+1 2\ _ No
o= { ! (—2 N2+ e0(8)?) - (m + 1) Noc}.

The above constant C’ becomes positive if we choose 4, ¢ sufficiently small, say § = &,
and ¢ = ¢j. Set gy = €9(dp, ;). Then we get the inequality (5.1) for I € S4—; and
z € R94. The inequality is extended to any w,z € R4, a

6. Appendix. An analogue of Norris’ estimate

In this section, we will consider semimartingales with parameter «y, which is directly
related to the solution of an SDE. We consider a semimartingale Y;",0 < t < T,
defined by

t t
(6.1) Yy = '+ /0 a"(s)ds+; /0 £7(s)dW?

t t
+/ / g"(s,z)dﬂ’+/ / g7 (s, z)dN,
0 J|z|<é 0 J|z>6

where a?(s), f7(s), g7 (s, z) are left continuous predictable processes, continuous with
respect to parameters z € R™,vy € I'. Here I is a compact space. We assume further
that a”(t) is a semimartingale represented by

a(t+) = a"+ /t b7 (s)ds + Z /t e] (s)dW?
0 —~Jo

t t
+ / / R (s, z)dN + / / R (s, z)dN,
0 J)z|<§ 0 J|z|>6

where b7(s), e} (s),h7(s, z),s > 0 are left continuous predictable processes continuous
with respect to z and . We set

(6.2) 97 = |l(a")®+ (") + Z ()% + ()]l
+ / lg”(2)* + h7(2)*|lv(dz) + sup ||B7(2)?],
|2|<é |z|>6

where || F|| = supg<;<T, |F(t)|. Set further

(t, z .
. I(zl )’ fre(dz) =

1

g7(ta Z) = ’U(é)

2?1104 (|2)v(d>).
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We shall consider two events for given r > 0,qg > 4r,8 >0 and € > 0

A = { fp (S5 12 Pdt)w(dy) < e},

B(e) =

{ Ir oT0 {av(t)2+2i IFT@®)12+[ 97 (¢, z)2ﬂ5(1+ﬁ)r(dz)}7r(d'y)dt > a}.

We will show that the probability where both A(e) and B(e) occur simultaneously
is small if € is small.

Theorem 6.1. — Let o be the exponent of the order condition of the Lévy measure v.
Let B > 0 be a number such that 3/2 < a(1+ 8) < 2. Letr > m and q > 4r.
Assume E|[(sup., 07)P] < co holds for any p > 1. Then for any p > 1, there exists a
positive constant Cp, such that the inequality

(6.3) P(A(€) N B(e)) < Cpe?

holds for any semimartingale Y, represented by (6.1), any probability measure m on
I' and any 0 < € < €9, where 0 < €9 < 1 is a positive number independent of p.

In order to prove the above theorem, we need the following. Let Y;' be the process
of (6.1) and let A be an arbitrary positive number.

Komatsu-Takeuchi’s estimate. ([7], Theorem 8) For any 0 < v < %, there
exist a positive random variable &(\,v) with E[&(A,v)] < 1 and positive constants
C,Cy,C1,Cs such that the inequality

To
(6.4) 2 / Y12 A %dt+ AVlog 6(\, ) +C >
0
To To
Co,\l-““/ |a7(t)|2dt+C’1)\2_2”Z/ |£7(t)|?dt
0 7 Yo

i 1
+C'2)\2_2”/0 /m lg7(t, 2)|*> A thx/(dz)
holds on the set {67 < A\?Y} for allA > 1 and Y.

Remark 6.2. — In Theorem 3 in [7], the assertion is stated in the case where Y;", a"(t)
etc. do not depend on the parameter 7. Further the Lévy measure is assumed to be
of the form v(dz) = |z|7™ *dz. However their result can be applied to the present
case.
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Proof of Theorem 6.1. — By the choice of 8 and 7, it holds 0 < 2—a(1+ ) — % We
will choose v such that 0 < v < (2—a(1+ ) — 1) A . We want to rewrite inequality
(6.4) in order to apply it for the estimate (6.3). Our aim is to get (6.5) below on
the set {sup, 67 < e~*"}. We first consider the last term of (6.4). It holds for any
O<Kr<A

| (197,28 A 55)vta 1

Ay 2 2
[ (€A A )i

K

o(§) [, (57678 Z)az @

Now set A =¢~" and = €. Then £ = e(*+A)" and v(§) > C4e*P)" by the order
condition for v(p). Therefore, (6.4) is rewritten by

\Y

\Y

To
i / Y |2 Ae¥rdt + e log &(e",y) + C
0

Tg TO
> e [ClargPar+ et S [V I Par
0 i YO

(2
To
+CyCye T 2oHa(1+0)r / / 197 (t, 2)|2 A €28 dtfi 140y (d2).
0 m

Now set p = min{r(1 — 4v),7(2 — 2v) — a(1+ B)} — 1. In view of the choice of v, we
have p > 0. Set Cs5 = min{Cy, Cs,C,}. Then the above inequality yields

To
g4 / Y2 Ae?dt + " log (™", v) + C >
0
To
el R (OTES SITAOIE
0 i

+ [1876, P A v (d2)

on the set {67 < e "}

Next, integrate each term of the above by the measure 7 with respect to the
parameter . We have by Jensen’s inequality [log &(\,v)m(dy) < log &()), where
&6(N) = [ &(N,v)w(dy) is a positive random variable such that E[§()\)] < 1. Therefore
we have

To
(6.5) 5‘4"/ (/ Y72 A sszt)w(d'y) +elogb(e7T)+C >
r “Jo

o [ [+ Tinor

+/ 197 (¢, 2)> A S—wrﬂs(wﬂ)r (dz)}dtn(dfy)
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on the set {sup, 67 < e "}
We can now give the proof of (6.3). We define three events by

Ai(e) = {s:p0'7>e“”},

Az(e) = {sgp 0" < e_‘”} ﬂ { /P /OTO Y |2 A e dtn(dy) < sq}
N{slai <> )N { L " CORSMACIE
+ / §(t,2)? /\s_zﬁrﬂ5<1+g)r(dz))dtﬂ(d'y)>e},

As(e) = {suplg"ll> <},

Then it holds A(e)UB(e) C A1(e)UAz(e)UA3(e) for any «. Therefore, the probability
of (6.3) is dominated by P(A1(g)) + P(Az2(e)) + P(As(e)). We shall get estimates of
P(A;(e)),s = 1,2,3. In view of our assumption of the theorem, the first one is
estimated as
P(A,(e)) <ePE [(sup 07)”/7] < cpeP.
¥

A similar estimate is valid for P(Az(¢)). For the estimate of P(Az(e)), we remark
that (6.5) implies

Az(e) € {E(E™) > exp (€9 +C5e 7P —C)} .
Therefore, by Chebyschev’s inequality

P(Ay(e)) < eCexp (74" —Cse*) E [é’(s_”)ew] )

Further 974" < %ie"’ holds for € < &g, where eg"‘" = C5/2. Therefore,
C
P(A(e)) < € exp (—?55“’) < cpe?

for € < gg. O
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