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SMOOTH DENSITY OF CANONICAL STOCHASTIC 

DIFFERENTIAL EQUATION W I T H JUMPS 

by 

Hiroshi Kunita 

Dedicated to Professor J.-M. Bismut for his sixtieth birthday 

Abstract. — We consider jump diffusion process £t on R D determined by a canonical 
SDE: 

= YZi V^t) o &i + Vo(tt)dtt 

where Zt — (Z\,Z™) is an m-dimensional Levy process and V b , V m are smooth 
vector fields. We prove that the law of the solution £t has a C°°-density under the fol
lowing two conditions. (1) The Levy process Zt is nondegenerate. (2) {Vb, V i , V m } 
can be degenerate but satisfies a uniform Hôrmander condition (H). For the proof we 
make use of the Malliavin calculus on the Wiener-Poisson space studied by Ishikawa-
Kunita. 

Résumé (Densité lisse pour les solutions d'équations différentielles stochastiques avec sauts) 
Nous considérons un processus de diffusion à sauts £t dans R D déterminé par une 

EDS canonique: 
= £ £ i W W ° d Z t + Vo(tt)dt, 

où Zt = (Z}tZ™) est un processus de Lévy m-dimensionnel et V b , V m sont des 
champs de vecteurs. Nous montrons que la loi de £t a une densité C°° si les condi
tions suivantes sont satisfaites. (1) Le processus de Lévy Zt est non dégénéré. (2) La 
distribution {Vb, V i , V m } peut être dégénérée mais elle satisfait à une condition de 
Hôrmander uniforme (H). Pour la démonstration, nous utilisons le calcul de Malliavin 
sur l'espace de Wiener-Poisson étudié par Ishikawa-Kunita. 

1. Introduction and main results 

Let VOJVI,'" Vm be smooth vector fields on R d whose derivatives (including higher 

orders) are all bounded. Let Zt = (Z\,Z™), t > 0 be an m-dimensional nonde

generate Levy process. In this paper, we consider a jump diffusion determined by a 
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70 HIROSHI KUNITA 

canonical SDE based on {VQ, VI, • • • , Vm} and Zt\ 

(î.i) dÇt = 
m 

2=1 

Vi(tt)<>dZi + Vo(Çt)dt. 

Canonical SDE's are studied in mathematical finance. Let Zt be a one dimensional 

Levy process. We consider a one dimensional linear canonical SDE. 

dSt = St odZt. 

The solution starting from So at time 0 is unique and it is written as St := So exp Zt 

(See Section 2). It is called a geometric Levy process. The solution St describes the 

movement of a stock. If Zt is a Levy process with finite Levy measure (a compound 

Poisson process), the process St is the Merton model or the Kou model, according 

as the normalized Levy measure is a Gaussian distribution or a double exponential 

distribution, respectively. See [16],[8]. The precise definition of the canonical SDE 

will be given at Section 2. 

The main purpose of this paper is to show the existence of the smooth density for 

the law of the random variable £ t that is a solution of equation (1.1). For this purpose 

we need to assume suitable nondegenerate conditions both for the Levy process Zt 

and the family of vector fields { V b , V ^ } . 

We first consider the Levy process. The Levy process Zt is represented for arbitrary 

S > 0, by 

Zt = oWt -+ 
t 
0 

'o<|z|<5 
zN(drdz) + 

f J\z\>S 
zN(drdz) + bst, 

where a is an m x m-matrix, Wt is an m-dimensional standard Brownian motion. 

N(dtdz) is a Poisson random measure which is independent of Wt with intensity 

N(dtdz) = dtv(dz), v being the Levy measure. Further, N(dtdz) = N(dtdz) — 

N(dtdz) and b$ = ( & J , f c j p ) is a drift vector. Set A = (a^) = aaT. It is a 

covariance of the Gaussian part aW\ (Levy-Ito decomposition). Throughout this 

paper, we assume that the Levy measure v has finite moments of any order. Set 
v(p) : = I\ i<r \z\2v(dz). If there exists a G (0,2) such that 

liminf ^ > 0 
0->O na 

then the Levy measure is said to satisfy an order condition. Note that the Levy 

measure v satisfying an order condition is an infinite measure: Indeed, we have 

z/({z;0 < \z\ < 5}) = oo for any S > 0. In case of one dimensional Levy process, 

the above order condition is known as a sufficient condition for the existence of the 

smooth density of the law of the Levy process (Orey's theorem. See Sato [20], Propo

sition 28.3). Then the law of the geometric Levy process St has a smooth density if 

the order condition is satisfied. 
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SMOOTH DENSITY 71 

Now we set bij(p) = J^<pz
%z^u{dz)/v{p) and B(p) = (bij(p)). The infinitesimal 

covariance B is a symmetric and nonnegative definite matrix, which coincides with 

the greatest lower bound of the matrix B(p) as p —*• 0. If the Levy measure satisfies an 

order condition and the matrix A + B is nondegenerate (invertible), then we say that 

the Levy process is nondegenerate. In this paper, we assume that the Levy process Zt 

is nondegenerate. 

We will next consider nondegenete properties for the family of vector fields 

{V0,Vm}. In Ishikawa-Kunita [6], we studied the case where the family of vector 

fields { V i , V m } is uniformly nondegenerate, i.e., there exists a positive constant C 

such that the inequality 

m 

i=l 
ìFViWl2 > C\l\\ Va; € R d , VleRd 

holds valid, where lT is the transpose of I and lTV(x) denotes the inner product of 

two vectors I and V(x). We showed the existence of the smooth density of its law by 

applying Malliavin calculus on the Wiener-Poisson space. 

In this paper we want to relax the above uniformly nondegenerate condition. Let 

VQ, Vm be C°°-vector fields such that their derivatives (including higher orders) are 

all bounded. Then Lie brackets [V^ [• • • [Vin__1, Xin] • • • ], ¿ 1 , i n € { 0 , 1 , m } are 

bounded vector fields. We introduce families of vector fields. Let Eo = {Vi, V m } 

be a linear space of vector fields spanned by V i , V m - Given S > 0, we set 

vi = v0 + 
rn 

i=1 
bin 

Set Eg = E 0 and define for k = 1, 2,... 

E£ = {fôf,V] + 
1 

2 

m 

j=1 
aij\y»[Vj,V]], [Vi,V],i = l,...,m,Ve [ 

Theorem 1.1. — Assume that for the family of vector fields { V b , V m } there exist 

a positive integer No and a positive number So such that for any 0 < S < So the 

inequality 

(1.2) 
JV0 

k=0 v EEsk 

\lTV(x)\2>C(5)\l\2, Vx E R d , vi e Rd 

holds valid, where C(S) are positive numbers satisfying 

limini C(6)/v(6)2 = oo. 

Then for any initial random variable £o and 0 < To < oo, the law of the solution £x0 

of the canonical SDE (1.1) has a C°°-density. 
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72 HIROSHI KUNITA 

The condition required for vector fields in the above theorem is complicated, since 

5's are involved. We can replace it by a simpler one if we restrict the Levy process Zt 

to a simpler one, namely if we assume 

(1.3) bo = lim bs exists and is finite. 

The existence of bo is equivalent to that of l i m ^ o fs<\z\<i zu(dz). In this case, it 

holds bo = bi — lim<$_>o Js<\z\<i zu(^z)' ^n particular, if the integral Jo<|z|<i |^|i/(d^) 

is finite, 60 exists and is finite. Hence for any stable process whose exponent is less 

than 1, bo exists. Further, if the Levy measure v is symmetric, bo exists and is equal 

to b\ even if J0<\z\<i \Z\V^AZ) * s infinite. Hence for any symmetric stable process, 60 

exists and is equal to 61. 

Now, assume (1.3) and let 5 —• 0 in the Levy-Ito decomposition of Zt. Then we 

obtain 

Zt = arWt + 
Jo l\z\>0 

zN(drdz) + bot. 

Hence 60 can be regarded as the drift vector of the Levy process Zt. We define a new 

drift vector field Vq by 

Vo = Vo + 

m 

i=l 

boVi, 

and introduce families of vector fields by EQ = { V i , V m } and for k = 1,... 

s f c = { [ v b , Y ] + 
1 

2 

m 

j=1 
ûij [Vi, [Vj,V]], [Vi, V],i = 1 , m , V e 

Theorem 1.2. — Assume (1.3) for the Levy process Zt. Assume further that the family 

of vector fields {Vo, V i , V ^ } satisfy the uniform Hormander condition (H), i.e., 

there exists a positive integer Nq and a positive constant C such that 

(1.4) 
Wo 

k=0 vEEk 

| / T V ( x ) | 2 > C | / | 2

: Mx e R d , V ¡ e R d 

holds valid. Then for any initial random variable £0 and 0 < To < 00, the law of the 

solution £T 0 of the canonical SDE (1.1) has a C°°-density. 

Observe that Theorem 1.2 indicates that both the canonical SDE with jumps and 

Stratonovich SDE (diffusion) have the common local criterion (Hormander' condition) 

for the existence of the smooth density of their laws. This is partly because that we 

restrict our attention to small jumps of the SDE, ignoring the effect of big jumps. 

Loosely speaking, under an order condition, the solution of equation (1.1) could behave 

like a diffusion if sizes of jumps are small. 
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SMOOTH DENSITY 73 

Perhaps, Bisrnut [2] is the first work toward the smooth density of the law of the 

solution of SDE with jumps, where he developed the Malliavin calculus for jump pro

cesses. After this fundamental work, the similar problem has been discussed in some 

different contexts by Leandre [13],[14],[15], Bichteler-Gravreau-Jacod [1], Komatsu-

Takeuchi [7] and others. A common feature in the above works might be that they 

assumed for the Levy measure v the existence of a smooth density and an asymptotic 

of the density as z —> 0. Furthermore, a formula of integration by parts holds valid 

in these cases, which are shown through Girsanov's theorem for jump diffusion. 

In our discussion any Levy measure (singular or not) is allowed, as far as it satisfies 

an order condition. Then no formula of integration by parts is known. We take 

another approach to the Malliavin calculus, developed in Ishikawa-Kunita [6]. It will 

be presented in the next section. 

2. Malliavin calculus for canonical SDE 

Let Zt, t > 0 be an m-dimensional Levy process admitting the Lévy-Itô decomposi

tion and let £o be an Hd-valued random variable independent of Zt. By the solution of 

equation (1.1) starting from £o at time 0, we mean a cadlag Revalued semimartingale 

t > 0} adapted to £7t = cr(^o5 Zr\ r < t) satisfying 

(2.1) 
m ft pt 

6 = Zo + Y, Vi(tr)odZi.+ V0(tr)dr 
Jo Jo 

= £0 + 
m 

i,k=l 
f 
>0 

Vi(Çr)aikodWr

k + 
Jo 

V0

s{^)dr. 

f 
Jo 

l\z\<8 
{(/>î(tr-)-tr-}N(drdz) 

f 
Jo 

f\z\>8 
{<l>zi(tr-)-tr-}N(drdz) 

+ 
f 
Jo 

l\z\<5 
W l ( £ r ) - £ r -

m 

1=1 
z'Vii^jNidrdz). 

Here " o " denotes the Stratonovitch integral. Using Itô integral, it holds 

m 

k=l 
f 
'o 

Vi{(ir)o-ikodWÏ 

771 

k=l 
f 

Vi^r-)aikdW^ 
1 

" 2 

m 

j=l 
t aiJ f 

Jo 

d 

1=1 

dVi 

dxl 
V1 (£-)= dr 

Further, for z = ( z 1 , z m ) e R m ^ , s 6 R is the one parameter group of diffeomor-

phisms generated by the vector field J27=i z%^i-> i-e-> $1 = exPs(J2i z%Vi)-
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74 HIROSHI KUNITA 

The equation has a unique solution It holds = ff for any S > 0 and 5' > 0. 

Hence the common solution is denoted by ft- In the case where fo = we denote 

the solution by fo,tO*0- Then it has a modification such that the maps fo.t; - • 

are onto diffeomorphisms a.s. and further the Jacobian matrix V£o,t(aO is invertible 

for any x a.s. It defines a stochastic flow of diffeomorphisms (Fujiwara-Kunita [3]). 

We have & = f0,*(£o). 

We will consider a one dimensional linear SDE dSt — StOdZt. In this case we have 

Vi(x) = x. Then it holds (exp szVi)(x) = e8Zx. Hence equation (2.1) is written by 

St = So + o~ 
f 
Jo 

Sr-dWr + 
1 

2 
a2 

f 
Jo/o 

Sr-dr + 6<5 
«f 
Jo/0 

5R_DR 

f 
Jo 

0<|z|<s 
(e*-l)5R-JV(drdz) 

f 
JoJo 

l\z\>6 
(ez-l)Sr-N(drdz) 

• f 
Jo 

h<\z\<5 
(ez-l-z)Sr-dru(dz). 

The solution is given by St = 5oexpZ t . Indeed apply Ito's formula to the function 

F{x) = ex and the semimartingale Zt (Theorem 2.5 in [10]). Then we find that 

St := expZt satisfies the above equation. 

Now, for the proof of theorems stated in Section 1, we need the Malliavin calculus 

on the Wiener-Poisson space studied in Ishikawa-Kunita [6]. We will quickly recall it. 

Let To be an arbitrarily fixed positive number and let U = [0,Tb] x R m . Elements of 

U are denoted by u — (£, z). Let be a perturbation of the Poisson random measure 

N such that N(A) o e+ = N(A D {u}c) + 1a(u). If we apply £ ^ 1 > Z l ) to the solution & 

of SDE (2.1), we have f t o eJ 1 > Z l ) = ft if t\ > t and & o e ^ ^ ) = 6 i , t o <£f ° 6 i - if 

< £, where £8it := fo,t ° fo~] are diffeomorphisms of R d , a.s. 

For u = ( u i , . . . ,u n ) , we set £+ = e + o • • • oe+n. Let u = ( ( * i , * i ) , ( t n , z n ) ) where 

¿1 < ¿2 < • * • < t n . Then f" : = { t o £+ is represented by 

ff = tu,t ° <t>{ 0 iu-uu- ° • • • ° <?! ° if U<t < U+x. 

Malliavin covariances R and K of the random variable £t0 with respect to the Wiener 

space and the Poisson space are defined by 

R = 
f 
JoJo 

V6 fro(ft-)C(€t-)AC(€t-) TV6,Tottt-)T*, 

k = 
çT0 

Jo 
VÌt,rofò-)Cfò-)BCtò_) T V6 ,r 0 (et-) T di, 

respectively. Here Vft.ToOs) is the Jacobian matrix of the map ft,T0 0*0 • The d x m 

matrix C(x) is given by C(x) = (Vi(x),Kn(#))-

We set Q = R + K and call it as the Malliavin covariance o/fr 0 - Set Qu = Qoe^. 

Then Q u is the Malliavin covariance of gfi . 
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SMOOTH DENSITY 75 

Now consider Q = V£o,r0(£o) 1Q(V£O,T0(€O)T) 1 (modified Malliavin covariance 

of £T 0)- It is written as 

Q = 
f 
Joo 

Wt-riCfo-KA + B)C(Çt-)
T(Vg_)-ldt, 

where V£t = V£o,t(£o)- Then the modified Malliavin covariance Qu of equals 

Qoe+. 

A criterion for the existence of the smooth density of the law of £r0 is given by the 

following. 

Lemma 2.1. — Assume that 

(2.2) sup sup 
ueA(i)n leSd-! 

E[(lTQul)-p] < oo 

holds for any positive integer n and p > 1. Then the law of £T0 has a C°°-density. 

Proof. — It is shown in [6], Proposition 6.1 that if Qu is invertible a.s. and 

(2.3) sup sup 
ueA(i)n leSd-x 

E[(lTQul)-p] < oo 

is satisfied for any positive integer n and p > 1, then the law of £T0 has a C°°-density. 

Here, we set A(l) = {(t,z);te (0 ,T 0 ) , \z\ < 1} and 5 d _i = {I e Kd] \l\ = 1}. 

We will show that condition (2.2) implies condition (2.3). Note that (2.2) implies 

sup u € A( 1)n 2£[sup i G5 d_ 1(l TQ ul)~ p] < oo- Then the minimum eigenvalue A" of the 

matrix Qu satisfies sup^^^n E[(Ai)~p] < oo for any p > 1. Since the equality 

(Qu)-i = V ^ r J O ^ ^ V & . T o holds and V& fT 0 € LP holds for any p > 1, 

{{lTQul)-\leSd^ueA(ir} 

is also Lp bounded for any p > 1. Thus we have (2.3). 

Theorem 2.2. — Assume that for any I G Sd-i and u G A(l)n, the random variable 

v EEo 

pT0 

lo 
F(v^)-1V(Cut) 

2 
dt 

is strictly positive a.s. Assume further that for any p > 1 and positive integer n there 

exists a positive constant C n > p such that 

(2.4) e\ 
vEEo f 

Joo 

Z T ( V f f ) - V ( f f ) 
2 
dt 

-p 
< Cn,p, 

/OR ARA/ Z G Sd-i and u G A ( L ) N . Then the law of £R0 ^ A C°°-density. 
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76 HIROSHI KUNITA 

Proof. — Let Ai > 0 be the minimum eigen value of the matrix A + B. Then we have 

lTQul > Ai 
v EEo 

çTq 

Jo 
\Г<у$Г1у($)\2<и. 

Therefore the assertion follows from Lemma 2.1. 

The proof of our main theorem will be completed by checking the above criterion 
(2.4). However its process will be quite long. Our program for the proof is as follows. 
In Section 4, instead of the uniform Hormander condition (H), we will present another 
criterion that ensures the existence of the smooth density of the law of £r 0 (Theorem 

4.1). Sections 3,4 and 6 are devoted to the proof of Theorem 4.1. Section 3 is a 

preliminary part. We will discuss SDE governed by semimartingales ( V f t ) - 1 ^ ( f t ) 5 

where V is a vector field. In Theorem 6.1 (Appendix), we obtain an estimate for prob

abilities of events concerned with these semimartingales, where "Komatsu-Takeuchi's 

key lemma" plays an important role. The estimate is analogous to the one obtained 

by Kusuoka-Stroock [12] or Norris [17] in case of diffusion process. The proof of 

Theorem 4.1 will be completed by proving criterion (2.4) through these estimates. 

In Section 5 we show that the uniform Hormander condition fulfills the criterion 

of Theorem 4.1 and then we give the proof of our main theorems (Theorems 1.1-1.2). 

3. SDE's for derivatives of stochastic flow 

Let V(x) be a vector field. We begin by studying the SDE which governs 

( v & r 1 ^ ) . 
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SMOOTH DENSITY 77 

Lemma 3.1. — We have a.s. 

( V & r 1 ^ (6) = V(to) H 

m 

j=1 [' 
(V6-)_1[Vi,[^,Vl](£s-)oijdWj (s) 

1 
+ 2 

m 

j=1 
aij 

f 
Jo ( V 6 - ) _ 1 [ V i , [ ^ , V l ] ( 6 - ) d « 

f 
Jo (V6-)_1[Vi,[^,Vl](6-)d« 

«/0 |s|<* 
^ - r ' M K - r ^ W o f - ) - V&-)}N(d8dz) 

f 
JoJo 

f\z\>6 
(V^r'iVms-r'Vi^o^-ViÙ-^Nidsdz) 

f 
JoJo 

l\z\<S 
(V£s- )-1 ' V ^ ( 6 - ) _ 1 V ( ^ o 6 - ) - n e - ) 

i 

z [Vi, V](£s- ) •N(dsdz), 

where V0f (a?) zs t/ie Jacobian matrix of (/>f(x);Rd —> R d and V(/>f(x) 1 zs z£s inverse 

matrix. 

Proof. — It is shown in Ishikawa-Kunita [6] that the inverse matrix (V£*) 1 satisfies 

a.s. 

( V É t ) - 1 ^ -
ij ff 

Jo 
Jo/o 

V 6 - ) _ 1 V K ( 6 - ) ^ o d W J ' ( a ) 

f 
JoJo 

V6-)_1VK(6-)^odWs 

Jo l\z\<5 
; V ^ _ ) - 1 { V ^ ( ^ _ ) - 1 - / } 7 V ( ^ ) 

Jo • '\z\>6 
( V ^ _ ) - 1 { V ^ f e _ ) - 1 - / } i V ( r f r ^ ) 

f 
Jo 

\z\<8 
та-гчщш,-)-1 - 1 

i 
z'VVi(6-)}JV(d*dz). 
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On the other hand, in view of Ito's formula for semimartingale with jumps, we have 

V(£t) = V(£o) + 
i,j 

f 
>o 

W(&-)Vi(É.-)(ryodW"'(s) 

f 
Jo 

W(&_)V 0 ' (&- )d* 

7 

Jo 
'\z\<6 

(V(<l>ïoÇa_)-V(Ça-))N(d8dz) 

f 
Jo 

1\z\>6 
(V((j>zi°ïs-)-V(tis-))N(dsdz) 

f 
Jo 

l\z\<6 
{ V ( # o & _ ) - V ( & _ ) 

i 
z*W(&-)Vi (6_)}#(d«fc) . 

For the product of two semimartingales Xt = (V£ t )
 1 and Yt = V(&), we have the 

formula 

XtYt = X0Y0+ 
f 

Xs o dYs

c+ 
f 
Jo 

[odXc

s)Ys 

f 
Jo Xs_dYs

d + 
f 
Jo 

dXfYs_ + [Xd,Yd]u 

where X%, Yt

c are continuous parts of semimartingales Xt,Yt, respectively and Xf, Yt

d 

are discontinuous parts of Xt,Yt, respectively. A direct application of the above 

formula implies the equation of the lemma. • 

Now define 

(3.1) 
Wso V(x) = 1 

2 

m 

w=1 
aii\yi,Wi,V]](x) 

+[V0

s,V}(x) + 
'0<\z\<6 

V ^ ( x ) - ^ ( ^ ( x ) ) - F ( x ) 

m 

i=l 

[VuV^xyjvtdz), 

and set 

(3.2) *a(z)V(x) := Vft^VWix)) - V(x). 

To simplify notations, we introduce the following. We set $ = R m U R m U { A } , where 

R m is an m-dimensional Euclidean space. Elements of R m and R m are denoted 
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SMOOTH DENSITY 79 

by y = (y 1 , ...,2/m) and 2; = . . . , z m ) , respectively. We define stochastic process 
YSy(t,v) with parameter / G Sd-i> vector field V and v € <jJ by 

y # ( t , A ) = F ( V 6 ) - X * ^ ( 6 ) , 

Y$(t,y) 
m 

2=1 

lT (V£t)-1 [Vi,V](£t) 1/' 
|g| 

Y,lV(t,z) = F(vet ) - 1 

Q1(z) 

\z\ 
V(£t) 

Let W(dsdy) be a Gaussian orthogonal random measure on [0,T 0] x R m such 
that E[W(dsdy)] = 0 and aWt = f0fRmyW(dsdy). Then the intensity measure 
E(W(dsdy)2) = dsw(dy) satisfies (J^ m yiyjw(dy)) = A. We set w(dy) = \y\2w(dy). 

Then, setting Yiy(t) = ZTV£tV(ft)» the equation of Lemma 3.1 is written as 

(3.3) Yiy(t) = lTV(t0) + 
f 
Jo 

Y${a-,A)da 

Jo R m 
Y$(s-,y)\y\dW 

- f 
Jo 

\z\<6 
Y${s-,z)\z\dN 

f 
Jo 

\z\>S 
Y$(s-,z)\z\dN. 

We will continue the above argument inductively. Let k > 1. We will define a family 
of k-th step semimartingales with spatial parameter associated with a given vector 
field V. We set tf(A)V = VS

0V, 9(y)V = £ f c [V*, V]yk/\y\ and W(z)V = Q1(z)V/|z|. 
Define for Vk,vi € 9/ 

(3.4) V(vk,...,vi)V = ф(г>*) о • • • о V(vi)V. 

Apply equality (3.3) to the vector field ...,vi)V in place of V. Then, setting 

y JJ )(*,t; f c,...,t; 1) = Z r(VCt)- 1*(vfc,...,«i)V(6), 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



80 HIROSHI KUNITA 

equality (3.3) is written as 

(3.5) Yl%
)(t,vk,...,v1) = Yl%\0,vk,...,v1) 

f 
Jo 

Xl,V ( s - , A,ü f c , . . . ,vi)ds 

Jo 

F V ( * + L ) ( s - , 2/fc+i, vjb, vi)|î/*+i^(dsdj/fc+i) 

- / 
./0 -

'\zk+i\<S 
yi^1\s-,zk+i,vk,...,v1)\zk+l\N(dsdzk+1) 

Jo J\zk+1\>5 
yi^1\s-,zkjtl,vk,...,v1)\zk+i\N(dsdzk+1). 

4. Alternative criterion for the smooth density 

We will now study the existence of the smooth density of the law of £ t . In this 

section we present an alternative criterion which ensures the existence of the smooth 

density. The condition will be given at Theorem 4.1. In the next section we will 

study how the condition given in this section is related to Hörmander's condition in 

Theorem 1.1. 

Let e > 0. Associated with the Levy measure v, we define a probability measure 

ße on R m by 

fie(dz) = 
1 

v(e) *l2l[o,c](MM<fcO, 

where v(p) = f\z\<p \z\2v(dz). We denote by fie the measure on <tf such that it is equal 

to jle on R m , equals to & on R m and equals to <5{A} on A. 

Keeping Theorem 6.1 (in Appendix) in mind, we introduce some positive constants. 

Let a be the exponent of the order condition of v and let ¡3 and r be positive numbers 

such that | < a ( l + 0) < 2 and r > (2 - a ( l + /J))" 1 . Let q > 4r and q(k) = 

(1 + (3)rq~k. For a positive integer Nq and e,5 > 0, define L^%(w,x),w,x G Hd by 

LNo (w,,x) = 
e,s 

vEEo 
\wTV(x)\2+ 

No 

k=l 

\wT^(vk, ...,vi)V(x)\2n£q{k)(dvk) • • • AIe«(i)(<FOI)j 

(ty(vk, ...,vi) may depend on S). 

Theorem 4.1. — For the canonical SDE (1.1), assume that there exists a positive in

teger Nq, a nonnegative integer no, So, eo > 0 and a positive number C such that 

(4.1) LNo (w,,x) > 
e,s 

C\w\2 

(1 + \x\)n° 
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holds for any 0 < e < €o and w, x G Hd. Then for any initial random variable £o o^nd 

0 < To < oo, the law of the solution £r0 has a C°°-density. 

For the proof of the above theorem, we need Norris' type estimate stated in The

orem 6.1 in Appendix. We fix So satisfying (4.1). We define events (with parameter 

1 G Sd-i and e > 0) by 

E = 
V EEo f 

Jo 

\Yiy{t-)\2dt<e 

We want to prove that for any p > 1 there exists Cp > 0 such that P(E) < Cpe
p holds 

for any 0 < e < eo and / G Sd-i- In order to prove this, associated with the vector 

field V we introduce a sequence of events Ey ^ (with parameter / G Sd-i and e) by 

pT0 

Jo 
\Y$(t-, vk, - , vi)|2/xe«<fc) (dvk) • • • peqa) {dvi) dt<eq " 

for k = 0 , 1 , 2 , w h e r e Y$ = Yiy. Then we have E C Hv^oE^ and the set E{y] 

is included in 

( 4 0 ) FL (E^T) U ( 4 X ) n ( 4 2 ) ) c ) U • U ( £ ^ 0 _ 1 ) n £ ^ o ) ) c ) U G V , 

where 

G V = 4 ° » n 4 1 ) n . . . n 4 w » ) . 

Consequently, in order to prove that P(E) is small, it is sufficient to prove that both 

P(E^ fl ( £ ^ f c + 1 ) ) c ) and P ( f V G £ 0 G y ) are small. These two assertions will be shown 

in the following two lemmas. 

Lemma 4.2. — For any p > 1 there exists a positive constant Cp such that 

(4.2) P(E^n(E^+1))c)<Cp^, K = 0 , L , . . , W O - L 

holds for all 0 < e < So and l G Sd-i-

Proof. — We first consider the case k = 0. We want to apply Theorem 6.1 in Ap

pendix to the semimartingale Yiy(t). The integrand functions of the right hand side 

of (3.3) have finite moments of any order ([3]), i.e., 

E[sxw\Y${t)\*' 
t 

•Sup\Y$(t,y)f + s u p | Y $ ( M ) P ' ] < oo. 
t,y ' t,Z 

Therefore the functional 61 defined by (6.2) satisfies E'[(sup7 0
7 ) p ' ] < oo for any p'. 

Then we can apply Theorem 6.1 and we get 

P ( E ^ n ( E ^ ) c ) < C ^ p ' E p ' 

for all 0 < e < e0 and l G Sd-i-
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We want to apply Theorem 6.1 again to Y^y(t, Vk,^i), which is written by (3.5). 

Set 7 = (vk, ...,vi) and 7r(c?7) = fJLeq(k)(dvk) • • • Me«(i)(dvi). It can be shown that for 

any p' > 1, 2£[(sup 0 7 ) p ] < oo holds. Then the inequality 

p ( 4 f c ) n ( 4 f c + 1 ) ) c ) < c ^ _ ( f c + l ) , fc = l , 2 , . 

holds for all 0 < e < e0 and I € Sd-i by Theorem 6.1. Set p = p'q~N°. Then (4.2) 

holds valid for any k. • 

Lemma 4.3. — Assume (4-1)- Then for any p > 1 there exists a positive constant C'p 

such that 

(4.3) • P ( f V 6 E o G V ) < CLe?, 

for all 0 < e < 1 and I € 

Proof. — Set 

Ke = 
NO 

k=0 vEE0 

/•TO 

'0 
(*-, vk, vi)|2/x£q( fc) (dujb) • • • (dvi) dt. 

Then, if w e G := f V G E n G y , we have the inequality 

K£(UJ) < m 
No 

k=0 

eq~k <m(N0 + l)eq~N° 

ife1/q < 1. Therefore, we have G C {K£ < m(N0 + l)eq N°}. Thus, the problem is 

reduced to getting the estimate of P(K£ < m(No + l)eq N°). 

Observe that K£ is written as 

K£ = 
pT0 

Jo 
L^iWt-yH^t^dt. 

Inequality (4.1) implies 

Ke>C 
f 
Jo 

K V 6 - ) - 1 / ! 2 

(i + l 6 - l ) n o 

dt. 

Further, for any I € Sd-i, w e have the inequality 

pT0 

Jo 

KVfc-)- 1*! 2 

(1 + 16-1)"° 
dt 

- L 
1 
T20 

f 

Jo 

| V 6 - | 2 ( l + | 6 - l ) n o ^ , 

by using Jensen's inequality. Therefore 

GC 
[To 

JO 
V 6 _ | 2 ( l + | & - | ) n o d t > 

CT20 

m(N0+l)e<i-No 

Then we get by Chebyschev's inequality, P(G) < C'sp where 

C'p = m(N+1) 

CT2o 

P 
q-No E 

Jo 
vet- | 2 ( i + | 6 - l ) n o ^ 

P 
q-No 
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We have thus obtained the estimate (4.3) for all 0 < e < 1 and I G Sd-i- • 

Proof of Theorem 4-1- — It suffices to prove (2.4). Inequalities of Lemmas 4.1 and 

4.2 imply 

P 
vEEo 

fT0 

Jo 
\YliV(t-)\

2dt<e <C"p Ep 

for all 0 < e < €q and l G Sd-i- Consequently we obtain 

sup E 
vEEo 

çTq 

Jo 
iT{Vitr

xv^t)\
2dt 

-v 

<CP 

for any p > 1. 

Consider next the case where u ^ 0. Let u = {(ti, z\),..., (£n, zn)}, where we 

have 0 < ¿1 < • • • < t n < T0. We set £ t

u = & o e + and Yt

u

v(t) = F ( V f f J " 1 ^ " ) . 

Then there exists an interval [£¿,£»+1] such that its length is greater than or equal to 

T 0 / (n + 1 ) . Choose % < t'i+1 such that [¿¿,¿¿+1] C [¿¿,¿¿+1] and t'i+1 -t\ = T 0 / (n + 1 ) . 

Then ^ u , tE [t-, is a solution of SDE (1.1) with the initial data . We can apply 

the argument of this section to the process Yiy(i),t G [¿¿,¿¿+1]. Then we have 

sup E 
eESd-1 vEEo 

i+1 

t'i ^(Vff)- 1^(£to")! 2* dt 

-p~ 
< Cp,u. 

Note that the family of initial data satisfies 

sup 
ueA(i)n 

E[№f]<c(n,Po,p)<œ. 

Then we can choose a positive constant Cn v such that it dominates all Cv u . There

fore, 

sup sup 
ueA(i)n iesd-! 

E 
vEEo r 

f0 

| F ( V ^ U ) - V f ó u ) | 2 d * 

-P 
< Cn,p 

for any n and p. 

5 . Relation with Lie algebra 

In this section we want to prove the following. 

Theorem 5.1. — Under the same condition as in Theorem 1.1, there exists 5 0 , e 0 > 0 

and C > 0 such that the inequality 

(5.1) L»°,(w,x)>C'\w\2, Vw, x G Kd 

holds for all 0 < e < ef

0. 
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If the above theorem is established, Theorem 1.1 follows from Theorem 4.1 and 

Theorem 5.1, immediately. Theorem 1.2 is an easy consequence of Theorem 4.1. 

Indeed, it is verified as follows. 

Proof of Theorem 1.2. — Since &o exists by the assumption of the theorem, there 

exists 5q > 0 such that for any 0 < 6 < 5q, the inequality 

No 

k=0 V EEsk 
\lTV(x)\2 > 

1 

2 

N0 

k=0 VEEk 

\lTV(x)\* > 
C 

2 

holds. Then Theorem 1.2 follows from Theorem 1.1. 

Before we proceed to the proof of Theorem 5.1, we shall approximate the vec

tor field v\)V given by (3.4) by a linear sum of vector fields of the form 

*fcfc*fcfc_i • • • V where ^ k i are such that # 0 = o r ^%V = \vu V], i = 1, ...,ra, 

in the case where v \ , v k € R m U R m are small. 

We first consider the case k = 1. We have 9(A)V = V6

QV, V(y)V = J2Avi, V]yi/\y\ 

and V(z)V = $ i (z ) t7 |* | . Set z = ( z 1 , z m ) . Then $a(z) given by (3.2) satisfies 

the differential equation 

*.{Z)V{X) 

ds 
= ( V ^ ( x ) ) - 1 

m 

i=1 
[VuVWAx))^ 

Hence <&i{z)V{x) is written as 

Q1(z) V (x) -
m 

i=l 

[Vi, V](x)zi 

_ 1 
_ 2 

W ( x ) ) - 1 

ij 

[^•,[VÎ,V]](0g(x))«V, 

where 0 < 6 < 1, by the mean value theorem. Consequently we obtain 

*I(Z)V(X) -
m 

2=1 
[VuV^xy <cx\z\2' 

Since = $i(z)/\z\, we get 

9(z)V{x) -

m 

¿=1 

Vi,V)(x) 
N 

< cx\z\ 

for sufficiently small z. 

We next consider the case k > 2. Suppose Vk = Zk,---,vi = z\. We can show 

similarly that there exists 5q > 0 such that the inequality 

|*(Z K , . . . ,ZI )V(X) 

m 

e2,...i1 =1 

Wik ...Wi1 V(x) 
zk 

1**1 

z\'\ 

\zi\ 
< C 2 

k 

i=l 
\Zi\ 
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holds for \zi\ < S0,i = 1, where Zi = (z\, ...,z™). For the general vk,...,vi, we 

have 

(5.2) |*(v f c , . . . , t ; i)V(x) -
m 

IFC,...,*i=0 
* ( t - * J ( * k W - W . ( « I ) 

< c 2 

*€{fc;vfc=̂ fc} 
N 

fc 
Here ^ o ( A ) = l , ^ f c ( A ) = 0,fc = l , . . . , m and y>0(î/) = Po(<z) = 0,y>fc(z) = and 

<Pk(y) = fa,k = l,...,m. 

We claim 

Lemma 5.2. — For any 8 > 0 and c > 0 £Aene exists eo = £0(8,0) > 0 such that for 

any 0 < e < £q and I € Sd_i , we have 

(5.3) | Z T * ( « f c , v i ) V(a;)| 2/v<*> (dvk) • • • p £ g m (dvi) 

Ak 
1 

2 

m 

IFC,...,ti=0 
L ^ . - . ^ N * ) ! 2 - c, 

where Ai zs £/&e minimal eigen value of the matrix A-\- B and Ai = A A 1. 

Proof. — Let us consider Fe given by 

m 

*fcv>*l=0 

/ T ^ f c . . . ^ i l ^ i f c K ) . - . ^ 1 ( v i ) > 
2 

I li£q(k)(dvk) • • -itfe,(i)(di;i). 

Since 

lim PI* • • • y?»! ( v i ) y ^ K ) • • • ipi[ (vi)ß£q{k) (dvk) • • • / i £ g ( i) (dvi) 

к 
j=1 (aiji'j + biji'j + ciji'j), 

(where = 1 if i = j = 0 and = 0 otherwise), the inferior limit of Fe is greater than 

or equal to 

m m 

ik,---,ii=0i'k,...,i[=0 
l T 9 I K . . . 9 i l V l T 9 I > ' - ^ i ' V 

x(aik,i'k + K,ïk + ciki'k) ' ' ' (aiii[ + biui> + Cirf). 

The above has the lower bound Â Ï £ L . . , M = O I ' T * H - - - * U ^ I 2 Therefore, we have 

Fe > Ak1 
m 

wtfc,...,»l=0 
i F ^ - . - ^ n x ) ! 2 

c 
~ 2 ' 
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for sufficiently small e. 

On the other hand, we have from (5.2) the inequality 

ff(lT9(vkì...ìv1)V- - E ™ , . . . , i l = o l T * i k • • • * i x ^ Ы • • • Vix («1 ) ) 

XfjL£q(k) (dvk) • • • /i £ g (i) (dvi) < c2 

' e2g(i) 1 

* 2 C 

for sufficiently small e, where is the summation for i G {k; vk = zk}. Consequently 

we get the inequality (5.3). • 

Proof of Theorem 5.1. — We shall first introduce another family of vector fields. 

Given ô > 0, we define a linear transformation \£Q of vector fields by (3.1). We 

may consider ^qV as a, modification of the vector field [Vq, V]. We define 

rg = E 0 , • • • , I t = {¥*V, [Vi,V},i = l , m , V e r £ _ J . 

These can be regarded as a modification of of Section 1. 

Now, apply (5.3) to each term of L£^(l,x). Then for any 0 < e < e0(S,c) and 

l G Sd-i, Le s(hx) is greater than or equal to 

(5.4) 
vEEo 

\lTV(x)f + 

AN0 
1 

2 

N0 m m 

E E E E 
k=i ve^o ik=o ¿1=0 

\ l T ^ i k - . ^ h V ( x ) \ 2 

-(m + l)NoN0c> 

AN0 
1 

2 
v ,= '-'fc=01 k 

\lTV{x)\* -(m+l)NoN0c. 

We want to rewrite the right hand side of the above by using vector fields in S£ . We 

set 

*'0v = \y$,v] + 
l 

2 

m 

i,j=1 
ац\Уг,\Уз,У]]. 

Then we have 

lT¥0V(x)-lT$s

0V(x)\2 

\J\z\<6 
(*i(z)V{x) - E[Vi, V]'x)zi)v(dz) 

2 

< civ(6f. 

We can show by induction 

lT(¥0)
kV(x) - lT($s

0)
kV(x) 

I 2 

< 2kclv{5)2. 

Therefore, 

\lT(Vs

0)
kV{x)\2 > \\F(*s

0)
kV(x)\2 -2*+1

Clv(S)2. 
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Summing up these inequalities, we obtain 

No 

fc=0 V£Ts

k 

\lTV(x)\> > 
1 

2 

No 

k=ove^s

k 

\lTV(x)\2-N2No+1c1v(S)2, 

where iV is the number of terms of the sum X}j£o J2vez5

k • Therefore, assuming (1.2), 

the right hand side of (5.4) dominates 

C' := 
AN0 
1 

4 

C(S) 

2 
-N2No+1c1v(S)2>j - (ro + l)NoN0c}. 

The above constant C becomes positive if we choose 5, c sufficiently small, say S = Sf

Q 

and c = Cq. Set e'0 = eo(Sf

0,c
f

0). Then we get the inequality (5.1) for I G Sd-i and 

x G R d . The inequality is extended to any w, x G Hd. • 

6 . Appendix. An analogue of Norris' estimate 

In this section, we will consider semimartingales with parameter 7, which is directly 

related to the solution of an SDE. We consider a semimartingale 1^7,0 < t < Tq 

defined by 

(6.1) Yt = yy + 
f 
'0 ay(s)ds + 

i f 
'0 

f7(s)dWÌ 

f 
'0 

l\z\<5 
g^(s,z)dN + f 

'0 

\z\>5 
g1(s,z)dN, 

where a 7 ( s ) , / 7 ( s ) , # 7 ( s , 2 ) are left continuous predictable processes, continuous with 

respect to parameters z G R m , 7 G I\ Here Y is a compact space. We assume further 

that a 7(£) is a semimartingale represented by 

a>(t+) = a< + 
f 
'0 67(«)ds + f '0 ./0 

e1(s,z)dN, 

f 
'0 

l\z\<8 
W(s,z)dN-{ f 

'0o 

'\z\>6 
h1{s,z)dN, 

where & 7(s), e](s)y hJ(s, z), s > 0 are left continuous predictable processes continuous 

with respect to z and 7. We set 

(6.2) V = | | ( a 7 ) 2 + ( F ) 2 | | + E 
i ll(/7) 2 + (e7)2H 

J\z\<5 
№(z)2 + W(z)2\\v(dz)+sup \\W(z)2l 

\z\>6 
where ||JF|| = sup 0 < t < T o \F(t)\. Set further 

f^z) 9Ht,z) 
\z\ 

ße(dz) = 
1 

v(e) 
\z\2l[0,e](\z\)is(dz). 
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We shall consider two events for given r > 0, g > 4r, /3 > 0 and e > 0 

A & = { ST (lo° \Y?-\2dt)*{dy) < e«}, 

B(e) = 

{ /r/oT° i « 7 W 2 + Ei \ fn t ) \ 2 + l9nt,z)2He(1+,)r(dz)\n(d7)dt > e\ 

We will show that the probability where both A(e) and B(e) occur simultaneously 

is small if e is small. 

Theorem 6.1. — Let a be the exponent of the order condition of the Levy measure v. 

Let ¡3 > 0 be a number such that 3/2 < a ( l + (3) < 2. Let r > 2-a(i+p) and Q > 

Assume i£[(sup7 0
7 ) p ] < oo holds for any p > 1. Then for any p > 1, there exists a 

positive constant Cp such that the inequality 

(6.3) P(A(e) H B(e)) < Cpe
p 

holds for any semimartingale represented by (6.1), any probability measure tt on 

T and any 0 < e < eo, where 0 < So < 1 is a positive number independent of p. 

In order to prove the above theorem, we need the following. Let be the process 

of (6.1) and let A be an arbitrary positive number. 

Komatsu-Takeuchi's estimate. ([7], Theorem 3) For any 0 < v < \, there 

exist a positive random variable S(\,j) with E[6(\,j)] < 1 and positive constants 

C, C o , C i , C 2 such that the inequality 

(6.4) A 4 

pT0 

Jo 
1ПТ л 

l , 
-^dt 
A2 

f A - v l o g <S(A,7) + C*> 

C Q A 1 - 4 " f 
'0 

W(t)\2dt + d \ 2 - 2 v 

i f 
'0 

\fl(t)?dt 

+C2\2~2v f 
'0 

JKm 

LFL 7 (*^) | 2 A 
l_ 

A 2 
dtv{dz) 

holds on the set {(9 7 < X2v} for all A > 1 and Y1. 

Remark 6.2. — In Theorem 3 in [7], the assertion is stated in the case where y t

7 , a 7 ( t) 
etc. do not depend on the parameter 7. Further the Levy measure is assumed to be 
of the form v(dz) = \z\~m~adz. However their result can be applied to the present 
case. 
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Proof of Theorem 6.1. — By the choice of /3 and r, it holds 0 < 2 - a ( l + (3) - \. We 

will choose v such that 0 < v < (2 — a(l + f3) — A | . We want to rewrite inequality 

(6.4) in order to apply it for the estimate (6.3). Our aim is to get (6.5) below on 

the set { s u p 7 #
7 < e~vr}. We first consider the last term of (6.4). It holds for any 

0 < k < X 

J Jim 
( L * 7 ( M ) | 2 A 

1 

X2" 
v(dz) 

J\z\<f 
'mt,z)\2A 

l 

k | 2 A 2 
\z\2v(dz) 

> v 
<X> |z|<k/A 

F L Â 7 ( M ) L 2 A 
l_ 
k2 ßf(dz). 

Now set A = €~ r and k = e^. Then f = e ^ ^ r and > C 4 £ a ( 1 + / 3 ) r by the order 

condition for v(p). Therefore, (6.4) is rewritten by 

£-4r 
pT0 

Jo 
\Y?\2 A e2rdt + evr log &{e~r, 7) + C 

> C 0 £ " r ( 1 - 4 t ; ) f 
'0 

| a 7 ( t ) | 2 ^ + C i £ - r ( 2 - 2 ^ 
E 
i 

r̂ o 

/0 
\fHt)\2dt 

+ c 2 c 4 e ^ ( 2 - 2 " ^ ( 1 + / 3 ) r f 
'0 

J Jim 
\f(t,z)\2Ae-2ßrdtß£(i+ß)r(dz). 

Now set p = min{r(l — 4v), r(2 — 2v) — a ( l + /?)} — 1. In view of the choice of v, we 

have p > 0. Set C5 = min{Co, C2, C4}. Then the above inequality yields 

£-4r 
/•To 

JO 
|F t

7 | 2 A s2rdt + eVT log (5(£- r ,7) + C > 

C5e-(o+V' f 
'0 

I«7(*)l2 + E 
i 

m*)\2 

\f(t,z)\2 Ae~2ßrß£(1+ß)r(dz)}dt 

on the set {0^ < e~vr}. 

Next, integrate each term of the above by the measure n with respect to the 

parameter 7. We have by Jensen's inequality / log 6(A, 7)^(^7) < log (5(A), where 

6(X) = J (§(A,7)7r(d7) is a positive random variable such that E[6(X)] < 1. Therefore 

we have 

(6.5) 
E-4r 

f 

çTq 

Jo 
Y?\2 A e2rdt)7r(dj) + evr log £ ( £ " r ) + C > 

C5e -(p+1) 

r 0̂ 

T0 

í l « W + E l / 7 ( ' ) l 2 

+ / | ^ ( t ,Z ) | 2 AE - 2 / , P A E ( I+«r (« fa ) }*»R(d7) 
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on the set { s u p 7 0 7 < e~vr}. 

We can now give the proof of (6.3). We define three events by 

A1(e) j s u p f l 7 >€~Vrj 

A2(E) 
s u p 0 7 <e~vr 

l 7 f 
'0 

[•To 

'0 

| Y t l | 2 A e 2 r ^ 7 r ( d 7 ) <eq 

i j s u p H ^ H e - 2 ' 3 ' - f f 
'0 

(«7(*)2+£i/7(*)i2+ 
7. 

+ j f{t,z)2 Ae-20rixeil+mr(dz))dtTr{dj)>s 
A3(E) sxip\\f\\>e-20r 

< 7 

Then it holds A(e)UB(e) C A1(e)uA2(e)UA3(e) for any 7. Therefore, the probability 

of (6.3) is dominated by P ( A i ( e ) ) + P(A2(e)) + P(A3(e)). We shall get estimates of 

P(Ai(e)),i = 1,2,3. In view of our assumption of the theorem, the first one is 

estimated as 

P{Ai{e)) < ^ £ [ ( s u p 0 7 f / r ] < cpe
p. 

A similar estimate is valid for P(As(e)). For the estimate of P(A2(e)), we remark 

that (6.5) implies 

A2{e) C {S(e-ryvr > exp (-€q~4r+C5e~p-C)} . 

Therefore, by Chebyschev's inequality 

P(A2(e)) < e c e x p (eq~4r-C5e~p) E [6(e'ryvr] 

Further e q - 4 r < %-€~p holds for e < e0, where eq

)~
4r = C 5 / 2 . Therefore, 

P{A2(e)) < e c e x p 
C5 

2 
E-p < c'pEp 

for e < eq. 
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