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ON THE DEFINITION OF THE GALOIS GROUPOID 

by 

Hiroshi Umemura 

For José Manuel Aroca on the occasion of his 60th birthday 

Abstract. — We sketch a proof of equivalence of two general differential Galois theo­
ries, Malgrange's theoy and ours, if the base field consists only of constants. 

Résumé (Sur la définition du groupoïde de Galois). — Nous esquissons la démonstration du 
fait que deux théories de Galois, la théorie de Malgrange et la nôtre, sont équivalentes 
dans le cas absolu, i.e. quand le corps de base consiste uniquement en des constantes. 

1. Introduction 

Today we have two general differential Galois theories [4] and [3]. While the first 
published in 1996 is a Galois theory of differential field extensions, the latter proposed 
in 2001 is a Galois theory of foliations on varieties. They look somehow different but 
specialists observed coincidence in examples. The aim of this note is to sketch in 
fact they are equivalent in the absolute case, by which we mean the case where the 
base field K of the differential field extension L/K consists of only constants. For the 
relative case or for a general differential field extension L/K, there may be a similar 
result but there are subtle questions. First of all we must have an adequate definition 
of the Galois groupoid for the extension L/K in terms of foliations in the spirit of 
[3].W 

We show by analyzing a non-trivial interesting example, the equivalence. Given a 
differential field, it is an algebraic counter part of a dynamical system on a algebraic 
variety. If we observe this dynamical system closely by algebraic method, or if an 
algebraist observes the dynamical system, then we get as a natural object Galois 
groupoid of the dynamical system, or of the given differential field. This procedure of 
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442 H. UMEMURA 

observation is done through the universal Taylor morphism and ties Malgrange's idea 
and ours. 

2. Differential fields and dynamical systems 

A differential field (L, 6) consists of a field L and a derivation 6 : L —> L. So we 
have 5(a + b)) = 5(a) + 6(b) and S(ab) = 5(a)b + a5(b) for every a, b € L. Similarly we 
define a differential ring (R, 5). An element a of a differential field or a differential 
ring is called a constant if 5(a) = 0. The set CL or CR of constants forms respectively 
a subfield or subring. 

Now we consider a differential field that is finitely generated as an abstract field 
over the complex number field C in such a way that the complex number field C is a 
subfield of the field CL of constants. 

Remark 2.1. — In the sequel, we work over the complex number field C so that the 
reader has a concrete image, we may replace, however, the complex number field C by 
any field of characteristic 0. 

We explain by examples that a differential field is an algebraic counter part of a 
differential dynamical system on an algebraic variety. 

Example 2.1. Let us consider the differential field (C(x), d/dx), where x is a 
variable over C and hence C(x) is the rational function field of one variable. A geo­
metric model of the differential field (C(x), d/dx) is a dynamical system (A1, d/dx) = 
(Spec C[x], d/dx). In other words, the field of rational functions of the affine line A1 
with derivation d/dx gives the differential field (C(x), d/dx). 

Remark 2.2. — Since for any non-empty Zariski open subset U of A1, (U, d/dx) satis­
fies the condition required above, the general model of the differential field (C(x), d/dx) 
is (A1— (a finite number of points ) , d/dx). The model is determined up to birational 
equivalence. 

Example 2.2. Let x, y be two independent variables over C so that C[x, y] is a 
polynomial ring over C. Let us consider the differential field 

(C(x, y),d/dx + yd/dy). 

A model of this differential field is the (x, 2/)-plane A2 or Spec C[x, y] with vector field 
d/dx + yd/dy. A general flow on the affine plane A2 is given by (t, cexp £), t € C for 
a fixed c e C. In this Example we may replace the affine plane A2 by any non-empty 
Zariski open set of A2. 

Generally we can prove the following proposition. 

Proposition 2.1. — Let (L, 5) be a differential field such that the field L is of finite type 
over the complex number field C and C is a subfield of the field CL of constants of 
(L, 5). Then there exists a smooth algebraic variety V over C, with regular algebraic 
vector field X such that (V, X) is a model of the differential field (L, 5). In other 
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ON THE DEFINITION OF THE GALOIS GROUPOID 443 

words , the rational function field C(V) of V is isomorphic to the field L and the 
vector field X is identified with the derivation S through this isomorphism. 

See Lemma (1.5), [5]. 

3. Groupoids 

We need a seemingly abstract definition of groupoid but it is as concrete as vector 
space. 

Definition 3.1. — A groupoid is a small category G in which all morphisms are iso­
morphisms. An object ofG is called a vertex and a morphism in G is called an element 
ofG. 

The groupoid was introduced by Brandt in 1926. In 1950's Ehresmann used 
groupoids in theory of foliations. In 1960's Grothendieck studied quotients by 
groupoids in algebraic geometry. Here are examples of groupoids to have an image of 
groupoids. 

Example 3.1. A group G is a groupoid. We define a category C that is a groupoid. 
The object of the category C is one point P, i.e. obC = {P} . We set 

Horn (P, P) = G 
and compose two morphisms of Horn (P, P) = G according as the group law of G. 

Example 3.2. Equivalence relation ~ on a set X. The set obG of the objects of 
the groupoid G is the set X. For x, y G obG, we define 

Нот (ж, у) = 1 morphism, if x ~ y, 
0, otherwise. 

Since every element x is equivalent to itself, we have the identity Idx. Since equiv­
alence relation is reflexive, every morphism is an isomorphism. Since equivalence 
relation is transitive, we can compose two morphisms. So the above definition yields 
us a groupoid. 

Example 3.3. Group operation (G, X) of a group G on a set X is a groupoid. The 
set obC of the groupoid C is the set X. For x, y G X = obC, we set Horn (x, y) = 
Ì9 £ G\gx = y}. If g G Horn (x, y) and h G Horn (y, z), then gx = y and hy = z 
by definition so that z = hy = h(gx) = (hg)x and consequently hg G Horn (x, z). So 
we can compose two morphisms. If gx = y, then hy = x, h being g~l so that every 
morphism is an isomorphism. 

Example 3.4. Poincaré groupoid. Let X be a topological space. Let obG of the 
category be the set X. A path from a point x G X to another point y G X is a 
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444 H. UMEMURA 

continuous map (p : [0, 1] —> X from the interval [0, 1] to the topological space X 
such that (p(0) = x and (p(l) = y. We set in the category G, 

Horn (x, y) := the set of paths from x to y modulo homotopy equivalence. 

Then it is well-know that the category G is a groupoid, which is called a Poincar< 
groupoid. 

Now let G be a groupoid . We set 

Y := {morphisms in the category G} 

and 
X := obG. 

Let (p G Y so that (p G Horn (A, B) for some A, B G obG. Let us denote the source 
A of <p by s((p) and the target B of <p by £(</?). So we get two maps s : Y —* X anc 
t : Y X. Let (y, £) x (Y, 5) be the fiber product of t : Y X and 5 : Y X sc 
that 

(y, t) x (y,a) = {(?, V) € y x Y\s(ip) = tty)}. 
The composition of morphisms defines a map 

*:(Y,t) x < y,s) ^>Y, ( v . V J ^ ^ o ^ . 

The associativity of the composition is described by a commutative diagram that w< 
do not make precise. See [2]. The existence of the identity map Id A for every A G ob C 
as well as the property called symmetry that every morphism is an isomorphism ii 
also characterized in terms of maps and commutative diagrams. 

Here is a summary of the above observation. Groupoid is described by two sets 1 
and X, two maps s : Y —> X and t :Y —> X and the composition maps 

* : ( y , t ) x ( y , * ) - y , (<p,i/>)~il>otp. 

that satisfy certain commutative diagrams and so on. 
This allows us to generalize the notion of groupoid in a category in which fibe 

product exists. This is exactly by the same way as we define an algebraic group C 
requiring that, first of all, G is an algebraic variety, the composition law G x G —> C 
is a morphism of algebraic varieties and so on. 

Definition 3.2. — Let C be a category in which fiber product exists. A groupoid i\ 
the category C consists of two objects Y, X G obC, two morphisms s : Y —> X an 
t : Y —> X and a morphism 

*:(Y,t) x (Y,s) ^Y 

etc, satisfying the above conditions (cf Grothendieck [2]) 

Example 3.5. Let C be the category of algebraic varieties defined over a field 1 
and let (G, V) be an operation of an algebraic group on an algebraic variety V define* 
over k. We have two morphisms p, h from G x V to V, namely the second projectioi 
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p and the group operation h(g, v) = gv. Then Y = G x X, X = V s = p and t = h 
is a groupoid in the category C. Compare to Example 3.3. 

We need a tool, an algebraic Z>-groupoid that generalizes Example 3.5. 

4. Lie groupoids and D-groupoids 

For a complex manifold V, we can attach its invertible jets J*(V x V) that is a 
groupoid over V x V in the category of analytic spaces. We recall the definition for 
V = C. The jet space J(C x C) is an infinite dimensional analytic space C x CN with 
coordinate system (x,, 2/0, 2/i, 2/2, • • •), We have two morphisms 5 : J(C x C) —> C and 
t : J(C x Q ^ C given by 

s((z,,2/o, 2/ь 2/2,-..)) = X and t((x„y0, 2/1, 2/2,...)) = 2/0-
So we have a morphism (5, t) : J(C x C) —• C x C that makes J(C x C) an infinite 
dimensional affine space over C x C. The invertible jet space J*(C x C) is , by 
definition, the Zarisiki open set of J(C x C). Namely, 

J*(C x C) := {(*, 2/0, 2/1, 2/2, • • •) G J(C x C)| 2/1 ̂  0 }. 
We simply denote J*(C x C) by J* and we write the restrictions of the morphisms 
5, t to the Zariski open set J* by the same letters. Now we explain J* with two 
morphisms s : J* —• C and £ : J* —> C is a groupoid. To this end we must define the 
composite morphism $ : (J*, t) x (J*, s) —> J*. Let 

<p = (x, 2/0, 2/i,... )> ^ = K v0, vi , . . . ) , 
be points of J* such that 2/0 = T(Y) = ^(^) = u, i.e. (<̂ , -0) is a point of (J*, t) x 
f J*, 5). Then we set 

(1) $ (W, y) := (x, v0, 2/1^1, 2/2̂ 1 + 2/i v2, • • • )• 

The n-th component of $(^, <£?) is given by the following rule. Imagine formally that ip 
were a function of x taking the value yo at x, or <p(x) = 2/0, with (p'(x) = 2/1, <p"{x) = 
2/2 Similarly consider as if tp were a function of u with ^C )̂ — vo, ^(^) = 
vi, ip"(u) = ^2, Then 0(v, y) is the composite function V70 ,̂ which is a function 
of x, so that its n-th component is the value of dnip o <p/dxn at x. For example , 

d(V> 0 <p)/dx = i>u(px = y\vi,d 2 (v o tp)/dx = <Ar*V>u H- ^ x i u = 2/2̂ 1 + 2/1^2, • • • 

One can check this composition law is associative and the inverse of 

ip = (x, 2/0, 2/1,-..) 

is given by the inverse function x(y0) and its derivatives dnx(yo)/dyQ for n G N, 
namely by 

(2/0, z, I/2/1, -2/2/2/1, . . - ) . 

We can very naturally extend this construction over a complex manifold of any di­
mension. 
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Remark 4.1. — We considered above the n-th coordinate to be dny/dxn. But it is 
more natural to use (l/n\)dny/dxn. In this way we can work overlL. 

The above construction of Lie groupoids, in the category of analytic spaces, also 
works in the category of algebraic varieties, or to be more correct in the category of 
schemes over a field C. The most important ingredient in the algebraic constriction 
is the universal extension of derivations [9]. We do not go into the detail because it 
is technical and will be published elsewhere. So for a non-singular algebraic variety 
V defined over the field C of characteristic 0, we can define its invertible jet space 
J*(V x V) that is an algebraic variety of infinite dimension, i.e. an affine scheme over 
V x V. 

Definition 4.1. — An algebraic D-groupoid is a sbugroupoid of J* defined by a differ­
ential ideal. 

We are going to show what the definition means by concrete Examples. 

Let V = A1 and we consider the Lie groupoid J*(C x C). Recall that the con­
struction above in this case is purely algebraic. The coordinate ring or the ring of 
(algebraic) regular function on J*(C x C) is C[x, 2/0, 2/1,..., l/2/o]- The derivation 
S = d/dx + X^So Vi+id/dyi) operates on the coordinate ring C[x, 2/o, 2/1,..., 1/yi] 
of J*(C x C). So (C[x, yo, 2/1,..., l/yi], S) is a differential algebra. Consider the 
differential ideal I of the coordinate ring generated by 2/1 — 1 so that yn+i = b~n(y\) = 
6n(yi — 1) G / for n = 1, 2, 3, Hence the algebraic subvariety of J*(C x C) defined 
by the ideal / is 

Y = {(a, 6, 1, 0, . . . ) G J*(CxC)}. 
Let 

((a, 6, 1, 0, . . . ) , (c, d, 1,0, . . . ) ) G (J*, t) x (J*, 8) 
so that b = c, then 

*((a, 6, 1,0,...), (c, d, 1,0, . . .)) = (a, d, 1,0,...) 

by (1). This shows that the subvariety Y C J* is closed by the composition. Since 
the inverse of (a, 6, 1, 0, . . . ) is (6, a, 1, 0, . . . ) , Y is an algebraic groupoid. This 
groupoids is nothing but the strongest equivalence relation on C according which 
arbitrary two points of C are equivalent. See Example 3.2. Another interpretation 
is the operation of the additive group C, which is an algebraic group, on it self. See 
Examples 3.3 and 3.5. 

Example 4.2. Let V = A1 — {0} and n an integer . Then by construction 
J*(V xV) = {(x, 2/0,Y1 • • •) € C x CN| x, 2/0, yi ^ 0}. Let In be the differential ideal 
of 

C[x, 2/0, 2/1,..., 1/x, I/2/0, V2/1] 
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generated by 2/1 — (x/yo)n. Let us assume that ip = (x, 2/0, 2/1 > • • •) € J*(V x V) 
satisfies the differential equation 

(2) <px = {x/<p)n 

and ifr = (u, vo, vi, . . . ) G J*(V x V) satisfies the differential equation 

(3) ^u = (u/tl>)n 

with 2/0 = 5̂ then by (2) and (3) 

d(ip o (p) 

dx 

dtp dip 
du dx 

= u 
v 

n X 

y 

n 
= 

X 

v 
n 

So the ideal In defines a groupoid Gn. By considering the automorphism V —> V, 
u 1—> w-1, the groupoid Gn is isomorphic to G_N+2- In fact this follows from 

d(y(x) -1 
dz = 

z 
y (x) -1 

2-n 

if (p satisfies (2), where z = x x. 

Example 4.3. The Schwarzian defines a D-groupoid over C. To be more precise 
let us recall the Schwarzian derivative 

{2/; x} := 
d3y 
dx3 

dy 
dx 

3 
0 

d2y 

dx2 
dy 
dx 

2 

where y is a function of x. We know that when y is a function of x and z is a function 
of y and consequently z is a function of x, we have a formula 

(4) {z; x} = 
dy 
dx 

2 
{z; y} + {2/; x} 

The formula (4) shows that the differential ideal / of C[x, 2/0, 2/1, • • •, I/2/1] generated 
by 2/2/2/1 — (3/2)2/2/2/1 )2 defines a D-groupoid that is a subgroupoid of J*(C x C). 

5. Examples of Galois groupoids 

Example 5.1. Let £, x, y, be independent variables over C. Let 6 : C(£, x, y) —> 
C(t, x, y) be the C-derivations of the rational function field C(£, x, y) such that 

(5) 6(t) = 0, 5(x) = l, 6(y) = t 
x y, 

In other words 

8 = 
d 

dx 
H-

ty 

x 

d 
dy 

This is the differential field studied by Cassidy and Singer [1]. We analyzed this 
example in [8] . We present here a new point of view that ties our previous definition 
of Galois group Inf-gal and Galois groupoid of Malgrange.([4], [3]). The first is, as 
we briefly review in §6, an automorphism group of a certain differential field and the 
latter is a D-groupoid over an algebraic variety. See also §6. 
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448 H. UMEMURA 

We explain from the view point of dynamical system what is the Galois groupoid 

Gal(C(£, x, y)/C) 

of the differential field 

(6) (C(t, x, y), 8) 

over C. First of all, R := C[£, x, y, 1/x] is <5-invariant so that 

(Spec R, 8) 

is a model of the differential field (6) (cf. §2). The Galois groupoid Gal((C(£, x, y), 
8)/C) is a D-groupoid over the algebraic variety V = Spec R = {(£, x, y) G C3 | x ^ 
0}. Let us recall the universal Taylor morphism 

L : R — R*[[X]] 

that sends an element a G R to its formal Taylor expansion 

(7) 
OO 

71=0 

1 
n! 

5n(a)Xn, 

where X is a variable. Recall according to our convention that R^ denotes the ring R 
without derivation 8. So logically we must write Spec R^. It follows from (7) 

i(t) = t, ¿(x) = x + X, i(y) = y 1 + 
X 

x 

t 

where 

1 + 
X 

x 

t 
= 

OO 

71=0 

t(t- l ) . . . ( t - n + l) 
n! 

Xn. 

See [4]. We set 

f (*, x, y; X) := t(t), X(t, x, 2/; X) := ^x), F(t, x, y; X) := t(y). 

Since i is an algebra morphism compatible with 8 and d/dX , we have by (5) 

(8) 
dT 
dX = 0, 

dX 
dX = 1, 

dX 
dX 

T 
X 

Y 

In other words T, X, F is a solution to (5) with initial conditions 

T(t, x, y;0) = t, X(t, x, y;0) = x, Y(t, x, y;0) = y 

at X = 0. We are interested in the dynamical system 

(9) (t, x, y) ~ (f, X, y) 

on the algebraic variety F = Spec R = {(u, v, w) G C3 11; ^ 0}. 
Suppose now that an algebraist, who knows nothing about transcendental func­

tions, lives on the variety Spec R and he observes the dynamical system (9). As he 
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can not recognize what is transcendental or analytic, he tries to understand the dy­
namical system(9) through algebraic differential equations. Above all, he will take 
the first derivatives to get 

f = t, 
(io) atx = o, axx = i, dyx = o, 

(dtY)/Y = log(l + f ) , (dxY)/Y = t ( i - I ) , ydyY = Y. 

The first equation of the last line of (10) contains the transcendental function log so 
that the poor algebraist can not understand it. So he will take the second derivative 
of the expression to conclude 

dt UdtY)/Y) = o, dx ((dtY)/Y) = I 

X 
1 
x 

dy UdtY)/Y) = 0. 

These are algebraic relations so that the algebraist can understand but these three 
equations except for the first are consequences of the other equations of (10) and 
hence they are superfluous. So all the necessary algebraic differential relations are 

(ii) 
T = t, 
dtx = 0, dxX = 1, dyX = 0, 
dt UdtY)/Y =0- (dxY)/Y = t( 1 

X 
1 
x ydyY = Y. 

Let us summarize the analysis above. The algebraist observed the dynamical system 
(9) and arrived at the system (11) of algebraic partial differential equations. What 
is this system? The answer is this is the defining equation of the Galois groupoid 
Gal ((C(£, x, y), 6) /C) that is a D-groupoid on V = Spec R = {(t, x, y) e C3 | x ^ 
0}. 

To be more precise, we introduce variables T, Af, y, which you might imagine 
functions of t, x, 2/, and their formal derivatives 
(12) dld^a^T, d\d™d;x, dld^d^y, for (i, m, n) & N3 
that are also variables. We identify 

d?d°xd°yT = T, d?d°xd°yx = x, d°td°xd°yy = y. 
The invertible jet space J*(V x V) over V = Spec R is by definition 

J(V x V) := Spec S, 

where 

s := c[t, x, y, r, x, y, dlt dT e; r, e\ a™ a; x, a\ a™ a; y, i/x, I/X, i/jac](J, m, n)e№, 

and where Jac is the Jacobian 

Jac = 
atT axr ayT 
atx axx ayx 
aty axy avy 
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The algebraic differential relations (11) gives us a differential ideal / of the ring § 
generated by 

T - t, 
(13) dtX, dxX-l, dyx, 

y2dt((dty)/y), y[{dxy)/y - t(1/x —1/x)}, ydyy - y. 

Here the ring § is a partial differential algebra with respect to the three derivations 
dt, dx, dy that operate on the variables (12) just formally as in the one variable case 
treated in §3. Then the ideal I defines a D-groupoid on V that is the Galois groupoid 
Gal(C(t, x, y)/C). 

An easy calculation leads us to the following 

Proposition 5.7. — For a general point (t, x, y) G V, the solution (T, X, y) to the 
differential ideal I or equivalently to the partial differential system (11) is 

(14) T = t, X = x + cu y = y X + Ci 
X 

t 
exp(c2£ + c3) 

where ci, C2,C3 are constants. 

Differentiating the solution (14) with respect to the parameters ci, c2, C3 at 
(ci, C2, C3) = (0, 0, 0), we get the vector fields 

(15) D1 = 
d 

dx 
+ 

ty d 
x dy 

D2 = ty 
d 
dy D3 = y 

d 
dy 

on the variety V = Spec R = {(£, x, y) G C3 | x ^ 0}. The vector space spanned by 
these vector fields is closed under the bracket and forms a 3-dimensional commutative 
Lie algebra. This is the Lie algebra of the Galois groupoid Gal(C(t, x, y)/C). We 
have thus proved 

Corollary 5.1. — The Lie algebra of the Galois groupoid Gal(C(£, x, y)/C) is a 3 
dimensional Abelian Lie algebra spanned by Di, D2, D$. 

Example 5.2. Let n > be an integer and we consider a field extension L := 
C(x, y)/C(x) of the rational function field C(x) such that y is algebraic over C(x) 
with minimal polynomial 

(16) yn - x = 0. 

With derivation S — d/dx, L/C(x) is a differential field extension. We have 

(C(x, y),d) = C(x), 
1 

n 
y 1 - n 

d 
dy 

Then the Galois groupoid Gal ((L, S)/C) is the groupoid Gn_i of Example 4.2. 
In fact let £ : C[y, 1/y] —>• C[y, l/y]^[[X]] is the universal Taylor morphism. Apply­

ing the universal Taylor morphism £ to (16), we have 

Yn - (x + X)= 0, 
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where Y := t(y). Then apply the derivation d/dy to this equation, we get 

Y 
dy = 

y 
Y 

n-l 

6. Relation with our previous definition 

Using Example 5.1, we briefly explain the equivalence of the definition above of 
Galois groupoid through the dynamical system and our previous definition depend­
ing on the differential field automorphism group of a certain partial differential field 
extension. 

We keeping the notation of Example 5.1, we apply the method of our previous 
paper([4]. We start from the ordinary differential field extension (C(t, x, y), S)/C 
and construct a partial differential field extension C/K and our infinitesimal Galois 
group Inf-gal (C/K) is the infinitesimal automorphism group Inf-aut (C/K,). 

In i^[[X]]o/§5, we have Ffi and L(R). The derivations dt, dx, dy of R+ operate on 
the power series ring i?b[[X]] through coefficients. Now TZ is the differential algebra 
generated by R^ and t(R) in ^[[X]]. It follows from the definition of 7£, S and the 
ideal I of S 

Proposition 6.1. — The ring 1Z is isomorphic to S/I as {dt, dx, dy}-differential alge­
bra. 

It follows from (11) that 11 = C[t, x, y, l/y][X, Y, Yt] and X, Y, Yt] are tran­
scendental over C[t, x, y, 1/y] The base ring is by definition C[t, x, y, l/y]. Our 
Galois group Inf-gal ((C(t, x, y), S)/C) is the infinitesimal automorphism group of 
TZ/C[t, x, y, l/y]> Propositions (5.1) and (6.1) give us 3 infinitesimal {dt,dx, dy}-
differential automorphisms cr̂ , of 7£[e]/C[£, x, y, l/y] ( 1 < i < 3 ) with e2 = 0 such 
that 

<7i(f) = f, tr1(X) = X + e, a1(Y) = Y+fe, ai(Yt) = Yt + Z^&e 
<r2(f) = f, a2(X) = X, <r2(Y) = Y + tYe, a2(Yt) = Yt + (Y - tYt)e 
<r3(f) = f, a3(X)=X, a3(Y) = Y + Ye, <r3(Yt) = Yt + Yte. 

These infinitesimal automorphisms define infinitesimal automorphisms of C[e]/fC, 
where C and K are respectively the quotient field of TZ and C[t, x, y, l/y]. 
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