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TRANSSERIAL HARDY FIELDS 

by 

Joris van der Hoeven 

Abstract, — It is well known that Hardy fields can be extended with integrals, expo­
nentials and solutions to Pfaffian first order differential equations / ' = P(f)/Q(f). 
Prom the formal point of view, the theory of transseries allows for the resolution of 
more general algebraic differential equations. However, until now, this theory did 
not admit a satisfactory analytic counterpart. In this paper, we will introduce the 
notion of a transserial Hardy field. Such fields combine the advantages of Hardy fields 
and transseries. In particular, we will prove that the field of differentially algebraic 
transseries over ^{{x"1}} carries a transserial Hardy field structure. Inversely, we 
will give a sufficient condition for the existence of a transserial Hardy field structure 
on a given Hardy field. 
Résumé (Corps de Hardy transsériels). — Il est bien connu que des corps de Hardy 
peuvent être étendus par des intégrales, des exponentielles et des solutions d'équa­
tions différentielles Pfaffiennes du type / ' = P(f)/Q(f). D'un point de vue formel, la 
théorie des transséries permet la résolution d'équations différentielles algébriques plus 
générales. Toutefois, cette théorie n'admettait pas encore de contre-partie analytique 
satisfaisante jusqu'à présent. Dans cet article, nous introduisons la notion de corps de 
transséries transsériel. Ces corps combinent les avantages des corps de Hardy et de la 
théorie des transséries. En particulier, nous démontrons que le corps des transséries 
vérifiant une équation différentiello-algébrique sur ^{{a:""1}} possède une structure de 
corps de Hardy transsériel. Réciproquement, nous donnerons une condition suffisante 
pour l'existence d'une structure transsérielle sur un corps de Hardy donné. 

1. Introduction 

A Hardy field is a field of infinitely differentiable germs of real functions near 
infinity. Since any non-zero element in a Hardy field H is invertible, it admits no 
zeros in a suitable neighbourhood of infinity, whence its sign remains constant. It 
follows that Hardy fields both carry a total ordering and a valuation. The ordering 
and valuation can be shown to satisfy several natural compatibility axioms with the 
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454 J. VAN DER HOEVEN 

differentiation, so that Hardy fields are models of the so called theory of H-fields [1, 
3, 2]. 

Other natural models of the theory of H-fields are fields of transseries [23, 31, 15, 
16, 27, 26]. Contrary to Hardy fields, these models are purely formal, which makes 
them particularly useful for the automation of asymptotic calculus [23]. Furthermore, 
the so called field of grid-based transseries T (for instance) satisfies several remarkable 
closure properties. Namely, T is differentially Henselian [26, theorem 8.21] and it 
satisfies the differential intermediate value theorem [26, theorem 9.33]. 

Now the purely formal nature of the theory of transseries is also a drawback, since 
it is not a priori clear how to associate a genuine real function to a transseries / , even 
in the case when / satisfies an algebraic differential equation over R{{x-1}}. One 
approach to this problem is to develop Ecalle's accelero-summation theory [17, 18, 
19, 20, 11, 12], which constitutes a more or less canonical way to associate analytic 
functions to formal transseries with a "natural origin". In this paper, we will introduce 
another approach, based on the concept of a transserial Hardy field. 

Roughly speaking, a transserial Hardy field is a truncation-closed differential sub-
field T of T, which is also a Hardy field. The main objectives of this paper are to 
show the following two things: 

1. The differentially algebraic closure in T of a transserial Hardy field can be given 
the structure of a transserial Hardy field. 

2. Any differentially algebraic Hardy field extension of a transserial Hardy field, 
which is both differentially Henselian and closed under exponentiation, admits 
a transserial Hardy field structure. 

We have chosen to limit ourselves to the context of grid-based transseries. More 
generally, an interesting question is which H-fields can be embedded in fields of well-
based transseries and which differential fields of well-based transseries admit Hardy 
field representations. We hope that work in progress [5, 4] on the model theory of 
H-fields and asymptotic fields will enable us to answer these questions in the future. 

The theory of Hardy fields admits a long history. Hardy himself proved that the 
field of so called L-functions is a Hardy field [21, 22]. The definition of a Hardy 
field and the possibility to add integrals, exponentials and algebraic functions is due 
to Bourbaki [10]. More generally, Hardy fields can be extended by the solutions to 
Pfaffian first order differential equations [32, 6] and solutions to certain second order 
differential equations [9]. Further results on Hardy fields can be found in [28, 29, 
30, 7, 8]. The theory of transserial Hardy fields can be thought of as a systematic 
way to deal with differentially algebraic extensions of any order. 

The main idea behind the addition of solutions to higher order differential equations 
to a given transserial Hardy field T is to write such solutions in the form of "integral 
series" over T (see also [25]). For instance, consider a differential equations such as 

f' = e-2°x+f2, 
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TRANSSERIAL HARDY FIELDS 455 

for large x y 1. Such an equation may typically be written in integral form 

f = e-2e* + f2 

The recursive replacement of the left-hand side by the right-hand side then yields 
a "convergent" expansion for / using iterated integrals 

f = в 
e-2e* + 

/ ( / e -2ex 2 
+ 2 e -2ex 

) ( / ( / e -2ex ) 
2 
) +......? 

where we understand that each of the integrals in this expansion are taken from +oo: 

(/g) (*) = 
x 

oo 
a(t)dt. 

In order to make this idea work, one has to make sure that the extension of T with 
a solution / of the above kind does not introduce any oscillatory behaviour. This is 
done using a combination of arguments from model theory and differential algebra. 

More precisely, whenever a transseries solution / to an algebraic differential equa­
tion over T is not yet in T, then we may assume the equation to be of minimal 
"complexity" (a notion which refines Ritt rank). In section 2, we will show how to put 
the equation in normal form 

(1) Lf = P(f), 

where P G T{F} is "small" and L GT[9] admits a factorization 

L = (d-<pi)'-(d-<pr) 

over T[i]. In section 4, it will be show how to solve (1) using iterated integrals, using 
the fact that the equation (d — ip)f = g admits ef * / e~ $ *g as a solution. Special 
care will be taken to ensure that the constructed solution is again real and that the 
solution admits the same asymptotic expansion over T as the formal solution. 

Section 3 contains some general results about transserial Hardy fields. In particular, 
we prove the basic extension lemma: given a transseries / and a real germ / at infinity 
which behave similarly over T (both from the asymptotic and differentially algebraic 
points of view), there exists a transserial Hardy field extension of T in which / and / 
may be identified. The differential equivalence of / and / will be ensured by the fact 
that the equation (1) was chosen to be of minimal complexity. Using Zorn's lemma, 
it will finally be possible to close T under the resolution of real differentially algebraic 
equations. This will be the object of the last section 5. Throughout the paper, we will 
freely use notations from [26]. For the reader's convenience, some of the notations 
are recalled in section 2.1. We also included a glossary at the end. 

It would be interesting to investigate whether the theory of transserial Hardy fields 
can be generalized so as to model some of the additional compositional structure on 
T. A first step would be to replace all differential polynomials by restricted analytic 
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456 J. VAN DER HOEVEN 

functions [14]. A second step would be to consider postcompositions with operators 
x + 6 for sufficiently flat transseries / for which Taylor's formula holds: 

fo(x + 6) = f + f'5+±f"62 + ---. 

This requires the existence of suitable analytic continuations of / in the complex 
domain. Typically, if / G T-^ with g € T>,y, then foginv should be defined on some 
sector at infinity (notice that this can be forced for the constructions in this paper). 
Finally, more violent difference equations, such as 

/(*) = -¿5"+/(*+!) , ee 
generally give rise to quasi-analytic solutions. From the model theoretic point view, 
they can probably always be seen as convergent sums. 

Finally, one may wonder about the respective merits of the theory of accelero-
summation and the theory of transserial Hardy fields. Without doubt, the first theory 
is more canonical and therefore has a better behaviour with respect to composition. 
In particular, we expect it to be easier to prove o-minimality results [13]. On the 
other hand, many technical details still have to be worked out in full detail. This 
will require a certain effort, even though the resulting theory can be expected to 
have many other interesting applications. The advantage of the theory of transserial 
Hardy fields is that it is more direct (given the current state of art) and that it allows 
for the association of Hardy field elements to transseries which are not necessarily 
accelero-summable. 

2. Preliminaries 

2.1. Notations. — Let T = RpU = R[L] be the totally ordered field of grid-
based transseries, as in [26]. Any transseries is an infinite linear combination / = 
Smei /™m °f transmonomials, with grid-based support supp/ C X. Transmonomials 
m, n,... are systematically written using the fraktur font. Each transmonomial is an 
iterated logarithm logt x of x or the exponential of a transseries g with tt >- 1 for each 
n e suppg. The asymptotic relations ^,^,x,~,^<,-4<,x and w o n T are defined by 

f*9 <=• f = 0(g) 

f <9 «=• / = o{g) 

f~9 "<=>• f*9*f 
f ~g f - g ^ g 

fd<9 l og | /H log M 

/ - « s tog l/l e log isi 
/жд "«=>• tog l/l ж log \g\ 
fttsg log l/l ~ log |(,| 
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TRANSSERIAL HARDY FIELDS 457 

Given o ^ l , one also defines variants of =4, -<, etc. modulo flatness: 
f ^t> g 3m ^< 4 gm 
f^x>g Vm ̂ < t), / ч #m 
f g 3m^t)J 4 gm 
f <g Vm r« t), / -< gm. 

It is convenient to use relations as superscripts in order to filter elements, as in 

T> = { / € Т : / > 0 } 
T# = { / € T : / ^ 0 } 
Ty = { / 6 Т : / И } . 

Similarly, we use subscripts for filtering on the support: 

fy = 
mGsupp /,m>-l 

/m™ 

f^<t> — 
mGsupp /,m t̂) 

fm m 

IV = { f / , : f 6 T } 
T - b = {/-«B:/eT}. 

We denote the derivation on T w.r.t. x by d and the corresponding distinguished 
integration (with constant part zero) by / . The logarithmic derivative of / is denoted 
by / t . The operations f and j of upward and downward shifting correspond to 
postcomposition with expx resp. logo;. We finally write / ^ g if the transseries / is 
a truncation of g, i.e. m -< supp/ for all m G supp(# — / ) . 

2.2. Differential fields of transseries and cuts. — Given / G T, we define the 
canonical span of / by 

(2) span / - max{e-D(log(m/n)) : m, n G supp / } . 

By convention, span / = 1 if supp / contains less than two elements. We also define 
the ultimate canonical span of / by 

(3) uspan/ = min{span/^t, : t) G supp/}. 

We notice that uspan / ^ 1 if and only if supp / admits no minimal element for 

Example 1. — We have 

span 1 + e~x 
1 - x-1 = e~x 

uspan 1 + 
e~x 

1 - x-1 
= x-1 
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458 J. VAN DER HOEVEN 

Consider a differential subfield T of T and let DGl^. We say that T has span 
t), if span/ ^ t) for all / G T and span/xt) for at least one / G T (notice that we 
do not require t) G e_x). Since T is stable under differentiation, we have v - x-1 as 
soon as T ^ 1. Notice also that we must have T C T-̂ t, if T has span t). 

A transseries / G T \ T is said to be a senaZ cw£ over T, if y G T for every </? < / 
and supp / admits no minimal element for -. In that case, let m G supp / be maximal 
for ^ such that m_1 supp/^m ^ span/. Then Hf = fym and Tf = f-m are called 
the head and the tail of / . We say that / is a normal serial cut if / G T-̂ span̂ , 
which implies in particular that Hf = 0. 

Assuming that T has span t), any serial cut over T is necessarily in T ^ . Con­
versely, any / G T-̂ t, \ T with uspan/xt) is a serial cut over T. We will denote by 
T the set of all / G Td which are either in T or serial cuts over T with uspan/^t). 
Notice that T is again a differential subfield of T -d. 

The above definitions naturally adapt to the complexifications T[i] and T[i] of T 
and differential subfields T of T. If T has span t), then the set T[i] coincides with the 
set of all / G T-^tJi] = Tp]-^ which are either in T[i] or serial cuts over T[i] with 
uspan /xt>. 

2.3. Complements on differential algebra. — Let T be a differential field. We 
denote by T{F} the ring of differential polynomials in F over T and by T(F) its 
quotient field. Given P G T{F} and i G N, we recall that Pi denotes the homogeneous 
part of degree i of P. We will denote by Lp the linear operator in T[d] with LpF = 
P\(F). Assuming that P \ T, we also denote the order of P by rp, the degree of P 
in p(rp) by sp and the total degree of P by tp. Thus, the Ritt rank of P is given 
by the pair (rp,sp). The triple XP = {rp,sp,tp) will be called the complexity of P; 
likewise ranks, complexities are ordered lexicographically. 

As usual, we will denote the initial and separator of P by Ip resp. Sp and set 
Hp = IpSp. Given P, Q G T{P} with P 0 T, Ritt reduction of Q by P provides us 
with a relation 

(4) H%Q = AP + P, 

where A G T{P}[9] is a linear differential operator, a G N and the remainder R G 
T{F} satisfies \R < XP-

Let K be a differential field extension of T. An element / G /C is said to be 
differentially algebraic over T if there exists an annihilator P G T{P} \ T with 
P( / ) = 0. An annihilator P of minimal complexity XP will ^nen De called a minimal 
annihilator and Xf = XP is also called the complexity of / over T. The order 77 = rp 
of such a minimal annihilator P is called the order of / over T. We say that /C is a 
differentially algebraic extension of T if each / G /C is differentially algebraic over T. 

We say that T is differentially closed in /C, if /C \ T contains no elements which 
are differentially algebraic over T.. Given x G N3 (resp. r G N), we say that T is x-
differentially closed (resp. r-differentially closed) in /C if x/ > X (resp. 77 > r) for all 
/ G K\T. We say that T is weakly differentially closed if every P G T{F}\T admits 
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TRANSSERIAL HARDY FIELDS 459 

a root in T. We say that T is weakly r-differentially closed if every P G T{F} \ T of 
order ^ r admits a root in T. 

Given a differential polynomial P G T{F} and <p G T, we define the additive and 
multiplicative conjugates of P by <p: 

P+V(F) = P(F + ^) 
PX„(F) = P(y,F). 

We have P+ip,Pxlfi € T{P} and 

X-P+v XP 
XPXIP = XP 

Ip+(p = Ip,+<p 
IPx<p — IP,X<P 
SP+<P — Sp,+<p 
SPxv — SP,X<P 

We also notice that additive and multiplicative conjugation are compatible with Ritt 
reduction: given ip G T and assuming (4), we have 

H rot p+tp Q+<4> — AP+(p + R+tp 
H Px <p Q+<4> — AP+(p + R+tp1 

Remark 1. — The compatibility of Ritt's reduction theory with additive and multi­
plicative conjugation holds more generally for rings of differential polynomials in a 
finite number of commutative partial derivations (or with a finite dimensional Lie al­
gebra of non-commutative derivations). Similar compatibility results hold for upward 
shiftings or changes of derivations (in the partial case, this requires the rankings to 
be order-preserving). 

In the case when T is a differential subfield of T = MJXJ, we recall that a differential 
polynomial P G T{FU ..., Fk} may also be regarded as a series in R{Fi,. . . , F/JflX]]. 
Similarly, elements P/Q of the fraction field T(Fi, . . . ,Fk) of T{Fi, . . . , Fk} may be 
regarded as series with coefficients in R.(F, ,Fk) Indeed, writing P — Dpdp + Rp 
and Q = DQDQ + i?Q, where Dpdp denotes the dominant term of P, we may expand 

p 
Q 

DP 
DQ 

OP 

vQ 
1 + RP 

DpUp 
1 + RQ 

DQ+9Q 

In the case when P, Q G R[bi;. . . ; b„]|{Fi,..., Fk} for some transbasis <8 = 
{bi,. . . , bn}, then P and P/Q may also be expanded lexicographically with respect 
to bn,... ,bi. 
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460 J. VAN DER HOEVEN 

2.4. Linear differential operators and factorization. — Let T be a differential 
field and consider a linear differential operator L G T[d]^. We will denote the order 
of L by T*L. Given ip G T, we define the multiplicative conjugate LX7p and the twist 
LXib by 

Lxif, = Ьф 
Lté* = Ф-1 Lé 

We notice that Lxp is also obtained by substitution of d + ifi* for d in L. We say that 
L splits over T, if it admits a complete factorization 

(5) L = c(d-tp1)---(d-<pr) 

with c, y1 . . . , tpr € T. In that case, each of the twists LK^ of L also splits: 

Ltsih = c(d + T̂ - <̂ i) • • • (d + ibr - <pr). 

We say that T is r-linearly closed if any linear differential operator of order ^ r splits 
over T. 

Proposition I. — IfT is weakly (r —1)- differentially closed, then T s r-linearly closed. 

Proof. — The proof proceeds by induction over r. For r = 0, we have nothing to 
prove, so assume that r > 0 and let L G T[d] be of order r. Then the differential 
Riccati polynomial RL has order r — 1, so it admits a root <pr G T. Division of L by 
d — <pr in T[d] yields a factorization L = L(d — ipr) where L G T[d] has order r — 1. 
By the induction hypothesis, L splits over T, whence so does L. • 

Proposition!. — Let L G T[#]^ be an operator which splits over T and let A,B G 
T[d] be such that L = AB. Then A and B split over T. 

Proof. — Recall that greatest common divisors and least common multiples exist in 
the ring T[d\. Given a splitting (5), consider the operators 

Ai = lcm(£, (d - (pr+i-i) ---{d- (pr)) 
Ti = gcd(£, (d - (fr+1-i) -"(d- (fr)) 

We have J5 = Ao| — |Ar = AB and 1 = r0| • • • |Tr = B. Moreover, the orders of A* 
and Af+i (resp. I\ and IY+.i) differ at most by one for each i. It follows that A and 
B split over T. • 

Assume now that T is a totally ordered differential field. A monic operator L G 
T[d]^ is said to be an atomic real operator if L has either one of the forms 

L = d-tp, (peT 
L = ( d_ (<^-^ i + ^ t ) ) (d_ (^ + ^i))5 ip^eT 

A real splitting of an operator L € T [d]# over T is a factorization of the form 

(6) L = K1-KS, 
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where each Ki is an atomic real operator. A splitting (5) over T[i] is said to preserve 
realness, if it gives rise to a real splitting (6) for K{ = (d — y>i.) or Ki = (d — (Pij)(d — 
<pij+i) and ¿1 < • • • < is. 

Proposition 3. — Let L G T[d]^ be an operator which splits over T[i]. Then L admits 
a real splitting over T. 

Proof. — Assuming that L # T, we claim that there exists an atomic real right 
factor K G T[d] of L. Consider a splitting (5) over T[i]. If <pr G T, then we may take 
K = d — <pr. Otherwise, we write 

L = c(d-<p1)-'(d-<pr) 

and take K to be the least common multiple of d — <pr and d — (pr in T[i]. Since 
K = K,we indeed have K G T[d]. Since d — ipr\L and d — <pr\L, we also have K\L. In 
particular, proposition 2 implies that K splits over T[i]. Such a splitting is necessarily 
of the form 

K = (d-(tp-i/>i + ̂ ))(d - (ip + Vi)), <P,il> e T, 
whence K is atomic. Having proved our claim, the proposition follows by induction 
over r. Indeed, let L G T[d] be such that LK = L. By proposition 2, L splits over 
T[i]. By the induction hypothesis, L therefore admits a real splitting L = K\ • • • Ks 
over T. But then L = K\ • • • KSK is a real splitting of L. • 

Corollary 1. — An operator L G T[d]# is atomic if and only if L is irreducible over 
T and L splits over T[i]. 

2.5. Factorization at cuts. — Let T be a differential subfield of T of span t). 
Given P G T[i]{F} and / G T[i], we say that P splits over T[i] at / , if LP+f and P 
have the same order r and Lp+f splits over T[i]. 

Lemma 1. — Let T be a differential subfield of T of span t>. Let P G T[i]{F} be 
a minimal annihilator of a differentially algebraic cut f G T[i] over T[i], wfoc/i sp/ite 
overT[i] at f. Then any minimal annihilator Q G T[i](/) {P} off over T[i](f) splits 
over T[i] at f. 

Proof — Since P(f) = 0, Ritt division of P by Q yields 

(7) H%P = AQ 

for some a G N and A G 1~[i]{f){F}[d]. Additive conjugation of (7) yields 

(8) H$+FP+F = AQ+F. 

By the minimality hypothesis for Q, we have ^Q+/-,RQ = SQ(F) # 0 and Hq(J) ^ 0, 
so that val<3+/ = 1 and valHg+/- = 0. Similarly, we have valP+j = 1. Consequently, 
when considering the linear part of the equation (8), we obtain 

HQ+f-,oLP+f- = MLQ+p 
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462 J. VAN DER HOEVEN 

whence £Q+/- divides £p+/- in T (/)[#]• Now Lp+f splits over T[i][d], whence so 

does Lp+-. By proposition 2, we infer that L,Q+jr splits over T[i][c?]. Since SQ(f) ^ 0, 

we also have RLQ+- = TQ and we conclude that Q splits over T[i] at / . • 

Corollary 2. — Let T be a differential subfield of T of span t). Let P G T[i]{F} be 
a minimal annihilator of a differentially algebraic cut f G T[i] over T[i], which splits 
over T[i] at f. Then any minimal annihilator R G T[i](/) {G} o /Re / over T[i](f) 
splits overT[i] at Re / . 

Proof — Applying the lemma to Q = i?/2>-/» we see that £Q+/- splits over T[i]. 
Now Q+f = iJ+Re/,/2, whence LR+Kef/2 and L^Re/ = Lii+Re//2,x2 also split over 
f[i]. • 

Lemma 2. — Let T be a differential subfield ofT of span t), such that T[i] is r-linearly 
closed. Let P G T[i]{F} be a minimal annihilator of a differentially algebraic cut 
f G T[i] over T[i], s^c/i t/ia^ P /ias order r. Assume that Re / 0 T and let S G T{G} 
be a minimal annihilator of Kef over T. Then S splits over T[i] at Re / . 

Proof. — Let R be as in the above corollary, so that R splits over T[i] at Re / . Since 
R has minimal complexity and 5(Re/) = 0, Ritt division of S by R yields 

H%S = AR 

for some a G N and A G TT[i] (/){£?}[#]. Additive conjugation and extraction of the 
linear part yields 

Hs+ Re f,oLs+ Re / = A0LR+Kef, 

so LR+Kef divides Ls+Kef in T[i][9]. Since the separants of R and S don't vanish at 
Re / , we have 

rLR+Re/ = rR = trdeg(T[i](/,Re/):T[i](/)) 

= tr deg(T[i](Re / , Im / ) : T[i]) - tr deg(T[i] (/) : T[i]) 

= tr deg(T(Re / , Im /) : T) - tr deg(T[i] (/) : T[i] ) 

rLs+R.f = rs = trdeg(T(Re/):T) 

= trdeg(T(Re/,Im/) : T ) -

tr deg(T(Re/, Im/) : T(Re/)) 

and 

rs - rR = trdeg(T[i](/) : T[i]) - tr deg(T(Re/, Im/) : T(Re/)) < r. 

Consequently, the quotient of Ls+ Re / and LR+ Re F has order at most r, whence it splits 
over T[i]. It follows that Ls+Kef splits over T[i] and 5 splits over T[i] at Re/ . • 
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2.6. Normalization of linear operators. — Let T be a differential subfield of T 
of span t) »- x. Recall from [26, Section 7.7] that Lh = 0 with L G T[i][d] admits a 
canonical fundamental system of oscillatory transseries solutions E^ = {hi,..., hr} C 
O with log/ii,... ,log/ir G T-^tJi]. We will denote by S}L the set of dominant mono­
mials of h\,... ,hr. The neglection relation on T is extended to O by / ^ 1 if and 
only if / = ftf^*1 + • • • + Upe^ with f;if l,..., f. tifp G T[i]^ and ^ i , . . . , ^p € T. 

We say that L is normal, if we have hi - 0 1 or Re log hi y log t) for each i. In that 
case, any quasi-linear equation of the form 

Lf = g, f**l 

with g G T̂ <t,[i] admits L~xg as its only solution in T-jKtJi]. If L is a first order 
operator of the form L — d — then L is normal if and only if Re ip ^ ct)* for some 
o O o r R e ^ ^ D ^ . In particular, we must have ip)?*! and Re(p ^ t>*. 

Proposition 4. — LetLe T[i][d] \ T[i]. 

a) There exists a A G R s^c/i # that Lx0y is normal. 
b) J/L ¿5 normal and A ^ 0, then Lx0y is normal 

Proof. — Let EL = {fti,..., hr}. For each A G R, the operator Lx0y admits 
/ii/t)A,...,/ir/t)A as solutions, which implies in particular that #LKtjA = b~XfiL- Now 
Relog(/i^/t)A) ^ logt) Re log hi =4 logt) for all i. Choosing A sufficiently large, it 
follows that hi/t>x y^, 1 for all i with Relog(/ii/t)A) ^ logt), so that LKt)x is normal. 
Similarly, if hi ^t, 1 for some i with Relog(/ii/t)A) =̂  logt), then hi y^ t)A for all 
A > 0. • 

Propositions. — Consider a normal operator L G T[i][#], which admits a splitting 

L = (d - ip^-'-id-tpr) 

with ipi,..., (pr G T[i\. Then each d — ipi is a normal operator. 

Proof. — We will call h G T-̂ tJiJe11^0 normal, if d — h^ is normal. Let us first prove 
the following auxiliary result: given <p G T[i] and h G T-^fiJe11^0 such that d — (p 
and h are normal and J) = dh & fid-ip, then (d — ip)h is also normal. If Re log h y log t), 
then 0 ^ (d - <p)h x* h, whence Relog(d - ip)h = Re log h + O(logt)) y logt). In 
the other case, we have h y^ 1. Now if l)t y>, then (9 — yh0, 1, since y >d 1. 
If I)* ~ <£, then J) 0 #0-^ implies 1 £ (̂5-̂ )̂ ,»» whence (p - ht y l / (xlogx • • •). It 
again follows that (d — (p)h ^d h/(x\ogx- • •) ^t, 1. 

Let us now prove the proposition by induction over r. For r = 1, we have nothing 
to do, so assume that r > 1. Since L = (d — ^2) * * * (d — (pr) is normal, the induction 
hypothesis implies that d — (fi is normal for all i ^ 2. Now let /i be the unique element 
in EL \ E£. Since h is normal, (d — (pi) • • • (d — tpr)h is also normal for i = r,..., 2, 
by the auxiliary result. We conclude that d — ipi is normal, since <pi = (Lh)^. • 
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Let L and EL = {fti,..., hr} be as above. The smallest real number v ^ 0 with 
log hi -0 X>~v for all i will be called the growth rate of L, and we denote <TL = v. For 
all a 6 R, we notice that 0\Lxoa = dL. 

Proposition 6. — Let K,L G T[i][#] 6e operators of the same order with 
K = L + 0x>(t>rL<TLL). 

Then f)K=f)L' 
Proof — Given /i G EL, we have 

KKh = L^h + O^LKH), 
since ht xD log/i =̂  X)~°L. In particular, JFTK/I,o -<t» ^ whence 1 G Hk kh and 
Dhe?>K- • 
Proposition 7. — Given a splitting 

L = {d - (p-i) - - {d - ipr) 
with Y1 . . . , (fr G T^op], we have tpi ^x, x>~°L for all i. 

Proof — Assume for contradiction that ifi y^ t>~<TL for some i and choose i maximal 
with this property. Setting 

K = (0-y>i+i)---(0-^r) , 
the transseries 

h = K-1(ef(pi)eT^t>[i]eflpi 
satisfies Lh = 0, as well as log/i x„ (p^ y^ x>~eTL. But such an h cannot be a linear 
combination of the hi with log hi -0 io~<7L. • 

Remark 2. — It can be shown (although this will not be needed in what follows) that 
an operator L G T[i][9] splits over T[i] if and only if there exists an approximation 
L G T[i][d] with L — L ^ t)A which splits over T[i] for every A G R. In particular, 
T[i] is r-linearly closed if and only if T[i] is r-linearly closed over T[i]. 

2.7. Normalization of quasi-linear equations. — Assume now that T is a dif­
ferential subfield of T of span D ?y x. We say that P is normal if Lp is normal of 
order rp and P±\ -0 K)rp(JLpLp. In that case, the equation 

(9) P(f) = 0, f -0 1 
is quasi-linear and it admits a unique solution in T^t,. Indeed, let / G T^D be 
the distinguished solution to (9). By proposition 6, the operator Lp+f is normal. If 
/ G T-^t, were another solution to (9), then df-f would be in hL+f whence / >- 1, 
which is impossible. 

Proposition8. — Let T be a differential subfield ofT of span t>. Let P G T[i]{F} be 
a minimal annihilator of a differentially algebraic cut f G T[i] over T[i]. Then there 
exists a truncation ip < f and A G R such that P+^xo* *5 normal. 
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Proof. — Let P = P+f and v — rj,poj,p. Modulo a multiplicative conjugation by t)a 
for some a ^ 0, we may assume without loss of generality that P x Lp. Modulo an 
additive conjugation by /^0i, we may also assume that / ^d 1. For any A,/i > 0 and 
V? = />0t>" < / , we have 

P+¥, = P+v_/ = P + o0(^P), 

whence 

(10) P+„,xt,A = J W + O0(D2AP) + ON ( V µ ^ P ) . 

Since 5p(/) ^ 0, we have Pi ^ 0. By proposition 4, there exists a A > v for which 
Lp Kt|A is normal. Now take /x = A + v. Denoting N = P+<p>Xt>*j proposition 6 and 
(10) imply that LN is normal with &Ln = v and JV î -0 t^Pi.xD* X \)ULN. • 

We say that P G T[i]{P} is split-normal, if P is normal and Lp can be decomposed 
Lp = L + K such that L splits over T[i] and K -0 x>rL<rLL. In that case, we may 
also decompose P(F) = LF + R(F) for R(F) = P^i(F) + KF with R -«„ x>rL(TLL. If 
L is monic, then we say that P is monic split-normal. Any split-normal equation (9) 
is clearly equivalent to a monic split-normal equation of the same form. 

Proposition 9. — Let T be a differential subfield of T of span t) such that T[i] is r-
linearly closed. Let P G T[i]{F} be a minimal annihilator of a differentially algebraic 
cut f G T[i] of order r over T[i]. Let S G T{F} be a minimal annihilator ofRef and 
assume that rs ^ rp. Then there exists a truncation <p < Re / and A G R such that 
S+<p,xt>x *5 split-normal. 

Proof. — By proposition 8 and modulo a replacement of / by t)_A(/ — cp), we may 
assume without loss of generality that S is normal. By lemma 2, S splits over T[i] at 
Re / . Let c, <pi,..., (ps G T[i] be such that 

Ls+f =c(0-¥>i).. .(0-¥>a). 

Setting v = SO~LSI we notice that Ls = £s+/ + o^t^Ls). Now take 

L = c>0wc(d - <pi&9*») • • • (5 - ^>„oO € T[i][d]. 

Then L = Ls + OQ^LS) and proposition 6 implies that L is normal, with O~L = 

CTLS = °LS+F • Denoting R(F) = 5(F) - LF, we finally have iî -<0 X>S<JLL. • 

3. Transserial Hardy fields 

3.1. Transserial Hardy fields. — Let T = R p J = R p J be the field of grid-
based transseries [26] and G the set of infinitely differentiable germs at infinity. A 
transserial Hardy field is a differential subfield T of T, together with a monomorphism 
p : T —» G of ordered differential R-algebras, such that 

TH1 : For every / G T, we have supp / Ç T. 
TH2 : For every / G T, we have /^ G T. 
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TH3 : There exists an d G Z, such that logm G T + R\ogdx for all m G X П T. 
TH4 : The set % П T is stable under taking real powers. 
TH5 : We have p(log/) = logp(/) for all / G T> with log / G T. 

In what follows, we will always identify T with its image under p, which is necessarily 
a Hardy field in the classical sense. The integer d in TH3 is called the depth of T; 
if logm G T for all m G X П T, then the depth is defined to be +00 . We always have 
d ^ 0, since T is stable under differentiation. If d ^ 00, then / td is exponential for 
all / G T and T contains logd-1 x. If d = 00 and T ^ M, then T contains logfc ж for 
all sufficiently large k. 

Example 2. — The field T = E is clearly a transserial Hardy field. As will follow 
from theorem 2 below, other examples are 

R(x®) = (J R (xai,...,xak) 
ai,...,afc€R 

R(eR*) = (J M(eaix,...,eafea;). 
ai,...,aFC€M 

Remark 3. — Although the axioms TH4 and TH5 are not really necessary, TH4 
allows for the simplification of several proofs, whereas it is natural to enforce TH5. 
Notice that TH5 automatically holds for / G T> with / x 1 since 

p(log/)' = p((log/)') = pif'/f) = P( /) 'M/) = (log/>(/))', 

whence p(log / ) = log p(/) -f с for some с G M. Since both p(log / ) — log /x and 
logp(/) — log/x are infinitesimal in Q, we have с = 0. Consequently, it suffices to 
check TH5 for monomials / G T П % with log / G T. 

Proposition 10. — Let T be a transserial Hardy field with x G T. T/ien t/ie upward 
shift T t o/T carries a natural transserial Hardy field structure with p(f | ) = p(/)oex. 

Proof. — The field T | is stable under differentiation, since / f/= (ж/') T f°r аи 
/ G T . • 

Corollary 3. — IfT has depth d < 00, йеп T |d ¿5 a transserial Hardy field of depth 
0. 

We recall that a transbasis 05 is a finite set of transmonomials {bi, . . . , bn} with 

TBI : bi, . . . , bn У 1 and bi <̂ « bn. 
TB2 : bi = logd_! ж for some d G Z. 
TB3 : log Ьг G Bfbi;...; bi_J for all К г ^ п. 

If d = 0, then 03 is called a p/ane transbasis and M[[bi;...; bnJ is stable under differ­
entiation. The incomplete transbasis theorem for T also holds for transserial Hardy 
fields: 
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Proposition 11. — Let 33 C T be a transbasis and f G T. Then there exists an 
supertransbasis <B C T of 93 with f G M[[93R]]. Moreover, if *8 is plane and f is 
exponential, then 93 may be taken to be plane. 
Proof. — The same proof as for [26, Theorem 4.15] may be used, since all field 
operations, logarithms and truncations used in the proof can be carried out in T. • 

Given a set T of exponential transseries in T, the transrank of T is the minimal 
size of a plane transbasis 95 = {bi, — , bn} with T C R[bi;...; bn]. This notion may 
be extended to allow for differential polynomials P in T (modulo the replacement of 
P by its set of coefficients). 

Remark 4. — The span and ultimate span of / G T are not necessarily in T. Nev­
ertheless, if span / ^ 1 and 03 = {bi,. . . , bn} C T is a transbasis for / , then we do 
have span/x-b^ for some i (and similarly for the ultimate span of / ) . 

3.2. Cuts in transserial Hardy fields. — Let T be a transserial Hardy field. 
Given / G T and / G G, we write / ~ / if there exists a <p G T with 

/ ~T <p ~G /• 
We say that / and / are asymptotically equivalent over T if for each ip G T (or, 
equivalently, for each <p < f), we have 

/ - <P ~ / - y 
We say that / and / are differentially equivalent over T if 

P(f) = 0 & P(f) = 0 
for all P G T{F}. 

Lemma 3. — Let T be a transserial Hardy field and let f G T \ T be differentially 
algebraic over T. Let m G supp / be maximal for )?, such that ip = fym 0 T. Then <p 
is differentially algebraic over T and x<p ^ Xf-

Proof. — Let P G T{F} be a minimal annihilator of / . Modulo upward shifting, we 
may assume without loss of generality that P and / are exponential. Since cp G T, all 
monomials in supp <p are in T, whence there exists a plane transbasis {bi , . . . ,bn}CT 
for P and (p. Modulo subtraction of H^ from / and <p, we may assume without loss 
of generality that Hy = 0. Let k be such that uspan^x-bfc and let b"1 • • • b"n be the 
dominant monomial of ip. Modulo division of / and ip by b^^1 • • • b"n, we may also 
assume that tp is a normal serial cut. But then the equation P(f) = 0 gives rise to 
the equation P^k(<p) = 0 for <p — /-«bfe- The complexity of P^bk is clearly bounded 
by XP = Xf- • 

Lemma 4. — Let T be a transserial Hardy field and 0 G T fl X^. Let f G T-0 and 
f € G be such that f and f are both asymptotically and differentially equivalent over 
7^0. Then f and f are both asymptotically and differentially equivalent over T. 
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Proof. — Given <p £ T, we either have (p >-J 1 and 
f — (p ~T — </? ~g f — ip 

or y < 0 1, in which case 

/ - V? ~T / - V?x*i ~ f- —P-x; i ~ e f — y. 
This proves that / and / are asymptotically equivalent over T. 

As to their differential equivalence, let us first assume that / is differentially tran­
scendent over T^t,. Given R £ T { F } ^ , let us denote 

DR = dp1Q^»ReT^ts. 

We have DR(f) ф 0, DR(f) ф 0 and 
(11) R{f) ~: DR(f)bR 
(12) R(f) ~: DR(f)*n, 

whence R(f) ^ 0 and i?(/) ^ 0. 
Assume now that / is differentially algebraic over T-0 and let P £ T-0 {F} be a 

minimal annihilator. Given Q T {F} Ritt reduction of Q w.r.t. P gives 

HkPQ = AP + R, 

where A £ T {F} [# ] and JR £ T{F} is such that \R < XP- Since \HP < XP and 
Hp £ T-̂ t,, we both have HP(f) / 0 and HP(f) ^ 0, whence 

Q(f) = 
R(f) 

HP {f)k 

Q(f) = 
R(f) 

Hp (f)k 

If R = 0, this clearly implies R(f) = P(/) = 0. Otherwise, DR vanishes neither at / 
nor at / and the relations (11) and (12) again yield R(f) i=- 0 and R(f) ^ 0. • 

Lemma 5. — Let T be a transserial Hardy field and let f G T \T be a differentially 
algebraic cut over T with minimal annihilator P. Let f G Q be a root of P such 
that f and f are asymptotically equivalent over T. Then f and f are differentially 
equivalent over T. 

Proof — Let 0 G T be such that uspan /xt>. Modulo some upward shiftings, we may 
assume without loss of generality that / and P are exponential. Modulo an additive 
conjugation by Hf and a multiplicative conjugation by D/, we may also assume that 
/ is a normal cut. Modulo a division of P by dp and replacing P by P-«0, we may 
finally assume that P G T^{F}. 

Now consider Q G T^{F}^# with XQ < XP- Since Q(f) ^ 0, there exists a (p <3 / 
with / - cp -<t 1 and Q+^^o -<t Q(<p). But then 

Q(f) = Q(<p) + Q+vMf - ¥>) ~ Q(<P) ± °-
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For general Q G T{F}, we use Ritt reduction of Q w.r.t. P and conclude in a similar 
way as in the proof of lemma 4. • 

3.3. Elementary extensions 
Lemma6. — Let f G T\ T and f G Q\T be such that 

i. f is a serial cut over T. 
ii. / and f are asymptotically equivalent over T. 
iii. / and f are differentially equivalent over T. 
Then T(f) carries the structure of a transserial Hardy field for the unique differential 
morphism p : T(f) —> Q over T with p(f) = /. 

Proof — Modulo upward shifting, an additive conjugation by Hf and a multiplicative 
conjugation by ?)/, we may assume without loss of generality that / is an exponential 
normal serial cut. Let t) G T be such that uspan/xt). We have to show that T(f) 
is closed under truncation and that P(/) ~ P(/) for all P G T{F} with P(f) ^ 0 
(this implies in particular that p is increasing). Notice that supp/ C T implies 
T ( / > n i = T n i 

Truncation closedness. Given R G T(F), let us prove by induction over the tran-
srank n of {R, / } that P(f)y G T(f). So let {bi,. . . , bn} be a plane transbasis for R 
and / . Assume first that bn »*- t). Writing 

R = 
a E R 

/labSGR|[b1;...;bn-i](F>[bn], 

the sum 
R > bn = 

a>0 
Ra ban 

is finite, whence 

R(f)ytn = Rytn{f) = 
a>0 

Ra(f)K € T(f). 

By the induction hypothesis, we also have Ro(f)y G T(f) and R(f)y G T(f). 
If bn^t), then 

R(f)y = R(<p)y 
for a sufficiently large truncation tp <t / , whence R(f)y G T. 

Preservation of dominant terms. Given P G T{F} with P(f) ^ 0, let us prove 
by induction over the transrank n of {P, / } that P( /) ~ P(/)- Let {bi,. . . , bn} be 
a plane transbasis for P and / and assume first that t> H< bn. Since P(/) ^ 0, there 
exists a maximal a with Pa(f) ^ 0, when considering P = X)a€R ̂ a^n as a series m 
bn. But then 

P(f) ~ P«( / )^ ~ Pa(/>S ~ P(/), 
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by the induction hypothesis. If bnxt), then there exists a n a G l such that, for all 
sufficiently large truncations ip <\ / , the Taylor series expansion of P(tp + (/ — </?)) 
yields 

P(f) = % ) + 0 ( ( ( / - ^ « ) 
P(f) = P(v) + O0((f - y)ba). 

Taking ip < f such that (/ — </?)t)a -<d P(/) , we obtain 

P(f) ~ P(v) ~ P(/)-
This completes the proof. • 

Theorem 1. — Let T be a transserial Hardy field. Then its real closure Trcl admits 
a unique transserial Hardy field structure which extends the one of T. 

Proof. — Assume that Trcl ^ T and choose / E Trcl \ T of minimal complexity. By 
lemma 3, we may assume without loss of generality that / is a serial cut. Consider 
the monic minimal polynomial P E T[F] of / . Since P'{f) ^ 0, we have 

deg^^P+Y, = 1 
for a sufficiently large truncation (p < / of / (we refer to [26, Section 8.3] for a 
definition of the Newton degrees d e g ^ P). But then 

(13) P+(p{g) = 0, g = f - ip 
admits unique solutions g and g in T resp. Q, by the implicit function theorem. It 
follows in particular that / = cp + g. Let / = (p + g and consider v with <p ^ ip < /. 
Then 

P( / ) -P( t f ) - P+^, i ( / -^) 
P(f) - P(W) ~ PWM ( / -< /0 

Since P(/) = P(/) = 0, we obtain / — ^ ~ / —whence / and / are asymptotically 
equivalent over T. By lemmas 5 and 6, it follows that T(f) carries a transserial Hardy 
field structure which extends the one on T. Since (13) has a unique solution g in <?, 
this structure is unique. We conclude by Zorn's lemma. • 

3.4. Exponential and logarithmic extensions 
Theorem 2. — Let T be a transserial Hardy field and let tp E be such that e^ ^ T. 
Then the set T(eR(p) carries the structure of a transserial Hardy field for the unique 
differential morphism p : T(eR<p) -> Q over T with p(eXip) = exp^ for all A E R. 

Proof — Each element in / = T(eR<0 is of the form / = P(eAl^,...,eAfc*) for R E 
T(Fi , . . . , Fk) and Q-linearly independent Ai,. . . , Xk E R. Given R E T(FU..., Fk), 
let {bi, . . . , bn\ be a transbasis for R. We may write 

e^ = e^b^ . - -b^ 
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with bi-i -« ey -«< hi (or the obvious adaptations if i = 1 or i = n + 1). Modulo the 
substitution of (p by cti log b* + • • • + an log bn + <p, we may assume without loss of 
generality that a* = • • • = otn = 0. 

If bn -« e^, then we may regard / = X^ER //IEMV? 35 a convergent grid-based series 
in e^ with coefficients in T n Rflbi;...; bn]]. In particular, 

fx = 
¿1 Sign (f>0 

fµ eµy + /o ,v€T ( e^ ) . 

Furthermore, if / admits v as its dominant exponent in e^, then / ~ fv^uip holds 
both in T and in Q. 

If e^ -« bn, then we may consider i? as a series 

ReS:= (TnR[bi; . . . ; bi-ilK^i,..., Ffc)[bi;...;bB] 

in bi,..., bn. Since T is closed under truncation, both Ryb. and R~b. lie in <S, whence 

fy = Rybi (eA^,...,eAfc*) + iJX6< (eAl*...., e^ )> . € T(eRv5), 

by what precedes. Similarly, if RVi,...,Vn b^ • • • b̂ n is the dominant term of R as a series 
in 6«,..., bn and ce^ is the dominant term of R^^...^n(eXl(p,... ,eAfcV?) as a series in 
e*3 (with ceTn R[bi;. . . ; bi_i]|), then / ~ ce^b?* •'• • V£ holds both in T and in Q. 

This shows that T(eRlp) is truncation closed and that the extension of p to T(eR(p) 
is increasing. We also have T{eRip) n I = ( T n X)eR*\ In other words, T(eR<p) is a 
transserial Hardy field. 

Theorem 3. — Let T be a transserial Hardy field of finite depth d < oo. Then 
T((logdx)R) carries the structure of a transserial Hardy field for the unique differ­
ential morphism p : T((\ogdx)R) —• Q over T with p((logdx)x) = (\ogdx)x for all 
A G R. 

Proof — The proof is similar to the proof of theorem 2, when replacing e^ by logj x. 
• 

3.5. Complex transserial Hardy fields. — Let T be a transserial Hardy field. 
Asymptotic and differential equivalence over T[i] are defined in a similar way as 
over T. 

Proposition 12. — Let T be a transserial Hardy field. Let / G T[i] be a serial cut over 
T[i] and f G G[i]- Then f and f are asymptotically equivalent over T[i] if and only if 
Re / and Re / as well as Im / and Im / are asymptotically equivalent over T. 

Proof. — Assume that / and / are asymptotically equivalent over T[i] and let (p < 
Re / . Consider ip = (Im f) < Ref - y^Im f. We have cp + ipi < / , so that f — (p — ipi ~ 
f — ip — ifji. Moreover, / — <p — x Re / — <p, whence Re / — ~ Re / — <p and Re / ~ 
Re/ . The relation Im / ~ Im / is proved similarly. Inversely, assume that Re / and 
Re / as well as Im / and Im / are asymptotically equivalent over T. Given cp < / , we 
have Re <p, Im (p G T, whence there exist g,h G T with Re / — Re (p ~ g ~ Re / — Re ip 
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and Im / — Im ip ~ h ~ Im / — Im <p. It follows that / — ip~g + hi ~ f — ip, whence 
/ ~ /• • 

Proposition 13. — Let T be a transserial Hardy field, f G T and f G G- Then f and 
f are differentially equivalent over T[i] if and only if they are differentially equivalent 
over T. 

Proof. — Differential equivalence over T[i] clearly implies differential equivalence over 
T. Assuming that / and / are differentially equivalent over T, we also have 

P(f) = 0 (ReP)(/) = 0A(ImP)( / )=0 

^ (ReP)(/) = 0 A (Im P)(/) = 0 

O P(/) = 0 

for every P G T[i]{P}. • 

Remark 5. — Given / G T and / G G, it can happen that / and / are differentially 
equivalent over T[i], without Re / and Re / being differentially equivalent over T. 
This is for instance the case for T = R(#R), / = ex and / = ie*. Indeed, the 
differential ideals which annihilate / resp. / are both F' — F. 

Most results from the previous sections generalize to the complex setting in a 
straightforward way. In particular, lemmas 3, 4 and 5 also hold over T[i]. However, the 
fundamental extension lemma 6 admits no direct analogue: when taking / G T[i] \T[i] 
and / G G||i||\ T[i] such that the complexified conditions i, ii and Hi hold, we cannot 
necessarily give T(Re /) the structure of a transserial Hardy field. This explains why 
some results such as lemmas 2 and 9 have to be proved over T instead of T[i]. Of 
course, theorem 1 does imply the following: 

Theorem 4. — Let T be a transserial Hardy field. Then there exists a unique algebraic 
transserial Hardy field extension Trcl of T such that TTcl [i] is algebraically closed. 

4. Analytic resolution of differential equations 

Recall that G stands for the differential algebra of infinitely differentiable germs of 
real functions at +00 . Given XQ G R, we will denote by GXo the differential subalgebra 
of infinitely differentiable functions on [XQ, 00). We define a norm on G^0 = {/ G GXQ '• 
f 4 1} by 

||/||X0 = SUp 1/(35)1 
X^Xq 

Given r G N, we also denote Gxo;r = if ^ £x0 : /»* • f(r)• > 1} and define a norm on 
Gi0;r by 

||/||x0;r = max{||/||X0>...,||/W||X0}. 
Notice that 

ll/ffll-oir < 2l/||xoir||<7||x0;r. 
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An operator K : QXo —• QXQ (resp. K : QXQ —• &Xo;r) is said to be continuous if there 
exists an M G R with ||X/|U0 ^ W I U 0 (resp. \\kf\\Xo;r ^ M\\f\\XQ) for all feGXQ. 
The smallest such M is called the norm of K and denoted by |K||xo (resp- |||K||xo;r)-
The above definitions generalize in an obvious way to the complexifications Q^n fil and 
Q xo;r [i]. 

4.1. Continuous right-inverses of first order operators. — Let T be a transse­
rial Hardy field of span 0 >t ex. Consider a normal operator d — (p with G T[i] and 
let a?o be sufficiently large such that Retp does not change sign on [a?o, oo). We define 
a primitive $ G £ of ip by 

9(x) = loo <P(t)d-t ^ <P *s integrable at oo 
Jx <p(t)dt otherwise 

Decomposing $ = 3ft + 9i, we are either in one of the following two cases: 
1. The repulsive case when e9* ^0 1. 
2. The attractive case when both e9* -<t, 1 and eR t>. 

Notice that the hypothesis t) >t ex implies 91' = Re</? ^ t)+ ^ 1. 

Proposition 14. — The operator J = (d — <^)^01, defined by 

(14) (J/Xx) = 
e (̂x) fxoo e *№f(t)dt (repulsive case) 
e*(x) J** e-*W/(*)dt (attractive case) 

is a continuous right-inverse of L = d — ip on Q^[i], with 

(15) HÜHL < 
1 

Reip XQ 

Proof. — In the repulsive case, the change of variables $l(t) = u yields 

(Jf)(x) = e*<*> 
R(x) 

oo 

e_u_ö(̂ inv(u))i f (Rinv (u)) 
R' (Rinv (u)) du. 

It follows that 

\(Jf)(x)\ < e*<*> 
R (x) 

CX) 
e-"ll/IU 

1 
ft' a; 

d« = H/llx 
1 

R X 
for all x ^ £o, whence (15). In the attractive case, the change of variables — 5ft(£) = w 
leads in a similar way to the bound 

\(Jf)(x)\ < e"<*> 
-»(a?) 

-»(a?0) 
e"||/||xo 

1 
ft' 

reo 
du 

= [l_e«<*>-*(*o)] mxo 1 
ft' xo 

< ll/llxo 
1 

Si' 
x0 
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for all x ^ xo, using the monotonicity of 5ft. Again, we have (15). • 

Corollary 4. — In the attractive case, the operator 

J\ '• F 1—• (JF)(X) + -^*(X)||/||XO 

25 a continuous right-inverse of L on G^[i], for any A G C. 

4.2. Continuous right-inverses of higher order operators. — Let T be a 
transserial Hardy field of span d &z ex. A monic operator L G T[i][d] is said to be 
split-normal, if it is normal and if it admits a splitting 

(16) L = (d-y>i). . .(0-y>r) 
with ipi,..., ipr G T[i]. In that case, proposition 5 implies that each d — cpi is a normal 
first order operator. For a sufficiently large #o, it follows that L admits a continuous 
"factorwise" right-inverse JR - J1 on £/[i]^, where JI = (d — <PI)XO- We have 

IĤ r * * ' «A|||a:o ^ lll̂ r \\\XO * * * HI JL \\\XO • 

Proposition 15. — \yvJr - J1 : GX0[i] —* £xo;r[i] *s a continuous operator for every 
V > rOL. 

Proof. — Given / G £^[i], the the first r derivatives of (x>v Jr • • • Ji)f satisfy 

[(t>"Jr...Ji)/]W = 
R 

J=R — I 
Ci,j (bv Jj..........J1) f, 

with 

Cn.r = 1 

Ci+ifJ- = C^ + WCij + (pjCij + 
1 

wj + 1 ,ct,J+l-

By proposition 7 and induction over 2, we have Cij =4$ t) 1<TL for all z, j . Since z/ > rax, 
it follows that 

(17) | | № V J r - J l ) f]W\\x0 < Ci\\f\\X0, 
for all f E G* [i] and z, where 

Ci = 
R 

J—R—1 
H&^jlUo III JJ IIUo • • • III «A IIUo • 

We conclude that 
\\\*>uJr • • * «JillUojr ^ max{C0,...,Cr}. • 

Proposition 16. — If L G T[d] and the splitting (16) preserves realness, then Jr-J\ 
preserves realness in the sense that it maps GXQ into itself. 
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Proof. — It clearly suffices to prove the proposition for an atomic real operator L. If 
L has order 1, then the result is clear. Otherwise, we have 

L = (0 - (a - bi + tf))(d - (a + bi)) 

for certain a, b G T. In particular, we are in the same case (attractive or repulsive) 
for both factors of L. Setting cp = a + bi, let $ = 5ft + 9?i be as in the previous section. 
Consider / G Gx0 and 9 = JiJif- In the repulsive case, we have 

g(x) = b(x)e*W 
X 

XQ 

2iO(t) 
b(t) 

a 

XQ 
e -$(u) f(u)dudt. 

In particular, we have g(xo) = g'{xo) = 0, whence g G Q^0, since g satisfies the 
differential equation Lg = f of order 2 with real coefficients. In the attractive case, 
we have 

g(x) = b(x)e 0 (x) X 

oo 

e2i3(t) 
b(t) 

x 

oo 
e-*(«) /(^dtxdt, 

so that g,g' ^ 1- Since Lg = Lg = / , the difference # — # satisfies L(# — g) = 0. 
Now 0 is the only solution with h =̂ 0 1 to the equation Lft, = 0. This proves that 
9 = 9- • 

4.3. The fixed point theorem. — Let T be a transserial Hardy field of span 
to &z ex and consider a monic split-normal quasi-linear equation 

(18) Lf = P(f), / X i , 
where L G T[i][d] has order r and P G T[i]{F} has degree d. Of course, we understand 
that L is a monic split-normal operator with P -<t \>r<7L. We will denote by vp > TCTL 
the valuation of P in t) (i.e. P x0 t>Vp for P ^ 0 and v0 = oo). We will show how to 
construct a solution to (18) using the fixed-point technique. 

Proposition 17. — Given v with V<JL < v < vp, let JR,K*» • • • JI,KX>u be a continuous 
factorwise right-inverse of L^u beyond XQ and consider the operator 

(19) E : f — Ur...jl) {P(f)) 

on Gx0-r- Then there exists a constant CXo with 

(20) ||S(/ + 5) - S(/)|Uo;r < CX0(1 + • • • + ||/||XoiP)(||«||x0;r + • • • + WCr), 

for all f,6 e g*.x0r. 

Proof. — Consider the Taylor series expansion 

P(f + S) = 
I 

p№ (/)£(*) 

= 
i j 

p (i) i 
f (i) d(i) 
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Since P^ -<Q K>U for all i and j , we may define AXQ by 

(21) Ax0 — 
i,3 

a -b p 3 
(i) 

XQ 

and obtain 

\\\>-"(P(f + 5)- P(/))||xo < AX0(1 + ••• + ||/||Xo.r)(|W|*oiP + • • • + ||*||Xo;P). 

On the other hand, for each g € QXo with g 0,/, we have 

ll(Jr"-^)(ff)||*0!r = ll(f/Jr,K«.---Jl,K00(0~l'ff)IUo;r < BXQ\\x>~vg\\Xo, 

where 

(22) BXQ = Wit)" JriKX>" ' ' ' Jl,Kt>u |||xo;r 

Consequently, the proposition holds for CXQ = AXoBXQ. • 

Theorem 5. — Let (18) be a monic split-normal equation and let v be such that ro~L < 
v < vp. Then for any sufficiently large x$, there exists a continuous factorwise right-
inverse JTiKx>v ''' J\,*x>v of LKQV, such that the operator (19) satisfies 

(23) ||S(/ + *)-S(/)| |Xo;r< 
1 

2 
ll*IUo;r 

for all 

f,SeB(çx0*.r,1/2\) = {fe é£oîp : ||/|Uo;P ^ \ } . 

Moreover, taking XQ such that ||Po||x0;r ^ \, the sequence S^n (̂0) tends to a unique 
fixed point f G &(GXo;r, \) for the operator S. 

Proof — Since X>~VP^ -< 1 for all i, j , the number AXQ from (21) tends to 0 for 
#o —• oo. When constructing J\^x>u»• • • > Jr,ixt>u using proposition 14, the number 
BXQ from (22) decreases as a function of XQ. Taking xo sufficiently large so that 
CXQ = AXQBXQ < | , we obtain (23). By induction over n, it follows that 

||Sn(())_sn-l(())|Uo;r ^ 1 
2n+l 

l|5n(0)|Uo;r ^ 1 
2 -

1 
2n+l 

Now let GXQ-r be the space of r times continuously differentiable functions / on [x0, oo), 
such that / , . . . , f ( r ) are bounded. This space is complete, whence Sn(0) converges 
to a limit / G B(G^Q.r, §). Since this limit satisfies the equation (18), the function / 
is actually infinitely differentiable, i.e. / G B(GXQ.r, |). • 
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4.4. Asymptotic analysis. — With the notations from the previous section, as­
sume now that T[i] is (1,1, l)-differentially closed in T[i]-«<t,, i.e. any solution / G 
T[i]-«<d to an equation (d — (p)f = g with <p,g G T[i] is already in T[i]. Each Ji 
is the right-inverse of an operator d — <fi with <pi G T[i]. Now d — (fi also admits 
a formal distinguished right-inverse J{. Consequently, the operator S also admits a 
formal counterpart 

E : f — (Jr --- J1)(P(f)). 
For each n G N, we have 

5n+1(0)-£n(0) ^ Hn(0) 

so the sequence Sn(0) also admits a formal limit / in T[i]. In order to show that the 
fixed point / from proposition 5 and / are asymptotically equivalent over T[i], we need 
some further notations. Given / G G^[I] and / G T[i], let us write / « / if / - / -< t>R, 
i.e. / - / -< t>a for all A G R. We also write / «r / if / « / , . . . , /(r) ~ /(r). 

Proposition 18. — For f, g G £^[i],f / , 5 G T[i] and r G N, we have 

f ~r f /\g~r g => f + g~rf + g 
f ~r f h g ~r g => fg~rfg 

f ~r+l / / ' ~r / ' 

Proof. — Trivial. • 

Proposition 19. — For f G [i] Gf G T[i] and r G N uwtt / , / -<d X)vwe have 

f ~r / =̂  Jf/ ~r+l Jif-

Proof — Let us first show that 

(24) / « 0 => JJ « ! 0. 

Given a > v with / =<; oa, we have J^KD" (&_A/) ^ 1> whence J^/ ^ t)a. Moreover, 

(25) (•*/)' = VfV + v W ) , 
whence / ^ t>a (J;/)' =̂  t>a+/? for some fixed /?. This proves (24). More generally, 
r additional applications of (25) yield 

/ ~r 0 — Jif «r + 1 0. 

Now assume that / «r / and write 

J i / - J4/ = Mf - f) + (Ji - Ji)(f). 

By what precedes, we have Ji(f — f) ~r+i 0. On the other hand, 

(Ji - Ji)(J) = <** Vi 

for some c G C. Since d — <fi is normal, we either have e^ <Pi -< t>R (in which case 
(e/^jW ^ t)M for all i G N) or c = 0. In both cases, we get (J* - Ji){f) «r+i 0, so 
that J i / ~r+i Ji/- • 
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Theorem 6. — Let T be a transserial Hardy field of span 0 >t ex such that T[i] is 
(1,1,1)-differentially closed in T^. Consider a monic split-normal quasi-linear equa­
tion (18) without solutions in T. Then there exist solutions f G G[I] and f G T[i] to 
(18), swc/i £/ia£ / and f are asymptotically equivalent over T[i]. 

Proof — With the above notations, let / and / be the limits in G[I] resp. T[i] of the 
sequences Sn(0) resp. Hn(0). Given g G T[i], there exists an n with 

En+1(0)-H"(0) ^0 g. 

At that point, we have 

/ - g ~ En (0) - g « Sn (0) - g ~ / - <? 

In other words, / and / are asymptotically equivalent over T[i]. • 

Theorem 7. — Let T be a transserial Hardy field of span t) >t: ex • Consider a monic 
split-normal quasi-linear equation (18) without solutions in T such that L and P have 
coefficients in T. Assume that one of the following conditions holds: 

a) T is (1,1,1)-differentially closed in T-̂ d and = rp = 1. 
b) T[i] 25 (1,1,1)-differentially closed in Tp]-^. 

TTien £/iere exist solutions f G and / G T to (18), si/c/i £/&a£ / and / are asymptot­
ically equivalent over T. 

Proof — In view of propositions 3 and 16, we may assume that Jr.....J1 and S 
preserve realness in all results from sections 4.3 and 4.4. In particular, the solutions 
/ and / in the conclusion of theorem 6 are both real. • 

5. Differentially algebraic Hardy fields 

5.1. First order extensions 

Lemma 7. — Let T be a transserial Hardy field of span X> ex. Let L = d — ip G T[d] 
be a normal operator. Let f G T* and g G T* be such that f is transcendental over 
T and Lf = g. Then there exists an f G G^ with Lf = g, such that f and f are both 
differentially and asymptotically equivalent over T. 

Proof. — With the notations of section 4.1, let / = Jg. Given a truncation I/J < /, 
we claim that 

f - i> J(g - (rp'- VrP)). 

Indeed, consider 
S = ip - J(i/jf - <p*l>) G Re*. 

In the attractive case, i\) ev implies 5 = 0. In the repulsive case, we have e^ -<* 1 
and again 5 « 0. By proposition 19, we also have 

/ - i\) = J(g - i)' + (pip) « J(g - ip' + (pip). 
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Since ip' — (pip ^ g, it follows that / - xp ~ f — ip, whence / and / are asymptotically 
equivalent over T. Furthermore, LF — g is a minimal annihilator of / over T, since 
/ is transcendental over T. Lemma 5 therefore implies that / and / are differentially 
equivalent over T. • 

Theorem 8. — Let T be a transserial Hardy field. Let Tfo DT be the smallest differ­
ential subfield ofT, such that for any P G Tfo{F}^ with rp < 1 and f G T we have 
P{f) = 0 => f G Tfo. Then the transserial Hardy field structure ofT can be extended 
to Tfo. 

Proof. — By theorems 1, 2 and 3, we may assume that T is closed under the resolution 
of real algebraic equations, exponentiation and logarithm. Assume that Tfo ^ T and 
let P G T{F}^ be of minimal complexity XP — (1, s, t), such that P(f) = 0 for some 
/ G Tfo. Without loss of generality, we may make the following assumptions: 

• / and P are exponential (modulo upward shifting). 
• / is a serial cut (by lemma 3). 
• / is a normal cut (modulo additive and multiplicative conjugations by Hf resp. 

*/)• 
• P G Tfil^tjiF}, where t) E T f l l satisfies uspan/xu (modulo replacing P by 

P - 0). 
• P is monic split-normal (modulo proposition 9, additive and multiplicative con­

jugations, and division by Dp). 
By Zorn's lemma, it suffices to show that T(f) carries the structure of a transserial 
Hardy field, which extends the structure of T. 

If s = t = 1, then lemma 7 implies the existence of an f G g* such that / and 
/ are both asymptotically and differentially equivalent over 7^0. Hence, the result 
follows from lemmas 4 and 6. 

If t > 1, then T and 7^D are (1,1,1)-differentially closed in T resp. T ^ 0 . Now 
t) ex, since / is exponential. Therefore, theorem 7 provides us with an / G G^ with 
P(f) — 0, such that / and / are asymptotically equivalent over T^. We conclude 
by lemmas 5, 4 and 6. • 

5.2. Higher order extensions 

Lemma 8. — Let T be a transserial Hardy field of span tJ ex. Let L = d — if G 
T[i][d] be a normal operator. Let f G T[i]^ and g G T[i]^ be such that Re / has order 
2 over T and Lf = g. Then there exists an f G £^[i] with Lf = g, such that Re / 
and Re / are both differentially and asymptotically equivalent over T. 

Proof — The fact that / and / are asymptotically equivalent over T is proved in a 
similar way as for lemma 7. It follows in particular that Re / and Re / are asymptot­
ically equivalent. Since lcm(L, L) annihilates / , / , / and / , it also annihilates both 
Re / and Re/ . The fact that Re / has complexity (2,1,1) over T now guarantees 
that lcm(L, L) is a minimal annihilator of Re/ . We conclude by lemma 5. • 
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Theorem 9. — Let T be a transserial Hardy field. Let Tdalg D T be the smallest 
differential subfield of T, such that for any P G Tdalg{F}^ and f G T we have 
P(f) = 0 / G Tdalg. Then the transserial Hardy field structure of T can be 
extended to Tdalg. 

Proof. — By theorems 2, 3 and 8, we may assume that T is closed under exponenti­
ation, logarithm and the resolution of first order differential equations. Assume that 
j-daig ^ j and let p e T[I]{p}* be of minimal complexity \P = (r,s,t), such that 
P(f) = 0 for some / G Tdalg[i] with Re / g T. Let Q G T{F} be a minimal annihi­
lator of Re / and notice that rç ^ rp, since Re / ^ T. Without loss of generality, we 
may make the following assumptions: 

• /, P and Q are exponential (modulo upward shifting). 
• / is a serial cut (by the complexified version of lemma 3). 
• / is a normal cut (modulo additive and multiplicative conjugations by Hf resp. 

9/ . 
• P G TpJ^tjlF} and Q G T^t>{F}, where t) G TDX satisfies uspan/^D (modulo 

the replacement of P and Q by P^ resp. <2-<<t)). 
• Q is monic split-normal (modulo proposition 9, additive and multiplicative con­

jugations, and division by DQ). 
By Zorn's lemma, it now suffices to show that T(Ref) carries the structure of a 
transserial Hardy field, which extends the structure of T. 

If r = s = t = 1, then lemma 8 and the fact that T is 1-differentially closed imply 
the existence of an / G G^[I] such that Re / and Re / are both asymptotically and 
differentially equivalent over T^. The result follows by lemmas 4 and 6. 

IfXP7^(l>l5l)) then T[i] and T[i]-«<0 are (1,1,1)-differentially closed in T[i] resp. 
Tfij-̂ t,. Now t> ex, since / is exponential. Therefore, theorem 7 provides us with 
a g G g* with Q(g) = 0, such that Re / and g are asymptotically equivalent over 
T^t,. We conclude by lemmas 5, 4 and 6. • 

Corollary 5. — There exists a transserial Hardy field T, such that for any P G T{F} 
and f,g G T with f < g and P(f)P(g) < 0, there exists a h G T with f < h < g and 
P(H) = 0. 

Proof — Take T = E(xR)dalg and endow it with a transserial Hardy field structure. 
Let P G T{F} and f,g G T with / < g be such that P{f)P(g) < 0. By [26, Theorem 
9.33], there exists a h G T with / < h < g and P(h) = 0. But P(h) = 0 implies 
HET. • 

Corollary 6. — There exists a transserial Hardy field T, such that T[I] is weakly dif­
ferentially closed. 

Proof — Take T = Rdalg. By a straightforward adaptation of [26, Chapter 8] (see 
also [24, theorem 9.3]), it can be shown that any differential equation P(f) = 0 of 
degree d with P G T[i]{F} admits d distinguished solutions in T[i] when counting 
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with multiplicities. Let / be such a solution. Since P(f) = P(f) = 0, both Re / and 
Im / are differentially algebraic over T, whence / G T[i]. 

Corollary 7. — There exists a differentially Henselian transserial Hardy field T, i.e., 
such that any quasi-linear differential equation over T admits a solution in T. 

5.3. Differential Newton polynomials for Hardy fields. — Let H be a differ­
entially algebraic Hardy field extension of a transserial Hardy field T. 

Proposition 20. — Given e EH^, there exists an I G N with e -< (logz x)~x. 

Proof. — The functional inverse |e_1|inv of |E-1|satisfies an algebraic differential 
equation Р(\е~1\шу) = 0 over T. Let P ^ f ( i ) be the leading term of P for its loga­
rithmic decomposition. As in [26, Section 8.1.4]. there exists an / G N with P(f) ~ 
P(i)f{i) for all / ^ expz x . It follows that |e_1|inv -< expz x and e -< (log; ж)"1. • 

Given a differential polynomial P G H{F}^, we define its dominant part to be 
the unique monic Dp £ R{F} such that P = £p(Dp + Ep) for some £p G H and 
Ep G H{F}^. Here Dp is said to be monic if its leading coefficient w.r.t. F^rp\..., F 
equals 1. 

Theorem 10. — Given P G H{F}*, there exists a polynomial NP G M[F](F')N with 

DPh = NP 

Epb = oex(l) 

for all sufficiently large I G N. 

Proof. — As in the proof of [26, Theorem 8.6], we have 

wt Dp ^ wv Dp ^ wt Dpi ^ wvDpj ^ • • • 

so we may assume without loss of generality that wt Dp^ = wv Dp^i = w is constant 
for all i G N. Now 

P Î = ePi(Dpi + Epi) 

= Î (£>P î+tfp Î) 
= ^PÎ(e-™*L>pT+£pî), 

whence 

(26) /ят = ip î e~wx 
(27) DpT = DDpî 
(28) Epi = Epîewx. 

Indeed, we must have 

Ep Î e"* = (EP[<w] T +Epl>w] î)ew* -< 1, 
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because Ep[<w] | ewx )? 1 would imply wtDP^ < w. Applying [26, Lemma 8.5] 
to (27), and similarly for P |, P | | , . . . , we get 

DPh = DPeR[F](F')w 

for all I G N. 
By proposition 20 and (28), we have EP^V] -<\oglx 1 and EP^l+1^v] -<ex 1 for 

some I G N. Modulo upward shiftings, we may thus assume without loss of generality 
that j&p[̂ v] -<ex 1. More generally, assume that EP^>V^ -<ex 1 for some v < w. 
By (28), this implies EP^t^>v^ -<ex 1 for all I G N and 

#PT,M = {Ep,[v] T[u;] +£p,[>v] T[u;])eWX 

(29) = e ^ - ^ ^ M t + O e - a ) ) , 

for all (jj of weight v. We claim that there exists an / G N with 

(30) EPi[v] -<[(logr1x)T-v-

Assume the contrary and consider a coefficient EP^] of weight v with 

xp = w~tfEpM ^ {log^x)' 

for all I G N. Without loss of generality, we may assume that xp and / xp are in H. 
Then proposition 20 implies / xp )? 1 and even J xp y 1 (by integrating from +oo when 
possible). Again by proposition 20, it follows that f xp >- log; x and xp >- (log; x)' for 
some Z G N. But then (29) yields 

EPhM = [(loglx)'}V-W h (EPM U +Oex(l)) >- 1, 

which contradicts the fact that EP^l -< 1. The relations (30) and (29) imply the 
existence of an Z G N with Ep̂ 1+1 -<ex 1. By induction over v = w, w — 1, . . . , 0 and 
modulo upward shiftings, we may thus ensure that EP^V] -<ex 1 for all v ^ xv. • 

The polynomial NP in theorem 10 is called the differential Newton polynomial of 
P. The generalization of this concept to H allows us to mimic a lot of the theory from 
[26, chapter 8] in H. In what follows, we will mainly need a few more definitions. 
The Newton degree of an equation 

(31) P(f) = 0, f <t p 

with P G H{F} and ip G 1~C^ is defined by d e g ^ P = degNPx(p. Setting 

7 = 
1 

x log x log2 x — • 

we also define 
deg^ P = mindeg^ P. 

We say that / -< (p is a solution to (31) modulo o(xp)ixp G T U {7} if d e g ^ P+/ > 0. 
We say that H is differentially Henselian, if every quasi-linear equation over H admits 
a solution. Given a solution / to (31), we say that / has algebraic type if Npxf is 
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not homogeneous and differential type in the other case. The following proposition is 
proved along the same lines as [26, proposition 8.16]: 

Proposition 21. — Let f be a solution to (31) of differential type and let i be the degree 
of Npxf. Then / t is a solution modulo 0(7) of Rp^ 

Remark 6. — In this section, we assumed that H is a differentially algebraic Hardy 
field extension of a transserial Hardy field T. We expect that the theory can be 
adapted to even more general H-field. This is one of the objectives of a current 
collaboration with Lou van den Dries and Matthias Aschenbrenner [4]. 

5.4. Transserial models of differentially algebraic Hardy fields 
Theorem 11. — Let T be a transserial Hardy field and H a differentially algebraic 
Hardy field extension of T, such that Ti is differentially Henselian and stable under 
exponentiation. Then there exists a transserial Hardy field structure on Ti which 
extends the structure on T. 

Proof. — By theorems 1, 2 and 8, we may assume that T is closed under the resolution 
of real algebraic equations, exponentiation and integration. Assume that H # T and 
choose P G T{F} of minimal complexity \P — (R^S^), such that either 

CI : P(f) = 0 for some / G H. 
C2 : P(f) = 0 modulo 0(11x7) f°r some / e W , m G Tfl X and P admits no roots 

in T modulo o(m7). Moreover, T is xp-differentially closed in H. 
Modulo upward shifting, we may assume without loss of generality that P is expo­
nential. In view of Zorn's lemma, it suffices to show that there exists a transserial 
Hardy field structure on T(f) which extends the structure on T. 

Let $ be the set of / G T such that / — / -< supp / . The set $ is totally ordered 
for ^, so there exists a minimal well-based transseries / with tp ̂  / for all <p G 
We call / the initializer of / over T. Assume first that / G T. Then we may assume 
without loss of generality that (p = 0, modulo an additive conjugation by <p. Now / is 
of differential type, since / x m for no m G T n l Let i G N be such that Rpi (/*) = 0 
modulo 0(7). Since Rpi has lower complexity than P, there exists a g G T with 
RPi(9) = 0 modulo 0(7). Since T is truncation closed we may take g G T^. But 
then / x e ^ ^ T n l This contradiction proves that we cannot have / G T. 

Let us now consider the case when f & T. Since deg^supp j P+j > 0, there exists 
a root ip ^ / of P in the set of well-based transseries with complex coefficients. 
But P admits only grid-based solutions, whence / G T. By construction, / and / are 
asymptotically equivalent over T. Let t) G TflT be such that uspan/xt). Modulo an 
additive and a multiplicative conjugation we may assume without loss of generality 
that / is a normal cut. In case C2, we notice that supp/ >- my, whence m -<* 1, 
since uspan/ = t). Consequently, we always have P-0 (f) = 0. 

We claim that the cuts / and / are differentially equivalent over T. Assume the 
contrary and let Q G T^{F} be a minimal annihilator of / . By lemma 8 and modulo 
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an additive and multiplicative conjugation, we may assume without loss of generality 
that f-0 1 and that Q is normal. Since H is differentially Henselian, it follows that 
Q admits a root g -<t> 1 in H. Now \Q < XP m case CI and XQ ^ XP m case C2, 
so this root is already in T, by the induction hypothesis. But Q admits at most one 
solution in T^t,, whence / = g^ G T'. This contradiction completes the proof of 
our claim. By lemma 6, we conclude that T(/) carries the structure of a transserial 
Hardy field extension of T. • 
Corollary 8. — Let T be a transserial Hardy field and H a differentially algebraic 
Hardy field extension of T, such that H is differentially Henselian. Assume that H 
admits no non-trivial algebraically differential Hardy field extensions. Then H satisfies 
the differential intermediate value property. 

Proof. — The fact that H admits no non-trivial algebraically differential Hardy field 
extensions implies that H is stable under exponentiation. By theorem 11, we may give 
Ti the structure of a transserial Hardy field. By theorem 9, we also have Tdalg = T. 
We conclude in a similar way as in the proof of corollary 5. • 

It is quite possible that there exist maximal Hardy fields whose differentially alge­
braic parts are not differentially Henselian, although we have not searched hard for 
such examples yet. The differentially algebraic part of the intersection of all maximal 
Hardy fields is definitely not differentially Henselian (and therefore does not satisfy the 
differential intermediate value property), due to the following result [9, Proposition 
3.7]: 

Theorem 12. — Any solution of the equation 

f" + f = e*2 
is contained in a Hardy field. However, none of these solutions is contained in the 
intersection of all maximal Hardy fields. 
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Glossary 
f ^ g f is dominated by g 456 
f < g f is negligible w.r.t. g 456 
/ x g / i s asymptotic to g 456 
/ ~ g / i s asymptotically similar to g 456 
f ^ g / i s natter than or as flat as g 456 
/ -« g / i s flatter than g 456 
/x<7 / is as flat as g 456 
f&g f and g are similar modulo flatness 456 
/ =̂ tj 9 f "4 9 modulo elements flatter than t> 457 
/ -<t, g f -< g modulo elements flatter than t> 457 
/ 9 f ^ 9 modulo elements flatter than or as flat as d 457 
/ -<* g f ~< 9 modulo elements flatter than or as flat as t> 457 
T> shorthand for {/ e T : / > 0} 457 
T# shorthand for {/ e T : / ф 0} 457 
T* shorthand for {/ G T : / У 1} 457 
fy infinite part of / 457 
/^t, part of / which is flatter than 0 457 
IV shorthand for {/у : / G T} 457 
T^t, shorthand for { / ^ : / € T} 457 
d derivation with respect to x 457 
/ integration with respect to x 457 
/ t logarithmic derivative of / 457 
t upward shifting 457 
I downward shifting 457 
/ 3̂ g f is a truncation of g 457 
span / canonical span of / 457 
uspan / ultimate canonical span of / 457 
T completion of T with serial cuts 458 
T{F} ring of differential polynomials in F over T 458 
T(F) quotient field of T{F} 458 
Lp linear part of P as an operator 458 
rp order of P 458 
sp degree of P in its leader 458 
tp total degree of P 458 
XP complexity of P 458 
IP initial of P 458 
Sp separant of P 458 
Hp the product IpSp 458 
Xf complexity of / over T 458 
rf order of / over T 458 
P+<. additive conjugation of P by <p 459 
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PX(p multiplicative conjugation of P by (p 459 
Lxtp multiplicative conjugate of L by ip 460 
L^ twist of L by if) 460 
5}L set of dominant monomials of solutions to Lh = 0 463 
G ring of infinitely differentiate germs at infinity 465 
/ ~ / / i s asymptotically similar to / over T 467 
Trcl real closure of T 470 
d e g ^ P Newton degree of P modulo 0(V>) 470 
\\f\\Xo norm of / for x ^ x0 472 
G^.r shorthand for {/ G GXo : / , . . . , ^ 1} 472 
ll/lls^ norm of / and its first r derivatives for x ^ x0 472 
IIÎ IIUo operator norm for K : GXo -> GXo 473 
|||^||Uo;r operator norm for K : GXo —> GXo-r 473 
Tfo first order differential closure of T in T 479 
Tdalg differentially algebraic closure of T in T 480 
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