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TRANSSERIAL HARDY FIELDS

by

Joris van der Hoeven

Abstract. — 1t is well known that Hardy fields can be extended with integrals, expo-
nentials and solutions to Pfaffian first order differential equations f’ = P(f)/Q(f).
From the formal point of view, the theory of transseries allows for the resolution of
more general algebraic differential equations. However, until now, this theory did
not admit a satisfactory analytic counterpart. In this paper, we will introduce the
notion of a transserial Hardy field. Such fields combine the advantages of Hardy fields
and transseries. In particular, we will prove that the field of differentially algebraic
transseries over R{{z~!}} carries a transserial Hardy field structure. Inversely, we
will give a sufficient condition for the existence of a transserial Hardy field structure
on a given Hardy field.

Résumé (Corps de Hardy transsériels). — Il est bien connu que des corps de Hardy
peuvent étre étendus par des intégrales, des exponentielles et des solutions d’équa-
tions différentielles Pfaffiennes du type f' = P(f)/Q(f). D’un point de vue formel, la
théorie des transséries permet la résolution d’équations différentielles algébriques plus
générales. Toutefois, cette théorie n’admettait pas encore de contre-partie analytique
satisfaisante jusqu’a présent. Dans cet article, nous introduisons la notion de corps de
transséries transsériel. Ces corps combinent les avantages des corps de Hardy et de la
théorie des transséries. En particulier, nous démontrons que le corps des transséries
vérifiant une équation différentiello-algébrique sur R{{z~!}} posséde une structure de
corps de Hardy transsériel. Réciproquement, nous donnerons une condition suffisante
pour l’existence d’une structure transsérielle sur un corps de Hardy donné.

1. Introduction

A Hardy field is a field of infinitely differentiable germs of real functions near
infinity. Since any non-zero element in a Hardy field H is invertible, it admits no
zeros in a suitable neighbourhood of infinity, whence its sign remains constant. It
follows that Hardy fields both carry a total ordering and a valuation. The ordering
and valuation can be shown to satisfy several natural compatibility axioms with the
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454 J. VAN DER HOEVEN

differentiation, so that Hardy fields are models of the so called theory of H-fields [1,
3, 2].

Other natural models of the theory of H-fields are fields of transseries [23, 31, 15,
16, 27, 26]. Contrary to Hardy fields, these models are purely formal, which makes
them particularly useful for the automation of asymptotic calculus [23]. Furthermore,
the so called field of grid-based transseries T (for instance) satisfies several remarkable
closure properties. Namely, T is differentially Henselian [26, theorem 8.21] and it
satisfies the differential intermediate value theorem [26, theorem 9.33].

Now the purely formal nature of the theory of transseries is also a drawback, since
it is not a priori clear how to associate a genuine real function to a transseries f, even
in the case when f satisfies an algebraic differential equation over R{{z~!}}. One
approach to this problem is to develop Ecalle’s accelero-summation theory [17, 18,
19, 20, 11, 12], which constitutes a more or less canonical way to associate analytic
functions to formal transseries with a “natural origin”. In this paper, we will introduce
another approach, based on the concept of a transserial Hardy field.

Roughly speaking, a transserial Hardy field is a truncation-closed differential sub-
field 7 of T, which is also a Hardy field. The main objectives of this paper are to
show the following two things:

1. The differentially algebraic closure in T of a transserial Hardy field can be given
the structure of a transserial Hardy field.

2. Any differentially algebraic Hardy field extension of a transserial Hardy field,
which is both differentially Henselian and closed under exponentiation, admits
a transserial Hardy field structure.

We have chosen to limit ourselves to the context of grid-based transseries. More
generally, an interesting question is which H-fields can be embedded in fields of well-
based transseries and which differential fields of well-based transseries admit Hardy
field representations. We hope that work in progress [5, 4] on the model theory of
H-fields and asymptotic fields will enable us to answer these questions in the future.

The theory of Hardy fields admits a long history. Hardy himself proved that the
field of so called L-functions is a Hardy field [21, 22]. The definition of a Hardy
field and the possibility to add integrals, exponentials and algebraic functions is due
to Bourbaki [10]. More generally, Hardy fields can be extended by the solutions to
Pfaffian first order differential equations [32, 6] and solutions to certain second order
differential equations [9]. Further results on Hardy fields can be found in [28, 29,
30, 7, 8]. The theory of transserial Hardy fields can be thought of as a systematic
way to deal with differentially algebraic extensions of any order.

The main idea behind the addition of solutions to higher order differential equations
to a given transserial Hardy field 7 is to write such solutions in the form of “integral
series” over T (see also [25]). For instance, consider a differential equations such as

f/ — e—2e” + f2’
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TRANSSERIAL HARDY FIELDS 455

for large = > 1. Such an equation may typically be written in integral form

= [ [

The recursive replacement of the left-hand side by the right-hand side then yields
a “convergent” expansion for f using iterated integrals

p- fo [ (o) ([ ) ([ (fooe) ) oo

where we understand that each of the integrals in this expansion are taken from +oo:

(fo)@= [ swa

In order to make this idea work, one has to make sure that the extension of 7 with
a solution f of the above kind does not introduce any oscillatory behaviour. This is
done using a combination of arguments from model theory and differential algebra.

More precisely, whenever a transseries solution f to an algebraic differential equa-
tion over T is not yet in 7, then we may assume the equation to be of minimal
“complexity” (a notion which refines Ritt rank). In section 2, we will show how to put
the equation in normal form

(1) Lf = P(f),
where P € T{F} is “small” and L € T[9] admits a factorization

L=(0~-¢1) - (0-¢r)
over T[i]. In section 4, it will be show how to solve (1) using iterated integrals, using

the fact that the equation (8 — ¢)f = g admits ef “fe J “g as a solution. Special
care will be taken to ensure that the constructed solution is again real and that the
solution admits the same asymptotic expansion over 7 as the formal solution.

Section 3 contains some general results about transserial Hardy fields. In particular,
we prove the basic extension lemma: given a transseries f and a real germ f at infinity
which behave similarly over 7 (both from the asymptotic and differentially algebraic
points of view), there exists a transserial Hardy field extension of 7 in which f and f
may be identified. The differential equivalence of f and f will be ensured by the fact
that the equation (1) was chosen to be of minimal complexity. Using Zorn’s lemma,
it will finally be possible to close 7 under the resolution of real differentially algebraic
equations. This will be the object of the last section 5. Throughout the paper, we will
freely use notations from [26]. For the reader’s convenience, some of the notations
are recalled in section 2.1. We also included a glossary at the end.

It would be interesting to investigate whether the theory of transserial Hardy fields
can be generalized so as to model some of the additional compositional structure on
T. A first step would be to replace all differential polynomials by restricted analytic
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456 J. VAN DER HOEVEN

functions [14]. A second step would be to consider postcompositions with operators
z + 6 for sufficiently flat transseries f for which Taylor’s formula holds:

Fola+d)=f+ 5+ f'5 4

This requires the existence of suitable analytic continuations of f in the complex
domain. Typically, if f € T«, with g € T>>, then f o g™ should be defined on some
sector at infinity (notice that this can be forced for the constructions in this paper).
Finally, more violent difference equations, such as

§(&) = o+ f@+1),

generally give rise to quasi-analytic solutions. From the model theoretic point view,
they can probably always be seen as convergent sums.

Finally, one may wonder about the respective merits of the theory of accelero-
summation and the theory of transserial Hardy fields. Without doubt, the first theory
is more canonical and therefore has a better behaviour with respect to composition.
In particular, we expect it to be easier to prove o-minimality results [13]. On the
other hand, many technical details still have to be worked out in full detail. This
will require a certain effort, even though the resulting theory can be expected to
have many other interesting applications. The advantage of the theory of transserial
Hardy fields is that it is more direct (given the current state of art) and that it allows
for the association of Hardy field elements to transseries which are not necessarily
accelero-summable.

2. Preliminaries

2.1. Notations. — Let T = R[[z]] = R[] be the totally ordered field of grid-
based transseries, as in [26]. Any transseries is an infinite linear combination f =
> mex fmm of transmonomials, with grid-based support supp f C ¥. Transmonomials
m,n,... are systematically written using the fraktur font. Each transmonomial is an
iterated logarithm log; = of = or the exponential of a transseries g with n > 1 for each
n € suppg. The asymptotic relations <, <, <,~, X, <, = and ~ on T are defined by

f<gg <= f=0(9)
f<g <= f=o(9)
fxg <= f=<9xf
f~g &= f-g=yg
fXg < logl|f]| xloglg|
f<g < logl|f| <loglg|
fx=g << log|f|<loglg|
frg <= log|f| ~log|gl.
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TRANSSERIAL HARDY FIELDS 457

Given v # 1, one also defines variants of <, <, etc. modulo flatness:
f<og & m<y fxgm
f<eg <= Vm<y f<gm
<59 & Im=Xo f<xgm
f<t9g < Vm<Xop, f<gm
It is convenient to use relations as superscripts in order to filter elements, as in
T> = {feT:f>0}
T# = {feT:f#0}
T = {feT:f>1}.
Similarly, we use subscripts for filtering on the support:

o= D fum

mesupp fym>1

f«u = Z fmm

meEsupp f,m=<Kv

T. = {f-:feT}
T« = {f«u‘fe’]r}

We denote the derivation on T w.r.t. = by 8 and the corresponding distinguished
integration (with constant part zero) by [. The logarithmic derivative of f is denoted
by ff. The operations T and | of upward and downward shifting correspond to
postcomposition with exp = resp. logz. We finally write f < g if the transseries f is
a truncation of g, i.e. m < supp f for all m € supp(g — f).

2.2. Differential fields of transseries and cuts. — Given f € T, we define the
canonical span of f by

2) span f = mimx{e_a(l"g('“/")) :m,n € supp f}.

By convention, span f = 1 if supp f contains less than two elements. We also define
the ultimate canonical span of f by

(3) uspan f = 11_1(i<n{span f<v : 0 €supp f}.
We notice that uspan f # 1 if and only if supp f admits no minimal element for <.

Example 1. — We have

e—$
— —T
span<1+ 1—.7;‘1) = e
e ® -1
uspan (1 + —1~_—F) =z
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458 J. VAN DER HOEVEN

Consider a differential subfield 7 of T and let b € €. We say that 7 has span
v, if span f < v for all f € 7 and span fx<uv for at least one f € 7 (notice that we
do not require v € e~%). Since 7 is stable under differentiation, we have v » z~! as
soon as 7 # R. Notice also that we must have 7 C T«, if 7 has span v.

A transseries f € T\ 7T is said to be a serial cut over T, if p € T for every ¢ < f
and supp f admits no minimal element for <. In that case, let m € supp f be maximal
for < such that m~!supp f<m <X span f. Then Hy = f, and Tf = fgm are called
the head and the tail of f. We say that f is a normal serial cut if f € T<gpan t,
which implies in particular that Hy = 0.

Assuming that 7 has span v, any serial cut over 7 is necessarily in T«,. Con-
versely, any f € Ty \ 7 with uspan fxuv is a serial cut over 7. We will denote by
7 the set of all f € Ty which are either in 7 or serial cuts over 7 with uspan fxuv.
Notice that 7 is again a differential subfield of To.

The above definitions naturally adapt to the complexifications T[i] and T[i] of T
and differential subfields 7 of T. If 7 has span v, then the set 7[i] coincides with the
set of all f € T<,[i] = T[i]<, which are either in T[] or serial cuts over 7 [i] with
uspan fx=uv.

2.3. Complements on differential algebra. — Let 7 be a differential field. We
denote by T{F'} the ring of differential polynomials in F over T and by 7(F) its
quotient field. Given P € T{F} and i € N, we recall that P; denotes the homogeneous
part of degree i of P. We will denote by Lp the linear operator in 7[9] with LpF =
Py (F). Assuming that P\ 7, we also denote the order of P by rp, the degree of P
in F("?) by sp and the total degree of P by tp. Thus, the Ritt rank of P is given
by the pair (rp, sp). The triple xp = (rp,sp,tp) will be called the complezity of P;
likewise ranks, complexities are ordered lexicographically.

As usual, we will denote the initial and separator of P by Ip resp. Sp and set
Hp = IpSp. Given P,Q € T{F} with P ¢ T, Ritt reduction of Q by P provides us
with a relation

(4) H3Q = AP +R,

where A € T{F}|9] is a linear differential operator, @ € N and the remainder R €
T{F} satisfies xgr < xp-

Let K be a differential field extension of 7. An element f € K is said to be
differentially algebraic over T if there exists an annihilator P € T{F} \ T with
P(f)=0. An annihilator P of minimal complexity x p will then be called a minimal
annshilator and x5 = xp is also called the complezity of f over T. The order ry =rp
of such a minimal annihilator P is called the order of f over 7. We say that K is a
differentially algebraic extension of T if each f € K is differentially algebraic over 7.

We say that 7 is differentially closed in K, if X \ 7 contains no elements which
are differentially algebraic over 7.. Given x € N3 (resp. r € N), we say that 7 is x-
differentially closed (resp. r-differentially closed) in K if x5y > x (resp. vy > r) for all
f € K\T. We say that T is weakly differentially closed if every P € T{F}\ T admits
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a root in 7. We say that 7 is weakly r-differentially closed if every P € T{F}\ T of
order < r admits a root in 7.

Given a differential polynomial P € T{F'} and ¢ € 7, we define the additive and
multiplicative conjugates of P by ¢:

Pi(F) = P(F+¢)
Pyy(F) = P(¢F).

We have P, Py, € T{F'} and

XPy, = XP
XPx, — XP
IP+¢ = Ip4y
Ip,, = Ipxy
SP+<P = SP""‘P
Sp., = SpPxe

We also notice that additive and multiplicative conjugation are compatible with Ritt
reduction: given ¢ € T and assuming (4), we have

Hp, ,Q+p = AP, +Ry,
H}OI"XwQXLp = APXLp+R>(cpa

Remark 1. — The compatibility of Ritt’s reduction theory with additive and multi-
plicative conjugation holds more generally for rings of differential polynomials in a
finite number of commutative partial derivations (or with a finite dimensional Lie al-
gebra of non-commutative derivations). Similar compatibility results hold for upward
shiftings or changes of derivations (in the partial case, this requires the rankings to
be order-preserving).

In the case when 7 is a differential subfield of T = R[%], we recall that a differential
polynomial P € T{F1,..., F;} may also be regarded as a series in R{F1,..., F;}[Z].
Similarly, elements P/Q of the fraction field 7 (Fy,..., Fx) of T{F1y,..., Fx} may be
regarded as series with coefficients in R(F}, ..., Ft). Indeed, writing P = Dpdp+ Rp
and Q = Dgdg + R, where Dpdp denotes the dominant term of P, we may expand

R
P Dp op l1+p.55

I S T
Q@ Dq ?q 1+m

In the case when P,Q € R[by;...;b,]{F1,...,Fx} for some transbasis B =
{b1,...,b,}, then P and P/Q may also be expanded lexicographically with respect
to bn,...,bl.
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460 J. VAN DER HOEVEN

2.4. Linear differential operators and factorization. — Let 7 be a differential
field and consider a linear differential operator L € 7[9]*. We will denote the order
of L by rr. Given 9 € T, we define the multiplicative conjugate Ly, and the twist
Lp(¢ by

Lyy = Ly

Ly = ¢'Ly
We notice that Ly, is also obtained by substitution of 8+ ¢ for d in L. We say that
L splits over T, if it admits a complete factorization
(5) L=c@—¢1) (0—)

with ¢, ¢1,...,¢r € T. In that case, each of the twists Ly, of L also splits:

Ly =c(@+ 9" —1)--- 0+ 9" — ;).
We say that 7 is r-linearly closed if any linear differential operator of order < r splits
over 7.

Proposition 1. — If T is weakly (r—1)-differentially closed, then T s r-linearly closed.

Proof. — The proof proceeds by induction over r. For r = 0, we have nothing to
prove, so assume that » > 0 and let L € T[0] be of order r. Then the differential
Riccati polynomial R, has order r — 1, so it admits a root ¢, € 7. Division of L by
d — ¢, in T[9) yields a factorization L = L(d — ¢,) where L € T[] has order r — 1.
By the induction hypothesis, L splits over 7, whence so does L. O

Proposition 2. — Let L € T[] be an operator which splits over T and let A,B €
T[] be such that L = AB. Then A and B split over T.

Proof. — Recall that greatest common divisors and least common multiples exist in
the ring 7[9]. Given a splitting (5), consider the operators

A = lem(B,(0 - prard) (0 on)
I = ged(B,(0—@ry1-i) (0 —¢r))

We have B = Ag|---|A, = AB and 1 = Ty|---|I', = B. Moreover, the orders of A;
and A;;1 (resp. I'; and T';4) differ at most by one for each ¢. It follows that A and
B split over 7. O

Assume now that 7 is a totally ordered differential field. A monic operator L €
T[0)” is said to be an atomic real operator if L has either one of the forms

L = 09—, peT
L = (0—(p-vi+9N)O0-(e+¢i), ¢veT

A real splitting of an operator L € T[9]” over T is a factorization of the form

(6) L=K, - K,
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TRANSSERIAL HARDY FIELDS 461

where each K; is an atomic real operator. A splitting (5) over 7] is said to preserve
realness, if it gives rise to a real splitting (6) for K; = (0 — ;) or K; = (0 —4,;)(0 —
‘Pij+1) and 3; < - -+ < 1.

Proposition 3. — Let L € T[0]* be an operator which splits over T[i]. Then L admits
a real splitting over T .

Proof. — Assuming that L ¢ T, we claim that there exists an atomic real right
factor K € T[] of L. Consider a splitting (5) over Ti]. If ¢, € 7, then we may take
K = 0 — ¢,. Otherwise, we write
L=20-¢)- (8-
and take K to be the least common multiple of & — ¢, and 8 — @, in T[i]. Since
K = K, we indeed have K € T[8]. Since 8 —,|L and 8 — @, |L, we also have K|L. In
particular, proposition 2 implies that K splits over T [i]. Such a splitting is necessarily
of the form
= (a_(<p—¢l+¢t))(a_(90+"pl)), <P,1/)€T,

whence K is atomic. Having proved our clz}im, the proposition follows 13y induction
over r. Indeed, let L € T[] be such that LK = L. By proposition 2, L splits over

T[i]. By the induction hypothesis, L therefore admits a real splitting L=K, - K,
over 7. But then L = K --- K, K is a real splitting of L. O

Corollary 1. — An operator L € T[0])” is atomic if and only if L is irreducible over
T and L splits over T]i].

2.5. Factorization at cuts. — Let 7 be a differential subfield of T of span v.
Given P € T[i|{F} and f € T1i], we say that P splits over Ti] at f, if Lp , and P
have the same order r and Lp,, splits over TTi).

Lemmal. — Let T be a differential subfield of T of span v. Let P € T[i|{F} be
a minimal annihilator of a differentially algebraic cut f € ’f'[l] over T|i], which splits
over T[l] at f. Then any minimal annihilator Q € T[i](f) {F} of f over T[i](f) splits
over T[i] at f.

Proof. — Since P(f) = 0, Ritt division of P by Q yields

(7 H3P = AQ
for some o € N and A € T[i|(f){F}[0]. Additive conjugation of (7) yields
(8) H3+;p+f = AQ, f.

By the minimality hypothesis for Q, we have L . ro = Sq( f) #0and Ho(f) # 0,
so that val@, 7 = 1 and val Hg +7=0. Similarly, we have val P +f = 1. Consequently,
when considering the linear part of the equation (8), we obtain

HQ, ;olp,; = AcLq,
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462 J. VAN DER HOEVEN

whence Lq, ; divides Lp . in T[i|(f)[0]. Now Lp, , splits over Ti][8], whence so
does Lp_.. By proposition 2, we infer that Lq_ ; splits over Ti][8]. Since Sq(f) # 0,

we also have TLo,, =TQ and we conclude that Q splits over 7i] at f. |

Corollary 2. — Let T be a differential subfield of T of span v. Let P € T[i|{F} be
a minimal annihilator of a differentially algebraic cut f € T1i] over T[i], which splits
over T1i| at f. Then any minimal annihilator R € T[i)(f) {G} of Re f over TT[i](f)
splits over TTi] at Re f.

Proof. — Applying the lemma to Q@ = R/3 s, we see that Lq, , splits over TTi).
Now Q7 = Ry Ref,/2, whence Lg, ., , and Lry,, = LR, p,, ,,x2 also split over
1. O

Lemma 2. — Let T be a differential subfield of T of span v, such that ’f'[l] is r-linearly
closed. Let P € T[i|{F} be a minimal annihilator of a differentially algebraic cut
f € TTi] over T[il, such that P has order r. Assume that Ref ¢ T and let S € T{G}
be a minimal annihilator of Re f over T. Then S splits over T [i] at Re f.

Proof. — Let R be as in the above corollary, so that R splits over 7 [i] at Re f. Since
R has minimal complexity and S(Re f) = 0, Ritt division of S by R yields

H2S = AR

for some a € N and A € T[i|](f){G}[9]. Additive conjugation and extraction of the
linear part yields

a —
HS+ RevaLS-l- Ref AOLR+ Re f?

so Lg, p,, divides Lg_ ., in 7i][8). Since the separants of R and S don’t vanish at
Re f, we have

Pingn, = = trdeg(T(f.Re ) : TE(M)
= trdeg(7T[i](Re f,Im f) : T[i]) — trdeg(7T [i]{f) : TIi])
= trdeg(7(Re f,Im f) : T) — trdeg(7T[i|{f) : Ti])
TLs,pe, = TS = trdeg(T(Ref):T)
= trdeg(T(Ref,Imf):T)—
trdeg(7 (Re f,Im f) : T(Re f))
and

rs —rr = trdeg(7T[iJ{f): T[i]) — trdeg(T(Re f,Im f) : T(Re f)) < r.

Consequently, the quotient of Lg, ., , and L, y, ;, has order at most r, whence it splits
over TTi]. It follows that Lg +re s SDIits over T1i] and S splits over 7[i] at Ref. O
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TRANSSERIAL HARDY FIELDS 463

2.6. Normalization of linear operators. — Let 7 be a differential subfield of T
of span v » z. Recall from [26, Section 7.7] that Lh = 0 with L € T[i]{0] admits a
canonical fundamental system of oscillatory transseries solutions ¥y, = {hi,...,h.} C
O with loghy,...,logh, € Txyli]. We will denote by $1, the set of dominant mono-
mials of hy,...,h,. The neglection relation on T is extended to @ by f < 1 if and
only if f = f.y, ¥t +--- + f;,ppei’/’P with fo,,..., fiy, € T[]~ and ¢1,...,%, € T.

We say that L is normal, if we have h; >, 1 or Relog h; > logb for each ¢. In that
case, any quasi-linear equation of the form

Lf=yg, f=<el

with g € Tyl[i] admits L~'g as its only solution in T<y[i]. If L is a first order
operator of the form L = & — ¢, then L is normal if and only if Re > co' for some
¢ > 0 or Rep > vf. In particular, we must have ¢ =, 1 and Re ¢ = v'.

Proposition4. — Let L € T|i|[0] \ T[i].

a) There exists a A € R such that L, ,» is normal.
b) If L is normal and X > 0, then L, is normal.

Proof. — Let ¥y = {hi,...,h}. For each A € R, the operator L,,» admits
hi/v*,...,h, /o> as solutions, which implies in particular that AL, .\ = v~ *%. Now
Relog(h;/v*) < logb < Relogh; < logv for all . Choosing A sufficiently large, it
follows that h;/0* =, 1 for all i with Relog(h;/v*) < logv, so that L, is normal.
Similarly, if h; >, 1 for some i with Relog(h;/v*) < logv, then h; >, v* for all

A20. O

Proposition 5. — Consider a normal operator L € T[i][0], which admits a splitting
L=(0-¢1) - (0-¢r)

with p1,...,pr € T[i]. Then each d — ; is a normal operator.

Proof. — We will call h € T«ylile'T*> normal, if & — h' is normal. Let us first prove

the following auxiliary result: given ¢ € 7T[i] and h € Ty[ile!T%> such that § — ¢
and h are normal and b = 0p, & $a—,, then (8—¢)h is also normal. If Relog h > log v,
then 0 # (0 — p)h <} h, whence Relog(d — ¢)h = Relogh + O(logb) > logv. In
the other case, we have h =, 1. Now if hT = ¢, then (8 — )h =, 1, since ¢ 3=, 1.
If h' ~ ¢, then bh & Hs_,, implies 1 ¢ $(8-¢)wn» Whence ¢ — ht = 1/(zlogz---). It
again follows that (0 — @)h 3=, h/(zlogz---) >, 1.

Let us now prove the proposition by induction over r. For r = 1, we have nothing
to do, so assume that r > 1. Since L = (8 — ¢3) - - - (8 — ) is normal, the induction
hypothesis implies that & — ¢; is normal for all i > 2. Now let h be the unique element
in ¥y \ ;. Since h is normal, (8 — ¢;)--- (0 — ¢,)h is also normal for i = r,...,2,
by the auxiliary result. We conclude that & — ¢; is normal, since @, = (Lh)T. O
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Let L and ¥£1 = {hy,...,h} be as above. The smallest real number v > 0 with
log h; <y v for all 7 will be called the growth rate of L, and we denote oy, = v. For
all o € R, we notice that or, . = of.

Proposition 6. — Let K, L € T[i][0] be operators of the same order with
K = L+ 0,(0"*"L).

Then Hx = HL.
Proof. — Given h € £y, we have

Kyn = Lxn + 0o(Lxn),
since h' =<, logh < v=°%. In particular, Kyno <o K, whence 1 € $g,, and
o, € Ok : O
Proposition 7. — Given a splitting

L=(@-¢1):--(0—¢r)
with @1, ..., € T<y[i], we have ; <, ©~% for all i.

Proof. — Assume for contradiction that ¢; >, b~?L for some i and choose ¢ maximal
with this property. Setting

K = (0~ it1):--(0—or),
the transseries

=K (e] %) € Toliled
satisfies Lh = 0, as well as logh =<, ¢; >, 07?Z. But such an h cannot be a linear
combination of the h; with logh; <, 077L. O

Remark 2. — Tt can be shown (although this will not be needed in what follows) that
an operator L € T1[i][d] splits over 7i] if and only if there exists an approximation
L e TIi][8] with L — L <, v* which splits over 7[i] for every A € R. In particular,
Ti] is r-linearly closed if and only if 7[i] is r-linearly closed over 7 [i].

2.7. Normalization of quasi-linear equations. — Assume now that 7 is a dif-
ferential subfield of T of span v » z. We say that P is normal if Lp is normal of
order rp and Px; <, 0"P?Lr Lp. In that case, the equation

9) P(f)=0, f=<ol

is quasi-linear and it admits a unique solution in T<,. Indeed, let f € T«, be
the distinguished solution to (9). By proposition 6, the operator Lp, , is normal. If
f € T«, were another solution to (9), then d Pt would be in ., ,, whence f -1,
which is impossible.

Proposition 8. — Let T be a differential subfield of T of span v. Let P € T[i]{F} be
a minimal annihilator of a differentially algebraic cut f € T|i] over T[i]. Then there
ezists a truncation ¢ < f and A € R such that P, , x,» is normal.
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Proof. — Let P =P, fand v =rrp 0r,. Modulo a multiplicative conjugation by v*
for some a > 0, we may assume without loss of generality that PxL p+ Modulo an
additive conjugation by f. 1, we may also assume that f <, 1. For any A,z > 0 and
@ = fy,on < f, we have

Pyy = Pyyj = P+0,(v*P),

whence
(10) P+<P:><°)‘ = PI,XDA + 00(02AP) + Og(uuﬁ).
Since Sp(f) # 0, we have P; # 0. By proposition 4, there exists a A > v for which
Lp o» is normal. Now take 4 = A+ v. Denoting N = P+qi,)(o"7 proposition 6 and
(10) imply that Ly is normal with op, = v and Nyz; <y 0¥ P y,x X 0”Ly. O

We say that P € T[i|{F} is split-normal, if P is normal and Lp can be decomposed
Lp = L + K such that L splits over T[i] and K <, 0”2~ L. In that case, we may
also decompose P(F) = LF + R(F) for R(F) = P41(F)+ KF with R <, 0"** L. If

L is monic, then we say that P is monic split-normal. Any split-normal equation (9)
is clearly equivalent to a monic split-normal equation of the same form.

Proposition 9. — Let T be a differential subfield of T of span v such that T[i] is r-
linearly closed. Let P € T[i]{F} be a minimal annihilator of a differentially algebraic
cut f € T1i] of order r over T[i]. Let S € T{F} be a minimal annihilator of Re f and
assume that rs > rp. Then there exists a truncation ¢ < Re f and A € R such that
Stp,xvor 18 split-normal.

Proof. — By proposition 8 and modulo a replacement of f by v6=*(f — ), we may
assume without loss of generality that S is normal. By lemma 2, S splits over ’f[l] at
Re f. Let ¢, 1, ...,ps € T[i] be such that
Ls,; =c(0—¢1)--- (9 — ).
Setting v = sor ¢, we notice that Ls = Lg,, + 0,(b”Ls). Now take
L = c?uuuac(a - (p17>f'ub") “en (6 —_ ‘Ps,kub”) (S T[l][a]

Then L = Lg + 0,(v¥Lg) and proposition 6 implies that L is normal, with oy =
oLs = 0L .. Denoting R(F) = S(F) — LF, we finally have R <, v°°LL. O
s Sts

3. Transserial Hardy fields

3.1. Transserial Hardy fields. — Let T = R[[z]] = R[Z] be the field of grid-
based transseries [26] and G the set of infinitely differentiable germs at infinity. A
transserial Hardy field is a differential subfield T of T, together with a monomorphism
p: T — G of ordered differential R-algebras, such that

TH1 : For every f € 7, we have supp f C 7.

TH2 : For every f € 7, we have f. € T.
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TH3 : There exists an d € Z, such that logm € T + Rlog,;z forallme TN7T.
TH4 : The set ¥ N7 is stable under taking real powers.
THS5 : We have p(log f) = logp(f) for all f € 7> with log f € 7.

In what follows, we will always identify 7 with its image under p, which is necessarily
a Hardy field in the classical sense. The integer d in THS3 is called the depth of T;
iflogm € 7 for all m € ¥ N T, then the depth is defined to be +o00. We always have
d > 0, since 7 is stable under differentiation. If d # oo, then f 14 is exponential for
all f € 7 and 7 contains log;_; z. If d = 0o and 7 # R, then 7 contains log;, = for
all sufficiently large k.

Example 2. — The field T = R is clearly a transserial Hardy field. As will follow
from theorem 2 below, other examples are

R(z®) = U R@™,...,z%)
Q1,0 €ER

R(eRE) = U R(e™®, ..., e* "),
ay,...,0 €ER

Remark 3. — Although the axioms TH4 and THS5 are not really necessary, TH4
allows for the simplification of several proofs, whereas it is natural to enforce THS5.
Notice that TH5 automatically holds for f € 7> with f < 1 since

p(log f)" = p((log £)) = p(f'/f) = p(f)'/p(f) = (log p(£))',

whence p(log f) = logp(f) + ¢ for some ¢ € R. Since both p(log f) — log f= and
log p(f) — log fx< are infinitesimal in G, we have ¢ = 0. Consequently, it suffices to
check THS5 for monomials f € 7 N% with log f € 7.

Proposition 10. — Let T be a transserial Hardy field with x € T. Then the upward
shift T 1 of T carries a natural transserial Hardy field structure with p(f 1) = p(f)oe*.

Proof. — The field T 1 is stable under differentiation, since f 1'= (xf’) 1 for all
feT. O

Corollary 3. — If T has depth d < oo, then T 14 is a transserial Hardy field of depth
0.

We recall that a transbasis ‘B is a finite set of transmonomials {by,...,b,} with

TB1: by,...,b,>1land b; X --- <K b,.
TB2 : b; =log,_, = for some d € Z.
TB3 : logb; € R[by;...;b;—1] forall1 <i < n.
If d = 0, then B is called a plane transbasis and R[[by;...;b,] is stable under differ-

entiation. The incomplete transbasis theorem for T also holds for transserial Hardy
fields:
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Proposition11. — Let B C T be a transbasis and f € T. Then there exists an
supertransbasis B C T of B with f € R[BR]. Moreover, if B is plane and f is
exponential, then B may be taken to be plane.

Proof. — The same proof as for {26, Theorem 4.15] may be used, since all field
operations, logarithms and truncations used in the proof can be carried out in 7. O

Given a set F of exponential transseries in 7, the transrank of F is the minimal
size of a plane transbasis 8 = {by,...,b,} with F C R[by;...;b,]. This notion may
be extended to allow for differential polynomials P in F (modulo the replacement of
P by its set of coefficients).

Remark 4. — The span and ultimate span of f € 7 are not necessarily in 7. Nev-
ertheless, if span f # 1 and B = {by,...,b,} C 7T is a transbasis for f, then we do
have span fx<b; for some 4 (and similarly for the ultimate span of f).

3.2. Cuts in traAnsserial Hardy fields. — Let T be a transserial Hardy field.
Given f € T and f € G, we write f ~ f if there exists a ¢ € 7 with

f~r o~ f

We say that f and f are asymptotically equivalent over T if for each ¢ € T (or,
equivalently, for each ¢ < f), we have

f-o~Ff-o
We say that f and f are differentially equivalent over T if

N

P(f)=0 & P(f)=0
for all P € T{F}.

Lemma 3. — Let T be a transserial Hardy field and let f € T \ T be differentially
algebraic over T. Let m € supp f be mazimal for =, such that p = fou € T. Then ¢
is differentially algebraic over T and x, < Xs.

Proof. — Let P € T{F} be a minimal annihilator of f. Modulo upward shifting, we
may assume without loss of generality that P and f are exponential. Since ¢ € 7, all
monomials in supp ¢ are in 7, whence there exists a plane transbasis {b;,...,b,} C 7T
for P and . Modulo subtraction of H, from f and ¢, we may assume without loss
of generality that H, = 0. Let k be such that uspan px<bj and let by --- b3 be the
dominant monomial of ¢. Modulo division of f and ¢ by by;%* -+ b3", we may also
assume that ¢ is a normal serial cut. But then the equation P(f) = 0 gives rise to

the equation P<p, (¢) = 0 for ¢ = f«p,. The complexity of P«p, is clearly bounded
by xp = X5 O
Lemma 4. — Let T be a transserial Hardy field and v € T NT=<. Let f € T<, and

f € G be such that f and f are both asymptotically and differentially equivalent over
T«v- Then f and f are both asymptotically and differentially equivalent over T .
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Proof. — Given ¢ € T, we either have ¢ >} 1 and

f=p~r —p~g f-p
or ¢ <3 1, in which case

~

f—0 ~r f=pxi ~ f—pss1 ~g f—o.

This proves that f and f are asymptotically equivalent over 7.
As to their differential equivalence, let us first assume that f is differentially tran-
scendent over T<,. Given R € T{F}7, let us denote

Dgr = DRIQx;aR € Tju.
We have Dg(f) # 0, Dr(f) # 0 and
(11) R(f) ~; Dr(f)r
(12) R(f) ~i Dr(f)or,
whence R(f) # 0 and R(f) # 0.
Assume now that f is differentially algebraic over T«, and let P € T«,{F'} be a
minimal annihilator. Given @ € T{F}, Ritt reduction of @ w.r.t. P gives
HEQ = AP + R,

where A € T{F}[0] and R € T{F?} is such that xg < xp. Since xg, < xp and
Hp € Ty, we both have Hp(f) # 0 and Hp(f) # 0, whence

R(f)
QW) Hp(f)k
n _ _BU)
Q(f) Ho(F)F
If R = 0, this clearly implies R(f) = R(f) = 0. Otherwise, Dy, vanishes neither at f
nor at f and the relations (11) and (12) again yield R(f) # 0 and R(f) # 0. a

Lemma 5. — Let T be a transserial Hardy field and let f € T\ T be a differentially
- algebraic cut over T with minimal annihilator P. Let f € G be a root of P such
that f and f are asymptotically equivalent over T. Then f and f are differentially
equivalent over T .

Proof. — Let v € T be such that uspan fx<v. Modulo some upward shiftings, we may
assume without loss of generality that f and P are exponential. Modulo an additive
conjugation by H; and a multiplicative conjugation by df, we may also assume that
f is a normal cut. Modulo a division of P by 9p and replacing P by P«,, we may
finally assume that P € T« {F}.

Now consider Q € T, {F}* with xo < xp. Since Q(f) # 0, there exists a ¢ < f
with f — ¢ <y 1 and Q44,0 <o Q(p). But then

Q(f) = Q) + Qrp,20(f — ¥) ~ Q) # 0.
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For general Q € T{F'}, we use Ritt reduction of Q w.r.t. P and conclude in a similar
way as in the proof of lemma 4. O

3.3. Elementary extensions
Lemma 6. — Let f € T\ T and f € G\ T be such that

i. f is a serial cut over 7.

ii. f and f; are asymptotically equivalent over T.

iii. f and f are differentially equivalent over T .
Then T (f) carries the structure of a transserial Hardy field for the unique differential
morphism p : T(f) — G over T with p(f)=f.

Proof. — Modulo upward shifting, an additive conjugation by Hy and a multiplicative
conjugation by 3¢, we may assume without loss of generality that f is an exponential
normal serial cut. Let b € 7 be such that uspan fx<v. We have to show that 7 (f)
is closed under truncation and that P(f) ~ P(f) for all P € T{F} with P(f) # 0
(this implies in particular that p is increasing). Notice that supp f C 7 implies
T(fiNT=TnNZ.

Truncation closedness. Given R € T(F), let us prove by induction over the tran-
srank n of {R, f} that P(f), € T(f). So let {b1,...,b,} be a plane transbasis for R
and f. Assume first that b, » v. Writing

R= Rab% € R[by;...;bn_1[(F)[bal,
a€R

the sum

R,, =) Rab:

a>0
is finite, whence

R(f)>,, = R»,, (f) =D Ra(f)b € T(f).

a>0

By the induction hypothesis, we also have Ro(f). € T{(f) and R(f). € T(f).
If b, =v, then

R(f)» = R(p)>
for a sufficiently large truncation ¢ < f, whence R(f),. € 7.

Preservation of dominant terms. Given P € T{F} with P(f) # 0, let us prove
by induction over the transrank n of {P, f} that P(f) ~ P(f). Let {by,...,b,} be
a plane transbasis for P and f and assume first that v < b,,. Since P(f) # 0, there
exists a maximal a with P,(f) # 0, when considering P = 3. Pab% as a series in
b,. But then

P(f) ~ Pa(f)b2 ~ Po(f)b2 ~ P(f),
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by the induction hypothesis. If b, <v, then there exists an a € R such that, for all
sufficiently large truncations ¢ < f, the Taylor series expansion of P(p + (f — ¢))
yields

P(f) P(p) + Ou((f — ¢)0%)
P(f) = P(p)+0u((f - 9)o?).
Taking ¢ < f such that (f — ¢)v* <, P(f), we obtain
P(f) ~ P(¢) ~ P(f).
This completes the proof. O

Theorem 1. — Let T be a transserial Hardy field. Then its real closure T™' admits
a unique transserial Hardy field structure which extends the one of T.

Proof. — Assume that 7" # 7 and choose f € 7!\ 7 of minimal complexity. By
lemma 3, we may assume without loss of generality that f is a serial cut. Consider
the monic minimal polynomial P € T[F] of f. Since P'(f) # 0, we have

deggs o, Py =1
for a sufficiently large truncation ¢ < f of f (we refer to [26, Section 8.3] for a
definition of the Newton degrees deg,, P). But then
(13) Pro(9) =0, g<f-¢

admits unique solutions g and § in T resp. G, by the implicit function theorem. It
follows in particular that f = ¢ + g. Let f = ¢ + § and consider 9 with ¢ < ¥ < f.
Then

P(f)—P() ~ Piya(f—19)

P(f)—P() ~ Piyi(f—9)
Since P(f) = P(f) = 0, we obtain f — ¢ ~ f —, whence f and f are asymptotically
equivalent over 7. By lemmas 5 and 6, it follows that 7 (f) carries a transserial Hardy

field structure which extends the one on 7. Since (13) has a unique solution § in G,
this structure is unique. We conclude by Zorn’s lemma. O

3.4. Exponential and logarithmic extensions

Theorem 2. — Let T be a transserial Hardy field and let ¢ € T, be such thate? ¢ T.
Then the set T (e®?) carries the structure of a transserial Hardy field for the unique
differential morphism p : T(eR?) — G over T with p(e*?) = e**(¥) for all A € R.

Proof. — Each element in f = 7(eR®?) is of the form f = R(e*¥,...,e*¥) for R €
T(Fy,...,F;) and Q-linearly independent A;,...,Ax € R. Given R € T(Fy,..., Fi),
let {b1,...,b,} be a transbasis for R. We may write

P — oPp%i...p2
e¥ = e¥b; by
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with b;_; < e® < b; (or the obvious adaptations if i = 1 or i = n + 1). Modulo the
substitution of ¢ by a;logb; + --- + a,logb, + ¢, we may assume without loss of
generality that o; = --- = a,, = 0.

If b, « e*, then we may regard f = ) g fue"? as a convergent grid-based series
in e® with coefficients in 7 N R[[by;...;b,]. In particular,

fr=1 D fue"?| + for € T(e™).

psign >0

Furthermore, if f admits v as its dominant exponent in e®, then f ~ f,e”¥ holds
both in T and in G.
If e¥ « b, then we may consider R as a series

Re S :=(TNR[by;...;b;1])(F1,--., Fi)[bi; ... bn]

inb;,...,b,. Since 7 is closed under truncation, both R, and R<, liein S, whence
fs = R>_bi(e’\1“", c,eNP) 4 Rxbi(e’\“", .., e T(eR),
by what precedes. Similarly, if R, ..., b* - -- by is the dominant term of R as a series

in b;,...,b, and ce”? is the dominant term of R,, ., (e*¥,...,e*¥) as a series in
e? (with c € TNR[by;...;b;_1]), then f ~ ce¥¥b;* - --bs~ holds both in T and in G.

This shows that 7 (e®¥) is truncation closed and that the extension of p to 7 (e®¥)
is increasing. We also have 7 (e®¢) N T = (7 N %)eR?. In other words, 7 (e®¥) is a
transserial Hardy field. O

Theorem 3. — Let T be a transserial Hardy field of finite depth d < oo. Then
T ((logy z)®) carries the structure of a transserial Hardy field for the unique differ-
ential morphism p : T((log,z)R) — G over T with p((logyz)*) = (log, z)* for all
A€eR.

Proof. — The proof is similar to the proof of theorem 2, when replacing e¥ by log; .
(]

3.5. Complex transserial Hardy fields. — Let 7 be a transserial Hardy field.
Asymptotic and differential equivalence over T|i] are defined in a similar way as
over 7.

Proposition 12. — Let T be a transserial Hardy field. Let f € T[i] be a serial cut over
Tli] and f € G[i]. Then f and f are asymptotically equivalent over T[i] if and only if
Re f and Re f as well as Im f and Im f are asymptotically equivalent over T.

Proof. — Assume that f and f are asymptotically equivalent over 77i] and let ¢ <
Re f. Consider ¥ = (Im f)yre - < Im f. We have ¢+ i < f, so that f —p — i ~
f—go—z/)i. Moreover, f —¢ — i < Re f — ¢, whence Re f — ¢ ~ Ref—go and Re f ~
Re f . The relation Im f ~ Im f' is proved similarly. Inversely, assume that Re f and
Re f as well as Im f and Im f are asymptotically equivalent over 7. Given ¢ < f, we
have Re ¢,Im ¢ € T, whence there exist g,h € T with Re f ~Rep ~ g ~ Ref— Reyp
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and I}Ilf—ImtpNhNImf—Imgo. It followsthatf—<p~g+hi~f—cp, whence
f~F O

Proposition 13. — Let T be a transserial Hardy field, f € T and f €G. Then f and
f are differentially equivalent over T[i] if and only if they are differentially equivalent
over T.

Proof. — Differential equivalence over 7 [i] clearly implies differential equivalence over
T. Assuming that f and f are differentially equivalent over 7, we also have

P(f)=0 & (ReP)(f)=0A(ImP)(f)=0
& (ReP)(f) =0A(ImP)(f)=0

A

& P(f)=0
for every P € T[i|{F}. |

Remark 5. — Given f € T and f € G, it can happen that f and f are differentially
equivalent over 7T[i], without Re f and Re f being differentially equivalent over 7.
This is for instance the case for T = R(zR), f = e® and f = ie®. Indeed, the
differential ideals which annihilate f resp. f are both F/ — F.

Most results from the previous sections generalize to the complex setting in a
straightforward way. In particular, lemmas 3, 4 and 5 also hold over 7[i]. However, the
fundamental extension lemma 6 admits no direct analogue: when taking f € T[i]\ 7[i]
and f € G[i] \ 7[i] such that the complexified conditions i, 4 and i hold, we cannot
necessarily give 7 (Re f) the structure of a transserial Hardy field. This explains why
some results such as lemmas 2 and 9 have to be proved over 7 instead of T[i]. Of
course, theorem 1 does imply the following:

Theorem 4. — Let T be a transserial Hardy field. Then there erists a unique algebraic
transserial Hardy field extension T of T such that T™\[i] is algebraically closed.

4. Analytic resolution of differential equations

Recall that G stands for the differential algebra of infinitely differentiable germs of
real functions at +00. Given z¢ € R, we will denote by G, the differential subalgebra
of infinitely differentiable functions on [z, c0). We define a norm on G5 = {f € Gs, :
f =<1} by

1flleo = sup [f(z)]

z>T0
Given r € N, we also denote G .. ={f € Gy, : f, ... , £ < 1} and define a norm on
Gx .. by
"f"a:o;r = max{”f"zw R} "f(r)”a:o}'
Notice that
1 £9llzoir < 27| fllzosr I 9llzosr-
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An operator K : Gy, — Gy, (resp. K : Ggo — Gg,r) is said to be continuous if there
exists an M € R with |K f||z; < M||fllzo (resp. | K fllzo;r < M| fllz,) for all f € Gy,
The smallest such M is called the norm of K and denoted by ||| K |||z, (resp. || K|llzo;r)-
The above definitions generalize in an obvious way to the complexifications G3 [i] and

G5 lil

4.1. Continuous right-inverses of first order operators. — Let 7 be a transse-
rial Hardy field of span v »= e®. Consider a normal operator d — ¢ with ¢ € Ti] and
let zo be sufficiently large such that Re ¢ does not change sign on [zg,00). We define
a primitive ® € G of ¢ by
8(2) JZ o(t)dt if ¢ is integrable at co
xTr) =
f;o @(t)dt otherwise

Decomposing ® = R + 31, we are either in one of the following two cases:

1. The repulsive case when e® >, 1.
2. The attractive case when both e® <, 1 and e® » v.

Notice that the hypothesis v » e* implies R’ = Rep = ot = 1.

Proposition 14. — The operator J = (8 — ¢);}, defined by

(14) @) = e®@ [* e~ f(t)dt  (repulsive case)
e2(@) f:o e~ 2 f(t)dt  (attractive case)
is a continuous right-inverse of L = 8 — ¢ on G<[i], with
1
1 J < |l=—1 -
(15) 170 < g
Proof. — In the repulsive case, the change of variables R(t) = u yields

@) = e [ s L),

It follows that
1

R(z) 1
< R@ / “u)l £l <
U@ < @ | el | g | 7.

for all > xo, whence (15). In the attractive case, the change of variables —R(¢) = u
leads in a similar way to the bound

du = ||flle

. —R(z) 1
N@I < @ [ g, o) au
—R(zo) zo
1
e Y
[ [l |55
1
< zo || oor )
151 |
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for all z > xo, using the monotonicity of R. Again, we have (15). O

Corollary 4. — In the attractive case, the operator
It = (J)(@) + 2e®@|| fl,

is a continuous right-inverse of L on GX[i], for any A € C.

4.2. Continuous right-inverses of higher order operators. — Let 7 be a
transserial Hardy field of span v » e®. A monic operator L € T[i][d] is said to be
split-normal, if it is normal and if it admits a splitting

(16) L=0-¢1)---(0—-r)

with ¢1,...,¢, € T[i]. In that case, proposition 5 implies that each 9 — ¢; is a normal
first order operator. For a sufficiently large z¢, it follows that L admits a continuous
“factorwise” right-inverse J, - - - J; on G[i]~, where J; = (8 — ¢;);;'. We have

M- Tilllzg < M Ml ==+ Ml T2 Mz -

Proposition 15. — v J,.---Jy : G [i] = GX .[i] is a continuous operator for every
v>roy,.

Proof. — Given f € G¥[i], the the first 7 derivatives of (v*J,---J;)f satisfy

(0" Jp - J)AD = 3 ei(0¥J; - T,

j=r—i
with
Co,r = 1

1
’
Cit1,; = Cij + VUtCi,j + @jicij + ——Cij+1-

Vit1

By proposition 7 and induction over i, we have ¢; ; < v~%L for all i, j. Since v > roy,
it follows that

a7 1(0” I -~ 1) 1Py < Cillfllao,
for all f € G¥[i] and i, where

T
Ci = 3 0”eislleo T lllzo = I T o

j=r—1
We conclude that
lo* Iy - - Jilllzo:r < max{C,...,Cr}. O

Proposition 16. — If L € T[0] and the splitting (16) preserves realness, then J, - - - J;
preserves realness in the sense that it maps gjo into itself.
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Proof. — It clearly suffices to prove the proposition for an atomic real operator L. If
L has order 1, then the result is clear. Otherwise, we have

L= (8- (a—bi+b"))(0— (a+bi)

for certain a,b € 7. In particular, we are in the same case (attractive or repulsive)
for both factors of L. Setting ¢ = a + bi, let ® = R+ 31 be as in the previous section.
Consider f € gjo and g = JoJ; f. In the repulsive case, we have

T 2i9(t)

In particular, we have g(zo) = ¢'(zo) = 0, whence g € G5, since g satisfies the
differential equation Lg = f of order 2 with real coefficients. In the attractive case,

we have

¢
/ e~ 2™ f(u)dudt.
Zo

9(x) = b(z)e?® / ¢ e:;(i()" / " =2 f () dudt,

o0
so that g,¢' <o 1. Since Lg = Lg = f, the difference g — g satisfies L(g — g) = 0.
Now 0 is the only solution with h <, 1 to the equation Lh = 0. This proves that
g=g. O

4.3. The fixed point theorem. — Let 7 be a transserial Hardy field of span
v » e and consider a monic split-normal quasi-linear equation

(18) Lf=P(f), f=<1,

where L € T[i][] has order r and P € T[i]{F'} has degree d. Of course, we understand
that L is a monic split-normal operator with P <, v"°Z. We will denote by vp > ro,
the valuation of P in v (i.e. P <, 0P for P # 0 and vy = 00). We will show how to
construct a solution to (18) using the fixed-point technique.

Proposition 17. — Given v with rop < v < vp, let Jy xov -+ J1,x0v be a continuous
factorwise right-inverse of Ly,» beyond x¢ and consider the operator

(19) E: fr— (Jr--- 1)(P(f))

on G5 ... Then there exists a constant Cy, with

(20)  NIE(f +6) ~ E(Nllsoir < Cao(1+ -+ IFlIZ;0) (6 llaoir + -+ + 161125:0),
for all f,6 €G3 ..
Proof. — Consider the Taylor series expansion

P(f+8) = 3 PO(f)®

- Y f(j)} 5@

i L
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Since P}i) <y 0¥ for all ¢ and j, we may define A, by

(21) Asg =3 “n—"PJ?"’ .
i

and obtain

o= (P(f +8) = P(N))l, < Amo (L4 + 111550 ) Sllaoir + - + 18115,:0)-

On the other hand, for each g € G, with g < v, we have

”(Jr"’Jl)(g)”zo;r = ||(v¥ r,m”"'Jl,m")(t’_ug)”zo;r < Bzo””_ug“zo’

where

(22) Bzo = |”UV r,Xo¥ """ Jl,xn” ”Ixo;'r

Consequently, the proposition holds for Cy, = Az, Bs,- O
Theorem 5. — Let (18) be a monic split-normal equation and let v be such that roy, <

v < vp. Then for any sufficiently large xq, there exists a continuous factorwise right-
inverse Jyr xov -+ J1,xov Of Liov, such that the operator (19) satisfies

(23) IE(f + 0) = E(f)llzosr < Mmm
for all

£,5€8(0%3) = be%,wmwsﬂ.

Moreover, taking zo such that | Po||ze:r < %, the sequence Z(™(0) tends to a unique
fized point f € B(gac0 - 2) for the opemtor =.

Proof. — Since u‘”P;i) =< 1 for all 4,5, the number A,, from (21) tends to 0 for

o — o0o. When constructing Ji xuv,...,Jrxov using proposition 14, the number

B,, from (22) decreases as a function of xy. Taking zo sufficiently large so that
Cyo = Az Bz, < %, we obtain (23). By induction over n, it follows that

120 -2 Olleor < gy

i N on4l

= 1 1
IE"(0)lzosr < 9 gntl-

Now let G,fo;r be the space of r times continuously differentiable functions f on [z, 00),
such that f,.. f () are bounded. This space is complete, whence Z"(0) converges
to a limit f € B(g 2o 3). Since this limit satisfies the equation (18), the function f
is actually infinitely differentiable, i.e. f € B(G3 .., 3)- O
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4.4. Asymptotic analysis. — With the notations from the previous section, as-
sume now that 7i] is (1,1, 1)-differentially closed in T[i]«y, i.e. any solution f €
Tli]«v to an equation (0 — ¢)f = g with ¢,g € TI[i] is already in 7[i]. Each J;
is the right-inverse of an operator 8 — ¢; with p; € T[i]. Now 8 — @; also admits
a formal distinguished right-inverse Ji. Consequently, the operator E also admits a
formal counterpart

[

:f— (Jr - D) (P(S))-
For each n € N, we have

E"+1(0) — E™(0) <» E™(0)
so the sequence Z"(0) also admits a formal limit f in 7i]. In order to show that the
fixed point f from proposition 5 and f are asymptotically equivalent over 7 [i], we need
some further notations. Given f € G=[i]and f € T [i], let us write f ~ fif f—f <ok,
ie. f— f <02 for all a € R. We also write f =, fiffrf,...,fO = fn),

Proposition 18. — For f,g € G[i], f,§ € Tli] and r € N, we have
frefrgm g = fHam f+37
f=rfAg~r§ = fg=,fg
e f = = f
Proof. — Trivial. |
Proposition 19. — For f € Gi], f € T[i] and r € N with f, f <, v*, we have
f Ry f=> sz Nr41 jzf
Proof. — Let us first show that

(24) f=0=J,f = 0.
Given a > v with f < v, we have J; xpa (07f) < 1, whence J; f < . Moreover,
(25) (Jif) =97 f + o(Jif),

whence f < v® = (J;f)' < v**+# for some fixed 3. This proves (24). More generally,
r additional applications of (25) yield

f Ry 0= sz Nr41 0.
Now assume that f =, f and write
Jif = Jif = Ii(f - )+ (Ji = T)(f)
By what precedes, we have J;(f — f) ®,41 0. On the other hand,
(Ji = T)(f) = cel

for some ¢ € C. Since 0 — ¢; is normal, we either have ef ¥ < R (in which case

f"”)(’) < oR for all i € N) or ¢ = 0. In both cases, we get (J; — J;)(f) ~r41 0, s0
that Jif ~pg1 Jif O
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Theorem 6. — Let T be a transserial Hardy field of span v »> € such that TIi] is
(1,1, 1)-differentially closed in T<,. Consider a monic split-normal quasi-linear equa-
tion (18) without solutions in T. Then there exist solutions f € G[i] and f € TTi] to
(18), such that f and f are asymptotically equivalent over TT[i].

Proof. — With the above notations, let f and f be the limits in G [i] resp. 7'[1] of the
sequences Z"(0) resp. =™(0). Given g € T[i], there exists an n with
E™T1(0) — E™(0) <o g
At that point, we have
f-g~E"(0)-g~E"(0)~g~F-yg
In other words, f and f are asymptotically equivalent over 7[i]. O
Theorem 7. — Let T be a transserial Hardy field of span v % e®. Consider a monic

split-normal quasi-linear equation (18) without solutions in T such that L and P have
coefficients in T. Assume that one of the following conditions holds:

a) T is (1,1,1)-differentially closed in Ty and r, =rp = 1.
b) Tli] is (1,1, 1)-differentially closed in T[i]«q-

Then there ezist solutions f € G and f € T to (18), such that f and f are asymptot-
ically equivalent over T .

Proof. — In view of propositions 3 and 16, we may assume that J,.---J; and =
preserve realness in all results from sections 4.3 and 4.4. In particular, the solutions
f and f in the conclusion of theorem 6 are both real. O

5. Differentially algebraic Hardy fields

5.1. First order extensions

Lemma 7. — LetT be a transserial Hardy field of spanv »> e*. Let L =0—¢ € T|9)
be a normal operator. Let f € T and g € TS be such that f is transcendental over
T and Lf = g. Then there ezists an f € G with Lf = g, such that f and f are both
differentially and asymptotically equivalent over T .

Proof. — With the notations of section 4.1, let f = Jg. Given a truncation ¥ < f,
we claim that

f—v=J(g— @ —¢p)).
Indeed, consider

§=v—JW —p) € Re®.
In the attractive case, ¥ <, e® implies § = 0. In the repulsive case, we have e® < 1
and again § = 0. By proposition 19, we also have

f-v=Jdg-v +ev) = J(g—¢ + o¥).
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Since 9’ — 1 # g, it follows that f—w~ f—1, whence f and f are asymptotically
equivalent over 7. Furthermore, LF' — g is a minimal annihilator of f over T, since
f is transcendental over 7. Lemma 5 therefore implies that f and f are differentially
equivalent over 7. |

Theorem 8. — Let T be a transserial Hardy field. Let T®™ D T be the smallest differ-
ential subfield of T, such that for any P € T*{F}* with rp < 1 and f € T we have
P(f) =0= f € T™. Then the transserial Hardy field structure of T can be extended
to T,

Proof. — By theorems 1, 2 and 3, we may assume that 7 is closed under the resolution
of real algebraic equations, exponentiation and logarithm. Assume that 7% # 7 and
let P € T{F}* be of minimal complexity xp = (1, s,t), such that P(f) = 0 for some
f € T™. Without loss of generality, we may make the following assumptions:

e f and P are exponential (modulo upward shifting).
e f is a serial cut (by lemma 3).
e f is a normal cut (modulo additive and multiplicative conjugations by Hy resp.
[ ).
e P € T[i]«o{F}, where v € T N ¥ satisfies uspan fx<bv (modulo replacing P by
P4y).
e P is monic split-normal (modulo proposition 9, additive and multiplicative con-
jugations, and division by ?p).
By Zorn’s lemma, it suffices to show that 7 (f) carries the structure of a transserial
Hardy field, which extends the structure of 7.
If s =t = 1, then lemma 7 implies the existence of an f € G= such that f and
f are both asymptotically and differentially equivalent over 7«,. Hence, the result
follows from lemmas 4 and 6.
If ¢ > 1, then 7 and T, are (1,1, 1)-differentially closed in T resp. T<,. Now
v » €%, since f is exponential. Therefore, theorem 7 provides us with an f € G= with
P( f ) = 0, such that f and f are asymptotically equivalent over T«y. We conclude
by lemmas 5, 4 and 6. O

5.2. Higher order extensions

Lemma 8. — Let T be a transserial Hardy field of span v > e*. Let L =0 — ¢ €
Ti][8] be a normal operator. Let f € T[i]¥ and g € T[i] be such that Re f has order
2 over T and Lf = g. Then there exists an f € G[i| with Lf = g, such that Re f
and Re f are both differentially and asymptotically equivalent over T .

Proof. — The fact that f and f are asymptotically equivalent over 7 is proved in a
similar way as for lemma 7. It follows in particular that Re f and Re f are asymptot-
ically equivalent. Since lem(L, L) annihilates f, f, f and f, it also annihilates both
Ref and Re f. The fact that Re f has complexity (2,1,1) over T now guarantees
that lem(L, L) is a minimal annihilator of Re f. We conclude by lemma, 5. O
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Theorem 9. — Let T be a transserial Hardy field. Let T9*8 D T be the smallest
differential subfield of T, such that for any P € T98{F}* and f € T we have
P(f) = 0 = f € T98. Then the transserial Hardy field structure of T can be
extended to T928,

Proof. — By theorems 2, 3 and 8, we may assume that 7 is closed under exponenti-
ation, logarithm and the resolution of first order differential equations. Assume that
T4%e £ T and let P € T[i]{F}* be of minimal complexity xp = (r,s,t), such that
P(f) = 0 for some f € T98[i] with Re f ¢ 7. Let Q@ € T{F} be a minimal annihi-
lator of Re f and notice that rg > rp, since Re f € 7. Without loss of generality, we
may make the following assumptions:

e f, P and Q are exponential (modulo upward shifting).
e f is a serial cut (by the complexified version of lemma 3).
e f is a normal cut (modulo additive and multiplicative conjugations by Hjy resp.
05 ).
o P e Tli|«o{F} and Q € T«o{F'}, where v € T NT satisfies uspan f>=v (modulo
the replacement of P and Q by P, resp. Q«o).
e Q is monic split-normal (modulo proposition 9, additive and multiplicative con-
jugations, and division by dg).
By Zorn’s lemma, it now suffices to show that 7(Re f) carries the structure of a
transserial Hardy field, which extends the structure of 7.

If r=s=1t=1, then lemma 8 and the fact that 7 is 1-differentially closed imply
the existence of an f € G<[i] such that Re f and Re f are both asymptotically and
differentially equivalent over 7«y,. The result follows by lemmas 4 and 6.

If xp # (1,1,1), then T[i] and T[i]«, are (1,1, 1)-differentially closed in T[i] resp.
T[i]«o. Now v »= e”, since f is exponential. Therefore, theorem 7 provides us with
a g € G with Q(g) = 0, such that Re f and g are asymptotically equivalent over
Txyv. We conclude by lemmas 5, 4 and 6. O

Corollary 5. — There exists a transserial Hardy field T, such that for any P € T{F'}
and f,g € T with f < g and P(f)P(g) <0, there exists a h € T with f <h < g and
P(h) =0.

Proof. — Take T = R(z®)92'¢ and endow it with a transserial Hardy field structure.
Let P € T{F} and f,g € T with f < g be such that P(f)P(g) < 0. By [26, Theorem
9.33], there exists a h € T with f < h < g and P(h) = 0. But P(h) = 0 implies
heT. O

Corollary 6. — There exists a transserial Hardy field T, such that T[i] is weakly dif-
ferentially closed.

Proof. — Take T = R9218, By a straightforward adaptation of [26, Chapter 8] (see
also [24, theorem 9.3]), it can be shown that any differential equation P(f) = 0 of
degree d with P € T[i]{F} admits d distinguished solutions in T[i] when counting
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with multiplicities. Let f be such a solution. Since P(f) = P(f) = 0, both Re f and
Im f are differentially algebraic over 7, whence f € T[i]. a

Corollary 7. — There exists a differentially Henselian transserial Hardy field T, i.e.,
such that any quasi-linear differential equation over T admits a solution in T .

5.3. Differential Newton polynomials for Hardy fields. — Let H be a differ-
entially algebraic Hardy field extension of a transserial Hardy field 7.

Proposition 20. — Given € € H=, there ezists an | € N with € < (log; z)~1.

Proof. — The functional inverse |e~!|"®" of |¢~!| satisfies an algebraic differential
equation P(je}|""Y) = 0 over 7. Let Py f(® be the leading term of P for its loga-
rithmic decomposition. As in [26, Section 8.1.4]. there exists an | € N with P(f) ~
Py £ for all f 3 exp; x . It follows that |e~!|"™ < exp,z and € < (log;z)~!. O

Given a differential polynomial P € H{F}*, we define its dominant part to be
the unique monic Dp € R{F} such that P = £p(Dp + Ep) for some €p € H and
Ep € H{F}=. Here Dp is said to be monic if its leading coefficient w.r.t. F("?) ... F
equals 1.

Theorem 10. — Given P € H{F}?, there ezists a polynomial Np € R[F](F")N with

for all sufficiently large | € N.

Proof. — As in the proof of [26, Theorem 8.6], we have
wtDp >2wvDp 2wtDpy 2wvDpy >---,

so we may assume without loss of generality that wt Dpy, = wv Dpy, = w is constant
for all i € N. Now

P1 = (pi(Dpr+ Epy)
¢p1(Dp1+EpT)
¢p 1 (™" Dpr+Ep 1),

whence

(26) ty = tplev
(27) Dpt = Dppt
(28) EPT = EPTew‘T.

Indeed, we must have

Ep1e"" = (Ep_,, 1 +Eps,, 1)e"" <1,
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because Ep_,, T €“" = 1 would imply wt Dp; < w. Applying [26, Lemma 8.5
to (27), and similarly for P 1, P 11,..., we get

DPTz =Dpe R[F](Fl)w
for all l € N.
By proposition 20 and (28), we have Ep >y <iog,z 1 and Epy,,, (>0 <es 1 for
some [ € N. Modulo upward shiftings, we may thus assume without loss of generality

that Ep[>,] <e= 1. More generally, assume that Ep5,] <e= 1 for some v < w.
By (28), this implies Epy, (>, <e= 1 for all I € N and

Eptjw = (Epp Tw) +Ep>v) Tw))e””
(29) = ™ ™%(Ep ) 1 +0e=(1)),
for all w of weight v. We claim that there exists an [ € N with
(30) Epy < [(log t z)']* .

Assume the contrary and consider a coefficient Ep |, of weight v with

Q/) = '”‘\”/ Ep,[w] - (logl_l .'L')’

for all | € N. Without loss of generality, we may assume that ¢ and [ are in H.
Then proposition 20 implies [ 9 > 1 and even [ > 1 (by integrating from +oo when
possible). Again by proposition 20, it follows that [ > log;z and ¢ > (log; z)’ for
some ! € N. But then (29) yields

Epq, jw) = [(log; 2)'1°™" 11 (Epjw) T1 +0e= (1)) > 1,

which contradicts the fact that Ep;, < 1. The relations (30) and (29) imply the
existence of an | € N with Ep¢,, | (s] <es 1. By induction over v = w,w~1,...,0 and
modulo upward shiftings, we may thus ensure that Ep [>,] <e= 1 for all v < w. O

The polynomial Np in theorem 10 is called the differential Newton polynomial of
P. The generalization of this concept to H allows us to mimic a lot of the theory from
[26, chapter 8] in H. In what follows, we will mainly need a few more definitions.
The Newton degree of an equation

(31) P(f)=0, f=<¢
with P € H{F} and ¢ € H” is defined by deg_,, P = deg Np,,. Setting
o 1
’Y =

zlogzlog,z---
we also define
deg; P = 1‘51;171 deg,, P.

We say that f < ¢ is a solution to (31) modulo o(¥),% € T U {4} if deg,, P15 > 0.
We say that H is differentially Henselian, if every quasi-linear equation over H admits
a solution. Given a solution f to (31), we say that f has algebraic type if Np,, is
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not homogeneous and differential type in the other case. The following proposition is
proved along the same lines as [26, proposition 8.16]:

Proposition 21. — Let f be a solution to (31) of differential type and let i be the degree
of Np,,. Then f1 is a solution modulo o(¥) of Rp,.

Remark 6. — In this section, we assumed that H is a differentially algebraic Hardy
field extension of a transserial Hardy field 7. We expect that the theory can be
adapted to even more general H-field. This is one of the objectives of a current
collaboration with Lou van den Dries and Matthias Aschenbrenner [4].

5.4. Transserial models of differentially algebraic Hardy fields

Theorem 11. — Let T be a transserial Hardy field and 'H a differentially algebraic
Hardy field extension of T, such that H is differentially Henselian and stable under
erponentiation. Then there exists a transserial Hardy field structure on H which
extends the structure on T .

Proof. — By theorems 1, 2 and 8, we may assume that 7 is closed under the resolution
of real algebraic equations, exponentiation and integration. Assume that H # 7 and
choose P € T{F} of minimal complexity xp = (7, s,t), such that either

C1 : P(f) =0 for some f € H.
C2 : P(f) = 0 modulo o(m%) for some f € H, m € T N¥ and P admits no roots
in 7 modulo o(m%). Moreover, T is x p-differentially closed in H.

Modulo upward shifting, we may assume without loss of generality that P is expo-
nential. In view of Zorn’s lemma, it suffices to show that there exists a transserial
Hardy field structure on 7 (f) which extends the structure on 7.

Let ® be the set of f € T such that f — f < supp f. The set ® is totally ordered
for <, so there exists a minimal well-based transseries f with ¢ < f for all p e d.
We call f the initializer of f over 7. Assume first that f € 7. Then we may assume
without loss of generality that ¢ = 0, modulo an additive conjugation by ¢. Now f is
of differential type, since f < m for nom € 7N%E. Let i € N be such that Rp,(f) =0
modulo o(¥). Since Rp, has lower complexity than P, there exists a ¢ € T with
Rp,(9) = 0 modulo o(¥). Since T is truncation closed we may take g € 7, 5. But

then f < ef 9€TN%. This contradiction proves that we cannot have feT.
Let us now consider the case when f € 7. Since deg <supp f-P 7 >0, there exists

a root ¢ > f of P in the set of well-based transseries with complex coefficients.
But P admits only grid-based solutions, whence f € T. By construction, f and f are
asymptotically equivalent over 7. Let v € 7 N% be such that uspan fx<v. Modulo an
additive and a multiplicative conjugation we may assume without loss of generality
that f is a normal cut. In case C2, we notice that supp f > m¥, whence m <j 1,
since uspan f = v. Consequently, we always have P, fi=o.

We claim that the cuts f and f are differentially equivalent over 7. Assume the
contrary and let Q € T, {F} be a minimal annihilator of f. By lemma 8 and modulo
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an additive and multiplicative conjugation, we may assume without loss of generality
that f <, 1 and that Q is normal. Since H is differentially Henselian, it follows that
Q admits a root g <, 1in H. Now xg < xp in case C1 and xg < xp in case C2,
so this root is already in 7, by the induction hypothesis. But Q) admits at most one
solution in Ty, whence f = g«o € 7. This contradiction completes the proof of
our claim. By lemma 6, we conclude that 7 (f) carries the structure of a transserial
Hardy field extension of 7. O

Corollary 8. — Let T be a transserial Hardy field and ‘H a differentially algebraic
Hardy field extension of T, such that ‘H is differentially Henselian. Assume that H
admits no non-trivial algebraically differential Hardy field extensions. Then H satisfies
the differential intermediate value property.

Proof. — The fact that H admits no non-trivial algebraically differential Hardy field
extensions implies that H is stable under exponentiation. By theorem 11, we may give
‘H the structure of a transserial Hardy field. By theorem 9, we also have 79218 = T,
We conclude in a similar way as in the proof of corollary 5. O

It is quite possible that there exist maximal Hardy fields whose differentially alge-
braic parts are not differentially Henselian, although we have not searched hard for
such examples yet. The differentially algebraic part of the intersection of all maximal
Hardy fields is definitely not differentially Henselian (and therefore does not satisfy the
differential intermediate value property), due to the following result [9, Proposition
3.7]:

Theorem 12. — Any solution of the equation
f/l + f — ea:z

is contained in a Hardy field. However, none of these solutions is contained in the
intersection of all mazimal Hardy fields.
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1 f |l zosr norm of f and its first r derivativesforz > zg.................. 472
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