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PROJECTIVE STRUCTURES AND PROJECTIVE BUNDLES 
OVER COMPACT RIEMANN SURFACES 

by 

Prank Loray & David Marin Pérez 

To José Manuel Aroca for his 60th birthday 

Abstract, — A projective structure on a compact Riemann surface C of genus g is 
given by an atlas with transition functions in PGL(2,C). Equivalently, a projective 
structure is given by a P1 -bundle over C equipped with a section a and a foliation 
T which is both transversal to the P1-fibers and the section cr. From this latter 
geometric bundle picture, we survey on classical problems and results on projective 
structures. By the way, we will recall some basic facts about P1-bundles. We will give 
a complete description of projective (actually affine) structures on the torus with an 
explicit versai family of foliated bundle picture. 

Résumé (Structures projectives et fibres projectifs sur les surfaces de Riemann compactes) 
Une structure projective sur une surface de Riemann C de genre g est donnée par 

un atlas dont les applications de transition sont à valeurs dans PGL(2, C). De manière 
équivalente, une structure projective est donnée par un fibre en P1 sur C équipé d'une 
section cr et d'un feuilletage T transverse à la fois aux fibres P1 et à la section cr. A 
partir de cette dernière description géométrique, nous survolons quelques problèmes et 
résultats classiques sur les structures projectives. Nous rappelons quelques propriétés 
de base sur les fibres en P1. Nous donnons une description complète des structures 
projectives (qui sont en fait affines) sur le tore avec une famille verselle explicite de 
fibres feuilletés. 
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224 F. LORAY & D. MARÍN PÉREZ 

1. Projective structures 
1.1. Definition and examples. — Denote by T,g the orientable compact real sur­
face of genus g. A projective structure on T,g is given by an atlas {(Ui, fa)} of coordi­
nate charts (local homeomorphisms) fa : Ui —> P1 such that the transition functions 
fa = ifij o fj are restrictions of Moebius transformations <pij G PGL(2, C). 

FIGURE 1. Projective atlas 
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fi 
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There is a unique maximal atlas defining the projective structure above, obtained 
from the previous one by adding all charts {(Ui, (p o fa)} when cp runs over PGL(2, C). 

A projective structure induces a complex structure on Y,g, just by pulling-back 
that of P1 by the projective charts. We will denote by C the corresponding Riemann 
surface (complex curve). 
Example 1.1 (The Universal cover). — Let C be a compact Riemann surface having 
genus g and consider its universal cover TT : U —> C. By the Riemann Mapping 
Theorem, we can assume that U is either the Riemann sphere P1, or the complex plane 
C or the unit disk A depending wether g = 0, 1 or > 2. We inherit a representation 
of the fundamental group p : TTI(C) -» Aut(J7) whose image A is actually a subgroup 
of PGL(2,C). All along the paper, by abuse of notation, we will identify elements 
7 G 7Ti(C) with their image /0(7) G PGL(2,C). The atlas defined on C by all local 
determinations of 7r_1 : C ---> P1 defines a projective structure on C compatible with 
the complex one. Indeed, any two determinations of 7r_1 differ by left composition 
with an element of A. 

We thus see that any complex structure on T,g is subjacent to a projective one. In 
fact, for g > 1, we will see that there are many projective structures compatible to a 
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PROJECTIVE STRUCTURES AND BUNDLES 225 

given complex one (see Theorem 1.2). We will refer to the projective structure above 
as the canonical projective structure of the Riemann surface C: it does not depend 
on the choice of the uniformization of U. We now give other examples. 
Example 1.2 (Quotients by Kleinian groups). — Let A c PGL(2, C) be a subgroup act­
ing properly, freely and discontinuously on some connected open subset C/cP1. Then, 
the quotient map ir : U —> C := U/A induces a projective structure on the quotient 
C, likely as in Example 1.1. There are many such examples where U is neither a 
disk, nor the plane. For instance, quasi-Fuchsian groups are obtained as image of 
small perturbations of the representation p of Example 1.1; following [35], such per­
turbations keep acting discontinuously on some quasi-disk (a topological disk whose 
boundary is a Jordan curve in P1). 
Example 1.3 (Schottky groups). — Pick 2g disjoint discs Af,..., A~ and A+,..., A+ 
in P1, g > 1. For i = 1,..., n, let (fi G PGL(2, C) be a loxodromic map sending the 
disc A~ onto the complement P1 — A+. 

A1-
Vi 

A1+ 

А* 
Ч>2 A í 

А^ 
P3 

А3+ 

pi С 

FIGURE 2. Schottky groups 
The group A C PGL(2,C) generated by (fi,...,(pg acts properly, freely, and dis­

continuously on the complement U of some closed set contained inside the disks (a 
Cantor set whenever g > 2). The fundamental domain of this action on U is given 
by the complement of the disks and the quotient C = U/A is obtained by gluing 
together the boundaries of A^ and Ar by means of <pi, i = 1,... ,g. Therefore, C 
is a compact Riemann surface of genus g. This picture is clearly stable under small 
deformation of the generators ipi and we thus obtain a complex 3# — 3 dimensional 
family of projective structures on the genus g surface T,g (we have divided here by 
the action of PGL(2, C) by conjugacy). 
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226 F. LORAY & D. MARIN PÉREZ 

1.2. Developping map and monodromy representation. — Given a projec­
tive atlas and starting from any initial coordinate chart (£/o,/o), one can extend it 
analytically along any path 7 starting from po G UQ. 

Indeed, after covering 7 by finitely many projective coordinate charts, say (Uo, /0), 
(Z7i, /1), ... ,(Un,fn), one can modify them step by step in the following way. First 
of all, since /0 = (poi 0 /1 on UoC\Ui, one can replace the chart /1 by f\ := <poi o fx 
which is well-defined on [/1, extending /0. Next, we replace /2 by /2 := (poi 0 if 12 0 /2 
which, on [/1 n [/2, coincide with /1. Step by step, we finally arrive at the chart 
fn '= y>oi 0 * * * 0 <Pn-i n° fn which, by construction, is the analytic continuation of /0 
along 7. 

Therefore, the local chart (E/ioj/o) extends (after lifting on the universal covering) 
as a global submersion on the universal cover 

/ : U P1 

which is called the developping map of the projective structure. The developping 
map is moreover holomorphic with respect to the complex structure subjacent to the 
projective one. By construction, the monodromy of / along loops takes the form 

(1) /(7-u) = ¥>7 0/> ^7ePGL(2,C) V7G7ri(Ep,po) 

(u is the coordinate on U and 7.U, the canonical action of 7ri(Ep,p0) on U). In fact, 
<p1 is the composition of all transition maps (pij encoutered along 7 for a given finite 
covering of projective charts: with notations above, setting (Un, fn) = (E/o,/o)» we 
have <p7 = tpoi o • • • o <pn_i n. It turns out that v?7 only depends on the homotopy 
class of 7 and we inherit a monodromy representation 

(2) p : TnfE^po) PGL(2,C) ; 7 »Py 

The image A of p will be called monodromy group. The developping map / is defined 
by the projective structure up to the choice of the initial chart (E/0,/0) aDOve: it 
is unique up to left composition cp o /, ip G PGL(2,C). Therefore, the monodromy 
representation is defined by the projective structure up to conjugacy: the monodromy 
of <p o / is 7 H-» (p o <£>7 o y?-1. 

Conversely, any global submersion / : U —> P1 on the universal covering n : U —> T,g 
satisfying (1) is the developping map of a unique projective structure on T,g. We note 
that condition (1) forces the map 7 —> <p7 to be a morphism. 

Example 1.4. — The developping map of the canonical projective structure (see ex­
ample 1.1) is the inclusion map U P1 of the universal cover of C. More generally, 
when the projective structure is induced by a quotient map ir : U —> C = U/A like in 
example 1.2, then the developping map / is the universal cover U —> U oiU and the 
monodromy group is A. In example 1.3, the open set U is not simply connected (the 
complement of a Cantor set) and the developping map is a non trivial covering. Thus 
the corresponding projective structure is not the canonical one. Similarly, the devel­
opping map of a quasi-Fuchsian group is the uniformization map of the corresponding 

ASTÉRISQUE 323 



PROJECTIVE STRUCTURES AND BUNDLES 227 

quasi-disk and is not trivial; the projective structure is neither the canonical one, nor 
of Schottky type. 

Example 1.5 (The Sphere). — Given a projective structure of the Riemann sphere P1, 
we see that the developping map / : P1 —> P1 is uniform (no monodromy since TTI (P1) 
is trivial). Therefore, / is a global holomorphic submersion (once we have fixed the 
complex structure) and thus / G PGL(2,C). Consequently, the projective structure 
is the canonical one and it is the unique projective structure on P1. 

For similar reason, we remark that the monodromy group of a projective structure 
on a surface of genus g > 1 is never trivial. 

Example 1.6 (The Torus). — Let A = Z+rZ be a lattice in C, r G M, and consider the 
elliptic curve C := C/A. The monodromy of a projective structure on C is abelian; 
therefore, after conjugacy, it is in one of the following abelian groups: 

— the linear group {ip(z) = az ; a G C*}, 
— the translation group {(f(z) = z + b ; b G C}, 
— the finite abelian dihedral group generated by —z and 1/z. 

The canonical projective structure on C has translation monodromy group A. On the 
other hand, for any c G C* the map 

(3) fc : C —» P1 ; u i—> exp(cu) 

is the developping map of a projective structure on C whose monodromy is linear, 
given by 
(4) fc(u + 1) = ec • /(«) and fc(u + T) = eCT •/(«). 
We inherit a 1-parameter family of projective structures parametrized by c G C* (note 
that /o = 1 is not a submersion). We will see latter that this list is exhaustive. In 
particular, all projective structures on the torus are actually affine (transition maps 
in the affine group). 

The projective structures listed in example 1.6 are actually affine structures: the 
developping map takes values in C with affine monodromy. 

Theorem 1.1 (Gunning [12]). — All projective structures on the elliptic curve C/(Z + 
rZ), are actually affine and listed in example 1.6 above. There is no projective struc­
ture having affine monodromy on surfaces T,g of genus g > 2. 

In particular, the dihedral group is not the holonomy group of a projective structure 
on the torus. 

Partial proof. — Here, we only prove that the list of example 1.6 exhausts all affine 
structures on compact Riemann surfaces. In example 1.7, we will see that there are 
no other projective structure on tori than the affine ones. 
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228 F. LORAY & D. MARIN PÉREZ 

Let / : U —* P1 be the developping map of a projective structure with affine 
monodromy on the compact Riemann surface C ^ P1: / is a holomorphic local 
homeomorphism satisfying 

Choose a holomorphic 1-form OJQ on C and write OJQ = <f) • df. Here, we identify LJO 
with its lifting on the universal covering. Since / is a local diffeomorphism, df has no 
zeroes and </> is holomorphic on [/, vanishing exactly on zeroes of LJQ and poles of /. 
Moreover, the monodromy of <f> is that of df, given by ^(7 -u) = a~x - (j){u). Therefore, 
the meromorphic 1-form uj\ = ^ has no monodromy: it defines a meromorphic 1-
form on C having only simple poles, located at the zeroes of UJQ and poles of /, the 
residues of which are positive integers. Following Residue Theorem, u>i has actually 
no poles: / is holomorphic, u>o does not vanish and thus genus g = 1. This proves the 
second assertion of the statement. 

Now, assume g = 1, U = C and C = C/(Z + rZ). The 1-form ui above is 
holomorphic and thus takes the form u>i = —c • du for some constant c G C. In other 
words, we have f"/f = c and we obtain after integration 

• f(u) = a-ecu + b when c ̂  0, 
• /(t/) = a • u + b when c = 0 

for constants a G C* and b G C. After left composition by an affine map, which does 
not affect the affine structure, we can set a = 1 and 6 = 0 and / belongs to the list of 
example 1.6. • 
Remark 1.1. — We see from the proof that the projective structures on C/(Z + rZ) 
are naturally parametrized by C, namely the constant map <j) — f'lf = c-> which is 
not clear from the description of example 1.6 (we see C* plus one point ). One can 
recover this by choosing conveniently the integration constants a and b in the proof 
above. Indeed, consider the alternate family of developping maps given by 

/(7 • u) = a7 • f(u) + 67, a7 G C*, 67 G C, V7 G 7ri(C,p0) 

(5) F :C2-+C; (с, и) н-> /с(«) := ecu-l 
с сф О 
и, с = О 

The map F is clearly holomorphic on C2 and makes the developping maps fc into a 
holomorphic family parametrized by c G C. Moreover, the corresponding holonomy 
representations are given by 

/с(и + 7) = eCy fc (u) + en - 1 
с , c # 0 

и + 7, с = О 
V7 G Z + rZ 

and we see the affine motions with common fixed point —1/c converging to translations 
while c —> 0. 
Remark 1.2. — When we set g = 1 in example 1.3, we have U = C* and A is generated 
by a single map (p(z) = e2l7rXz. The quotient C = U/A is the elliptic curve with lattice 
Z + AZ. The complex structure varies with A and very few projective structures on 
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the torus are obtained by this way. In fact, we see in example 1.6 that, for generic 
values of c, the monodromy group of the corresponding projective structure is not 
discrete (c is not Z-commensurable with 1 and r). 

1.3. Quadratic differentials. — In order to generalize the arguments involved in 
the proof of Theorem 1.1 for genus g > 2 Riemann surfaces, we have to replace / " / / ' 
by the Schwartzian derivative of / 

(6) S(f) := f" 
f' -

1 
2 

f" 
f' 

2 

Recall that, for any holomorphic functions / and g, we have 
(7) S(fog) =S(f) og- (g'f +S(g). 
Given a projective structure on a Riemann surface C, consider the Schwartzian deriva­
tive of the corresponding developping map 0 := S(f). For any 7 G A = 7Ti(C), we 
deduce from property (1) of / that 

0 0 7 ' (V)2 = S(f 07)= S((py o f) = 0. 
In other words, the quadratic differential u = 0(u) • du2 is invariant under A and 
gives rise to a quadratic differential on the Riemann surface C. We note that OJ is 
holomorphic. Indeed, outside the poles of /, 0i := / ' is not vanishing, thus 02 := 
0i/01 is holomorphic and 0 = 02 — (02)2/2 well. On the other hand, at a pole of /, one 
can replace / for instance by 1//, which is not relevant for the Schwartzian derivative, 
and go back to the previous argument. By this way, we canonically associate to any 
projective structure on C a holomorphic quadratic differential w on C, i.e. a global 
section of K®2, where KQ is the canonical line bundle over C. 

Conversely, given any holomorphic quadratic differential UJ = 0(г¿) • du2 on the 
Riemann surface C, one can solve locally the differential equation S(f) = 0 in / and 
recover the coordinate charts of a projective structure on C (compatible with the 
complex one): the fact is that any two (local) solutions of <S(/) = 0 differ by left 
composition by a Moebius transformation. 

Example 1.7. — In genus 1 case, any holomorphic quadratic differential takes the 
form LJ = c • du2 for a constant c € C (K®2 = Kc is still the trivial bundle). In fact, 
u = a;2, where Q = y/cdu. On the other hand, any solution of / " / / ' = c gives rise 
to a solution of S{f) = —c2/2 = c; therefore, the projective structure defined by LJ 
is actually subjacent to the afBne structure defined by c. This concludes the proof of 
Theorem 1.1. We note that the space of afflne structures forms a two fold covering 
of the space of projective structures (the choice of the square root c). Of course, this 
comes from the fact that the 2 afflne structures given by fc and l//c (with notations 
of example 1.6) do not define distinct projective structures. 

For genus g > 2 Riemann surfaces, the dimension of H°(C, K®2) can be computed 
by Riemann-Roch Formula, and we obtain 
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230 F. LORAY & D. MARIN PÉREZ 

Theorem 1.2 (Gunning [12]). — The set of projective structures on a complex Riemann 
surface C of genus g > 2 is parametrized by the 3g — 3-dimensional complex vector 
space H°(C,K®2). 

In this vector space, 0 stands for the canonical structure of example 1.1. 

1.4. The monodromy mapping. — A natural question arising while studying 
projective structures is to understand, for a given surface £p, the nature of the Mon­
odromy (or Riemann-Hilbert) Mapping 

Vg K9. 

On the left-hand side, Vg denotes the set of all projective structure on T,g up to iso­
morphism; on the right-hand side, 1Zg is the set of representations of the fundamental 
group in PGL(2, C) up to conjugacy: 

Ug = Hom(7r1(E5),PGL(2,C))/pGL(2,c). 

Let us first consider the genus g = 1 case. Prom Gunning's Theorem 1.1, the left-
hand side can be viewed as a C-bundle over the modular orbifold M/PSL(2, Z) where 
H denotes the upper-half plane whose fiber at a given complex structure is the affine 
line of holomorphic differentials. Nevertheless, to avoid dealing with orbifold points, 
we prefer to deal with the parametrization of affine structures by EI x C given by the 
map 

(T, c) I—> (C, LJ) where 
C= C/(Z + rZ) 
UJ = c - du 

Here, the base EI is the space of marked complex structures on the torus, up to 
isomorphism, and the fiber over r is the affine line of differentials C • du, u the 
variable of C. Since all projective structures are actually affine, we can replace IZi by 
Ax := Hom(7n(C), Aff(C))/AfF(C) where 

Aff(C) := {<p(z) = az + b, a G C*, b G C} 

is the group of affine transformations. Once we have fixed generators 1 and r for the 
fundamental group of C = C/(Z + rZ), the set Hom(7Ti((7), Aff(C)) identifies with 
the complex 3-dimensional subvariety 

{(axz + buaTz + bT) ; (ax - l)bT = (aT - l)bx} C (C* x C)2 

(here, we see the condition for the commutativity). The Aff(C))-action by conjugacy 
commutes with the projection on the linear part C* x C*. For any (ai,ar) ^ (1,1), 
the action is transitive on the fibre: it is the usual action of Aff(C)) on the line 
{(feiA) ; (ai - l)br = (aT - l)6i} C C2. The fibre over (1,1) is C2 and Aff(C)) acts 
by homothecy: after deleting the point (bi,bT) = (0,0) corresponding to the trivial 
representation, the quotient by the action is P1. Since the trivial representation 
does not occur as monodromy representation of an affine structure on the torus, we 
consider the quotient B\ C A\ of its complement in Hom(7Ti(C), Aff(C)). By the 
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previous remarks, B\ is the blowing-up of C* x C* at the point (1,1) and can be 
identified with the 2-dimensional complex manifold 

Bi = {(ai,Or, [61 : bT]) ; («i - l)bT = (oT - 1)61} C C* x C* x P1 

where [z : w] denotes homogeneous coordinates on P1. 
The projection B\ —> C* x C* is just the blow-up of the point (1,1) and the 

exceptional divisor consists in euclidean representation. Finally, the monodromy map 
is described by 

HI x C -> B1 ; (r, c) (ec,e-,[ ec-l 
c 

eCT-l 
c 

]), c^O 
(1,1, [l:r]), c = 0 

Looking at the differential of the Monodromy Map above, we see that it has always 
rank 2 and the Monodromy Map is a holomorphic local diffeomorphism; it is moreover 
injective and proper in restriction to each fiber r x C . Its image is the complement 
of the preimage on B\ of the real torus S1 x S1 C C* x C* plus the complement of 
PJ(R) inside the exceptional divisor P^C) over the point (1,1) G C* x C*. 

But the Monodromy Map is neither injective, nor a covering map onto its image: 
for instance, for any r, r' G H, r' ^ r, and for any (ra, ra) G 1? — {(0,0)}, the two 
affine structures 

(r, 2Í7T mr' + n 
T'-T and (r , 2Í7T mr + n 

T'-T 
have the same monodromy representation. In particular, the injectivity is violated 
for arbitrarily close complex structures. On the other hand, the monodromy of the 
canonical structure (r, 0) occurs only for this structure. 

Consider now the genus g > 2 case. It follows from Gunning's Theorem 1.2 above 
that the set Vg of projective structures on the genus g > 2 surface Ep can be viewed 
as a complex 6g — 6-dimensional space. Indeed, if we denote by Tg the Teichmüller 
space of complex marked structures on T,g viewed as an open subset of C3p-3, then 
Vg is parametrized by the rank 3g — 3-vector bundle Vg over Tg whose fiber over a 
given complex structure C is the space of quadratic differentials H°(C, K®2). 

By Theorem 1.1, the monodromy representation cannot be affine in the case g > 2. 
The image of Vg by the Monodromy Map is thus included in the subset of irreducible 
representations 

7lg := 7Zg — Ag 
where Ag = Hom(7Ti(E5), Aff(C))/pGL(2,c) is the set of affine representations up to 
PGL(2, C)-conjugacy. One can check (see [13]) that 7ZgTT forms a non-singular complex 
manifold of dimension 6# — 6. Thus, the Monodromy Map can locally be described 
as a holomorphic map between open subsets of C6g~6 and the following result makes 
sense (see proof in section 1.5). 

Theorem 1.3 (Hejhal [16, 7,18]). — The Monodromy Map is a local diffeomorphism. 
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232 F. LORAY & D. MARIN PÉREZ 

In [20], it is moreover proved that the Monodromy Map is symplectic with respect 
to symplectic structures that can be respectively canonically defined on both spaces 
(see [10]). 

The restriction of the Monodromy Map to each fiber JJ°(C, K^2) of Vg over C eTg 
is injective. In other words, we have the following result whose proof will be given in 
section 2.2. 

Theorem 1.4 (Poincaré [28]). — Given a compact Riemann surface C, any two projec­
tive structures are the same if, and only if, they have the same monodromy represen­
tation (up to PGL(2,C)>). 

It is clear that the Monodromy Map is not surjective. First of all, by Theorem 1.1, 
its image is contained in lZgTT C 1Z9. On the other hand, the space of representations 
Hom(7Ti(C), PGL(2, C)) falls into 2 connected components, namely the component 
of those that can be lifted as Hom(7Ti(C), SL(2, C)) and the other ones. Since the 
Monodromy Map is continuous (actually holomorphic) and since the monodromy of 
canonical projective structures can be lifted to SL(2,R), it becomes clear that the 
image of the Monodromy Map will be in the former component. Finally, notice that 
the monodromy representation cannot be in PSU(2, C), i.e. conjugated to a group of 
rotations of the sphere, otherwise we could pull-back the invariant spherical metric 
of P1 by the developping map, giving rise to a curvature +1 metric on the surface, 
impossible except in the trivial case g = 0 (see Example 1.5). The main result in the 
field, which has been conjectural for decenies, is the following. 

Theorem 1.5 (Gallo-Kapovich-Marden [9]). — Consider the genus g surface Ylg, 
g > 2. A homomorphism p G Hom(7Ti(£p), PGL(2, C)) is the monodromy rep­
resentation of a projective structure on the Tig if, and only if, p can be lifted as 
p G Hom(7Ti(C), SL(2, C)) and the image of p is, up to PGL(2, C)-conjugacy, neither 
in the affine group Aff(C), nor in the rotation group PSU(2,C). 

1.5. The fibre bundle picture. — Let / : U —• P1 be the developping map of a 
projective structure on C (here we fix the underlying complex structure) and consider 
its graph {(u,f(u)) ; u £ U} C U xP1. The fundamental group TT\{C) acts on the 
product U x P1 as follows: for any 7 G 7Ti(C), set 

7 • (u,y) ^ (7-^7(2/)) 
where u 1—• 7 • u is the canonical action of 7Ti (C) on the universal cover and <p7 is the 
monodromy of the projective structure along 7. This action of TTI(C) is proper, free 
and discontinuous since its projection on U is so. By consequence, we can consider 
the quotient: 

P:=f/xPV.l(c). 
The projection U x P1 —> C defined by (u, y) i-> 7r(u), where 7r : U —• C is the 
universal cover, is preserved by the action and induces a global submersion 

тг : P — С 
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PROJECTIVE STRUCTURES AND BUNDLES 233 

making P into a P1 -bundle over C. The graph of f also is invariant under the action 
(consequence of (1)) thus defining a section 

a : C P. 
Finally, the horizontal foliation defined by {y = constant} is also preserved and defines 
a foliation T transversal to all P1-fibres on P. Since the developping map / is regular, 
its graph is transversal to the horizontal foliation and a is transversal to T. In this 
situation, we say that the P1-bundle P is flat. The triple (TT : P —> C, J7, a) is 
well-defined by the projective structure up to analytic isomorphism of P1-bundles. 

pi graph(/) 

U 

P 

F 

a 

С 

FIGURE 3. From projective structure to bundle picture 

Conversely, given a P1-bundle TT : P —> C, a foliation T on P transversal to TT 
and a section a : C —> P transversal to J7, then the (unique) projective structure on 
P1-fibres can be transported, transversely to the foliation J7, inducing a projective 
structure on the section <r(C), and thus on its 7r-projection C. 

In the recent terminologoly of [3], such triple (TT : P —> C,T, a) are called $1(2, C)-
opers. 
Remark 1.3. — Given a homomorphism p G Hom(7Ti(C), PGL(2, C)), one can at least 
construct the pair (TT : P —• C, J7) as above. This foliated surface is called the 
suspension of the representation p, also known as the flat P1 -bundle associated to p. 
Conversely, consider a flat P1-bundle, i.e. a pair (TT : P —> C, J7) where TT : P —» C 
is a P1-bundle and J7 is a foliation transversal to TT. Then one can associate to it a 
representation p in the following way. 

Over any sufficiently small open subset E/j C C, one can construct a trivializing 
coordinate F{ : 7r-1(L )̂ —• P1 for the flat bundle, that is to say inducing an isomor­
phism in restriction to each fibre and such that the level curves F~1(yo) are local 
leaves of the foliation T. In fact, F{ is uniquely determined after choosing the local 
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FIGURE 4. From bundle picture to projective structure 

^-invariant sections 00,cri,^ : Ui —• P along which Fi takes values 0, 1 and 00 
respectively. Such flat coordinate is well defined up to left-composition by a Moebius 
transformation; likely as in section 1.2, after fixing a flat local coordinate F over 
some neighborhood of the base point xo G C, we inherit a monodromy representation 
P : Ki(C,xo) —> PGL(2,C) where the analytic continuation of F along any loop 7 
satisfies F(7 • u) = /0(7) o F(u). 

It turns out that any flat P1-bundle is isomorphic to the suspension of its mon­
odromy representation just defined. In fact, any two flat P1 -bundles are isomorphic 
if, and only if, they have the same monodromy representation up to PGL(2, C) conju-
gacy. Indeed, let (TT : P -> C,T) and (TT' : P' -> C,T') be flat P^bundles having flat 
coordinates F and F' over UQ C C giving rise to the same monodromy representa­
tion; then the local isomorphism $ : 7r~1(Uo) —> 7r/-1(i7o) sending any point p to the 
unique point p1 satisfying (7r(p), F(p)) = (irf(pf), F'(p')) extends uniformly as a global 
isomorphism of flat P1-bundles 3> : P —> P7, i.e. conjugating T to T1 and satisfying 
71"' O $ = 7T. 

Proof of HejaVs Theorem 1.3. — In fact, since the Monodromy Map is clearly holo-
morphic, it is enough to prove that it is locally bijective. 

Let (TT : P —> C,T,o) be the triple associated to a projective structure having 
monodromy representation p G Hom(7Ti(E )̂, PGL(2, C)). For any perturbation p' G 
Hom(7Ti(Ep),PGL(2,C)) of p, the corresponding suspension (7r; : P' —> C,T') is close 
to the foliated bundle (n : P —> C, F)\ if the perturbation is small enough, one can 
find a real C°° section a' : C —> P' close to a : C —• P and still transversal to T' (all 
of this makes sense and can be checked on the neighborhood of a fundamental domain 
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of the universal cover U x P1). The foliation J7' still induces a projective structure 
on the real surface cr'(C) that, by construction, has the required monodromy. This 
proves the surjectivity. 

Let (7r : P —• C, J7, a) be the triple associated to a projective structure V and 
consider another projective structure V' close to this V having the same monodromy 
representation. The fibre bundle construction can be done in the real C°° setting so 
that one can associate to V' a triple (IT : P —» C, J7, a') where C is still the complex 
curve attached to V and a' : C —> P is now a real C°° section transversal to T\ 
we note that the pair (TT : P —• C, J7) is the same for V and V1 since they have the 
same monodromy representation. If V' is close enough to V, say in the C°° category, 
then a' is close to <J; one can therefore unambiguously define a C°° diffeomorphism 
(/> : o~'(C) —> cr(C) by following the leaves of the foliation from one section to the 
other one. By construction, the projective structures induced by J7 on both sections 
are conjugated by </>. The diffeomorphism 7r*</> := 7r o 0 o cr' actually integrates the 
quasi-conformal structure induced by P' on C; it is close to the identity. • 

FIGURE 5. Local injectivity of the Monodromy Map 

Remark 1.4. — Since the Monodromy Map is not globally injective, the injectivity 
argument of the previous proof cannot be carried out for sections a and a' that are 
not closed enough: the set of C°° sections transversal to T may have infinitely many 
connected components as it so happens in the case of affine structures on the torus. 
Similarly, the surjectivity argument of the proof cannot be globalized: when the 
monodromy representation p' eventually becomes reducible for instance, there does 
not exist C°° section transversal to T anymore. Following Theorem 1.5, the existence 
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of a C°° section transversal to T is possible if, and only if, T is the suspension of 
a non elementary representation p (lifting to SL(2,C)) ! From this point of view, 
Theorem 1.5 looks like a very subtle transversality result. 

2. P1-bundles and Riccati foliations 

Motivated by the fibre bundle picture of section 1.5, we developp here the study of 
Riccati foliations on P1-bundles over compact Riemann surfaces. 

2.1. Classification of P1-bundles. — Let n : P —> C be a P1-bundle over a 
compact Riemann surface C: P is a smooth surface and the fibers of TT are ratio­
nal, isomorphic to P1. We also say that P is a ruled surface. Another P1-bundle 
7r' : P' —» C is analytically equivalent to the previous one if there is a holomorphic 
diffeomorphism (j) : P —• P' such that 7r' O cj> = n. We recall some basic facts (see 
[15, 24]). 

On open charts Ui : Ui —• C on C, the bundle becomes analytically trivial (see [8]): 
we have holomorphic diffeomorphisms (trivializing coordinates) 

<i>i : *-\Ui) Ui x P1 ; P (7r(p),^(p)). 
On overlapping charts Ui fl C/j, the transition maps take the form fa = <pij o cj)j where 
(t>ij(u,y) = (u,(pij(u,y)) and 

<Pij €PGL(2,0(£/iti)). 
The P1-bundle is equivalently defined by the collection 

(<pij)ijeH1(C,PGL(2,0)). 
By lifting conveniently the transition maps into i^1(C, GL(2, (9)), we may view a P1-
bundle as the projectivization P = FV of a rank 2 vector bundle V over C. Moreover, 
another vector bundle V will give rise to the same P1-bundle if, and only if, V = L<g>V 
for a line bundle L over C. The classification of P1-bundles is thus equivalent to the 
classification of rank 2 vector bundles up to tensor product by a line bundle. 

From the topological point of view, due to the fact that 7Ti(PGL(2, C)) = Z/2Z, 
there are exactly 2 distinct S2-bundles over a compact real surface. 

From the birational point of view, any P1-bundle is equivalent to the trivial bundle: 
there are infinitely many holomorphic sections a : C —> P; after choosing 3 distinct 
ones (Jo, o\ and (Too, one defines a birational transformation <f>: P --•> C xP1 commut­
ing with 7r by sending those sections respectively to {y = 0}, {y = 1} and {y = oo}. 
When the 3 sections are disjoint, the transformation <j> is actually biregular and P is 
the trivial bundle C x P1. 

The analytic classification is a much more subtle problem. If P admits 2 disjoint 
sections, say <7o>0"oo • C —> P, we then say that the bundle is decomposable: one can 
choose trivialization charts sending those two sections respectively onto {y = 0} and 
{y = oo}, so that P may be viewed as the compactification L of a line bundle L. 
Recall that line bundles are analytically classified by the Picard group Pic(C). Any 
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two elements L, V G Pic(C) have the same compactification P if, and only if, V = L 
or L®(-1): we just exchange the role of cr0 and a00 (see proof of Proposition 3.1). 

For instance, on C = P1, Pic(Px) ~ Z and the compactification of 0(e) (or 0(—e)), 
e G N, gives rise to the Hirzebruck surface Fe. It follows from Birkhoff's Theorem [5] 
that all P1-bundle is decomposable on P1 and is thus one of the Fe above. 

An important analytic invariant of a P1-bundle over a curve C is the minimal 
self-intersection number of a section 

e(P) := -min{<r.<7 ; a : C P} G Z. 
For a decomposable bundle P = L, L G Pic(C), we have e(L) = | deg(L)| > 0. For an 
undecomposable bundle, Nagata proved in [25] that —g<e<2g — 2 and all those 
possibilities occur. 

From the homological point of view, if2(P, Z) is generated by the homology class 
of o~o and / where OQ is any holomorphic section and / any fibre. Let us choose CTQ 
with minimal self-intersection: 

a0 - cr0 = -e, f • / = 0 and <r0 • / = 1. 
The homology class of any other holomorphic section is a = GQ + n • / with n G N: it 
has self-intersection 

a - a = o~o • <7o + 2n • 00 * / + n ' f ' f — — e + 2n > —e. 
In particular, the intersection number of holomorphic sections are either all even, 
either all odd: e mod 2 is the topological invariant of the bundle. 

On the other hand, if (To and a are not homologous then the intersection number 
cr0 • cr = n — e must be non negative and we deduce that a • a > e: when e > 0, this 
implies that O~Q is the unique holomorphic section having negative self-intersection; 
there is a gap between — e and e. 
Theorem 2.1 (Atiyah [1]). — Beside compactifications of line bundles, there are exactly 
2 undecomposable P1 -bundles over an elliptic curve, PQ and Pi, with invariant e = 0 
and —1 respectively. 

A P1-bundle P is flat (in the sense of Steenrod [29]) when a trivializing atlas can 
be choosen with constant transition maps (fij G PGL(2, C) (not depending on u). 
This means that this atlas defines by the same time a foliation T transversal to the 
fibres on P, namely the horizontal foliation defined by {y = constant} in trivializing 
coordinates, see Remark 1.3. 

Theorem 2.2 (Weil [34]). — The flat P1 -bundles over C are all the undecomposable 
bundles and all those arising as compactification of elements of Pico(C). 

The pairs (TT : P -> C,T) are classified by Jff1(C,PGL(2,C)). All triples (TT : P 
C, T, a) associated to a projective structure on V are actually supported on the same 
flat P^bundle P, namely 

— the Hirzebruch surface Fi when g = 0, 
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— the trivial bundle CxP1 when g = 1, 
— the unique maximally unstable (e = 2g — 2) and undecomposable bundle when 

g > 1 (see [14]). 
A birational description of the bundle will be given in Remark 2.2. 

2.2. Riccati foliations on P1-bundles. — A Riccati foliation on the bundle TV : 
P —» C is a singular foliation (see definition in [6]) T on P which is transversal to 
a generic fibre. In trivialization charts (ui,y), it is defined by a Riccati differential 
equation dy = a(ui)y2 + b(ui)y + c(ui), a, 6, c meromorphic in u, whence the name. 
The poles of the coefficients correspond to vertical invariant fibres for the foliation. 
Outside of those poles, the leaves of the foliation are graphs of solutions for the Riccati 
equation. The foliation T arising in the fibre bundle picture of section 1.5 is a regular 
Riccati foliation. Nevertheless, we will need to deal with singular foliations later. 

One can define the monodromy representation of a Riccati foliation as 

p : 7Ti(C — {projection of invariant fibres}) —• PGL(2, C). 

A classical Theorem due to Poincaré asserts that, in the regular case, the monodromy 
representation characterizes the Riccati foliation as well as the P1-bundle supporting 
it up to analytic equivalence. 

Remark 2.1. — One can view a Riccati foliation T on the P1-bundle P — FV as the 
projectivization of a meromorphic linear connection V on the vector bundle V. In 
fact, given a (meromorphic linear) connection £ on the determinant bundle det V = 
/\2 V —» C, there is a unique connection V on V lifting T and such that trace(V) = C-
Indeed, over a local coordinate Ui : Ui —> C, the bundle V is trivial and a connection 
V is just a meromorphic system 

V : 
d 

dui 
Vi 
У2 

= aim) 0(ui) 
7(^i) S(ui) 

Уг 
У2 

and the trace of V is the rank 1 connection defined by 

C := trace(V) : d\ 
dui = (a(ui) + S(ui)) A. 

The projection of V on FV is therefore the Riccati equation defined in affine coordinate 
(y ' 1) = (yi ' 2/2) by 

T := PV : dy 
dui 

= -j(ui)y2 + (a(ui) - S(ui))y + (3(ui). 

Clearly, V is uniquely defined by T and C. Notice finally that the line bundle detF 
admits a linear connection £ without poles if and only if it belongs to Pico(C). 

We start recalling some usefull homological formulae from [6]. First of all, let us 
introduce T?r, the tangent bundle of T, which is a line bundle on the total space P 
defined as follows. In trivializing charts (û , y), the Riccati foliation is also defined by 
the meromorphic vector field Vi := dUi + (a(ui)y2 + b(ui)y + c(ui))dy. The leaves of 
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T are just complex trajectories of the vector field V*. After choosing a global (mero-
morphic) vector field vonC, one can write v = fi • dUi for a meromorphic function 
fi on the chart Ui so that the new meromorphic vector fields fi • V* glue together 
into a global meromorphic vector field V on P still defining J7 at a generic point. 
One can think of V as the lifting of v by the (meromorphic) projective connection 
defined T on the bundle. Then, TF is the line bundle defined by the divisor of V, i.e. 
Tjr = 0((V)o — (V)oo). If d denotes the number of invariant fibre (counted with the 
multiplicity of the corresponding pole for Vi), then the homology class of 7> is given 
by 2> = (2 - 2g - d) • /. 

Given a curve a on P, each component of which is not invariant by J7, then the 
number of tangencies Tang(Jr, a) counted with multiplicities is given by (see [6], p. 23) 
(8) Tangp7, a) = a • a - 2> . a. 
For instance, if a = oo + n • / is a section, we immediately deduce that Tang(Jr, a) = 
2n- e -2 + 2g + d. 
Proof of Poincaré Theorem 1.4- — Consider two projective structures on C (compat­
ible with the complex structure of C) having the same monodromy representation: by 
the construction given in section 1.5, they correspond to triples (n : P —• C,̂ 7, a) and 
(ir : P —> C,T,o') with common P1-bundle and Riccati foliation. Since J7 is regular 
and the section a defining the first projective structure is transversal to J7, we have 
d = 0, Tang(^, or) = 0, and we deduce that e = 2n + 2g — 2. On the other hand, 
Tang(̂ ", do) = 2g — 2 — e should be non negative and we obtain e = 2g — 2 and n = 0: 
in the genus g > 2 case, a = is the unique section having negative self-intersection 
in P, and by the way a' = a. In genus 0 case, there is nothing to show; in genus 1 
case, the result follows directly from formula (4) and Theorem 1.1. • 

Another important formula is the Camacho-Sad Index Theorem (see [6]). Given 
a curve a on P invariant by J7, the self-intersection number of a equals the sum of 
Camacho-Sad index of J7 along this curve. When T is regular, all invariant curves are 
smooth and all Camacho-Sad index vanish: when T is regular, any invariant curve a 
has zero self-intersection. 

For instance, if T has affine monodromy, then the fixed point gives rise to an 
invariant section aoo : C —» P. We deduce that e = 0 and aoo realizes this minimal 
self-intersection number. In particular, we recover the fact that a projective structure 
on a genus g > 2 curve cannot have affine monodromy since the corresponding bundle 
has invariant e = 2g — 2 > 0. 

More generally, if the monodromy of T has a finite orbit (e.g. a finite group of the 
infinite dihedral group), then T has an invariant curve a = m- ero + n • / and formulae 
a-a = m(2n — em) = 0 together with a• / = m > 0 and a• <r0 = n — em > 0 show that 
e < 0. Again, this is not the monodromy of a projective structure whenever g > 2. 

In the particular case where the monodromy of J7 is linear, we have 2 invariant 
disjoint sections a$ and aoo showing that the bundle P is actually a compactification 
of a line bundle L G Pico(C). 
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We should emphasize that any two line bundles L and V have the same compact-
ification if, and only if, V = L or Z,®(_1). Indeed, we first note that, for a bundle P 
satisfying e(P) = 0, any two sections a and a' are disjoint if, and only if, they have 0 
self-intersection (and are distinct). The compactification L of a line bundle L always 
has the two canonical disjoint sections <Jo and a^. Now, a diffeomorphism <j>: L —• L 
between the compactifications of 2 non trivial line bundles has to preserve or permute 
the two canonical sections; in the former case, (j) is actually an equivalence of line 
bundles; in the latter case, 0 restricts to the fibres as 1/z and invert the monodromy. 
Of course, L is trivial if, and only if, L is trivial as a line bundle. It follows that when 
C has genus 1 the corresponding set of equivalence classes of P1-bundles with e = 0 
may be thought as C/{±1} ^ P1. 

A bundle P obtained by suspension of a representation p : ni(C) —> PGL(2,C) 
is topologically trivial (e even) if, and only if, p can be lifted as a representation 
p:7n(C)->SL(2,C). 

There is an algebraic and somewhat technical notion of (semi-) stability of vector 
bundles of arbitrary rank on Riemann surfaces due to Mumford, see for instance [27]. 
We can define the (semi-) stability of a P1-bundle FV by the same requirement to the 
rank 2 vector bundle V. It turns out that a P1-bundle is stable (resp. semi-stable) 
when e < 0 (resp. e < 0). It is known that if such a bundle occur along an algebraic 
(resp. analytic) family, it occurs for a Zariski open subset of the family. There is 
a theorem of Narashimhan and Seshadri characterizing stable bundles on a compact 
Riemann surface C by means of a precise, but some technical, construction in terms 
of unitary representations of the fundamental group of C. We present here a more 
comprehensible consequence, see Corollaries 1 and 2 of [27]: 

Theorem 2.3 (Narasimhan-Seshadri [27]). — Let C be a compact Riemann surface of 
genus g > 2. Then a holomorphic vector bundle of degree zero is stable if and only if 
it arises from an irreducible unitary representation of the fundamental group 7Ti (C) 
of C. A holomorphic vector bundle on C arises from a unitary representation of the 
fundamental group if and only if each of its undecomposable components is of degree 
zero and stable. 

Applying this general result to our situation we obtain that the map p H-> (n : 
P C,T) i-> (TT : P -> C) which to a representation p G Hom(7Ti(C), PGL(2, C)) 
associate the P1 -bundle obtained by suspension (forgetting the flat structure) induces 
a bijection from the set of irreducible representations p : 7Ti(C) —• PSU(2,C) up to 
PSU(2, C) conjugacy onto the set of isomorphism class of P1-bundles with invariant 
e < 0 and even (not fixed). 

The complete analytic classification of P1-bundles (including unstable ones) over 
curves of genus 2 has been achieved by the works of Atiyah [1] and Maruyama [24]. 
The analytic classification of rank 2 stable vector bundles over curves of arbitrary 
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genus from the algebraic point of view (in contrast with Narasimhan-Seshadri's ap­
proach) has been done by Tyurin in [31] (see also [32] for a survey in arbirtrary 
rank). 

2.3. Birational geometry of P1-bundles. — Given a point p on (the total space 
of) a P1-bundle n : P —» C, we will denote by elmpP the new P1-bundle obtained 
after elementary transformation centered at p: after blowing-up the point p, elmpP is 
obtained by contracting the strict transform of the fiber passing through p. The strict 
transform of a section a passing through p (resp. not passing through p) is a section 
of the new bundle having self-intersection a • a — 1 (resp. a • a + 1). All birational 
transformations between P1-bundles over curves are obtained by composing finitely 
many elementary transformations. On the other hand, any P1-bundle over a curve is 
birational to the trivial bundle. 
Example 2.1. — For instance, let D be a divisor on C and let po be the point on the 
zero section of the (total space of the) line bunde 0(D) over x G C. Denote by O(D) 
the P1-bundle obtained after compactification (adding a section at infinity). Then 

e\mP0O{D) = 0(D-[x]). 
Similarly, if p^ lies on the infinity section of 0(D) over x, then 

elmPooO{D) = 0(D+[x}). 
Now, recall that, as a consequence of Abel Theorem, the map 

C9 -> Pico(C) ; (xu ...,xg)~ O(g[x0] - [xx] [xg]) 
is surjective for any xo G C: it follows that (compactification of) line bundles of degree 
0 can be obtained after applying at most 2g elementary transformations to the trivial 
bundle. 

In [26], Maruyama and Nagata proved that an undecomposable bundle can be 
obtained from the trivial one after at most 2g +1 elementary transformations. On the 
other hand, we note that the minimal number of elementary transformations needed 
to trivialize all decomposable bundle is unbounded: for a line bundle of large degree 
d » 0, one need at least d elementary transformations. 

Next section, we will give an explicit birational trivialization of the bundle P sup­
porting all triples (P, a) associated to projective structures. After birational trivial­
ization, the Riccati foliation becomes singular, and the section a no more transversal. 

2.4. Riccati equation, schwartzian derivative and the 2nd order linear dif­
ferential equation. — First, we would like to make explicit the correspondance 
between the point of view of quadratic differentials, and that one of bundle triples. 

Consider the triple (TT : P —> C, a) associated to a projective structure on the 
curve C. One can reduce P to the trivial bundle and a to the infinity section {y = co} 
either locally, by a fibre bundle isomorphism, or globally on C, by birational trans­
formation. Here below, we adopt the later point of view; everything can be carried 
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out mutatis mutandis in the local regular setting. After a birational trivialization like 
above, T becomes possibly singular, but is now defined by a global Riccati equation 
(9) dy + a • y2 + /3 • y + 7 = 0 
where a, /3,7 are meromorphic 1-forms on C. This trivialization is unique up to 
birational transformation of the form y = ay + b where a and b are meromorphic 
function on C, a ̂  0. Let us see how such change of coordinate acts on the equation. 
A change of coordinate of the form y — ay transforms the Riccati equation into 

(10) dy + aay2 + (/3 + —)y + - = 0 
a a 

although a change of coordinate y = y + b yields 
(11) dy + ay2 + (/3 + 2ba)y + (d& + 62a + 6/3 + 7) = 0; 
after a combination of those two transformations, we can choose a and /3 arbitrary 
(with a ^ 0) and then 7 is uniquely determined by the projective structure. Let us 
show how to compute it from the developping map / of the projective structure. 

Let us go back to the universal cover where the Riccati foliation is given by dyo = 0 
and <7 is the graph of / (see section 1.5). By a preliminary change of coordinate 
2/o = yi + f(u), we have now a = {yi = 0} and the equation becomes T : dyi+df = 0. 
A second change of coordinate yi = f'(u) • y2 yields T : dy2 + (1 + ^jry2)du = 0, and 
a is still the zero section 2/2 = 0. In the case of an affine structure on a torus, the 
later Riccati equation is well-defined: the corresponding triple (n : P —» C, T, a) is 
then given by: 

P = C x P1 3 (u, y), Jr:dy+(1 + cy)du = 0 and a(u) = 0 
for some c G C. 

In the general projective case, it is more convenient to send the section a to the 
infinity: in the coordinate y2 = —l/y2, T is defined by dy2 + (y2 — jry2)du = 0 and 
&5 by y2 = 00. We finally apply the change of coordinate y2 = y + \ ^jr and obtain 

(12) F:dy+(y2 + ^Su(f))du = 0 

where Su(f) is the schwartzian derivative of / with respect to the variable u. Un­
fortunately, du is not a global 1-form. Moreover, u is a transcendental variable that 
we do not want to deal with when we are considering a triple (IT : P —> C,T,o). In 
general, by birational trivialization of the bundle, one can assume a at infinity and, 
after choosing a global holomorphic 1-form a on C, reduce the Riccati foliation to the 
special form 
(13) T : dy + ay2 + 7 = 0 
with 7 meromorphic on C. Here, a plays the role of du, that is u is replaced 
by a variable v such that a = dv, this makes sense at least at a generic point 
of C where everything is regular. Setting u — I/J(V), the change of coordinate 
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y = ^ (y + è̂ 7") transforms equation (12) into (13); after computation we find 
7 = § (Su(f) ° ̂  * W)2 + Sv{il>)) dv. Using (7), one finally obtains j = Sv(f o ij;)dv 
where <SV is the schwarzian derivative with respect to v and deduce 

Proposition 2.1. — Let (TT : P —» C, J7, a) 6e a JnpZe defining a projective structure on 
C. Let (v,y) G U x P1 6e bundle coordinates over -n~l{U), U C C, such that 

a : y = oo and J7 : dy + {y2 + 0(v) 
2 

)dv = 0. 

Then the projective coordinates f on U are the solutions of Svf — </>. 

Remark 2.2. — Following [26], the maximally unstable undecomposable P1-bundle P 
corresponding to projective triples (P,.?7, <r) can be trivialized after 2g elementary 
transformations (here e = 2g — 2 is even). The birational tranformation constructed 
above to put T into the normal form (13) however needs much more elementary 
transformations. 

Indeed, at a point where a = dv ~ uvdu has a zero of order v, i.e. v ~ uv+1, the 
expression 

a <g) 7 = 
1 
2 

SJf)dv®2 - dv 

v 

02 
— 

du 
u 

(8)2 

has a pole of order 2 and thus 7 ~ ^ 2 has a pole of order v + 2. In fact, /0/ ~ ¿7 
and the birational change of coordinate takes the form 

y ~ uv y-
v 1 
2 uv + 1 = 

1 
^+1 

u2v + 1y — v 
2 5 

3i/ + 2 elementary transformations are needed at this point. 
Now, we look for a sharp birational trivialization of P, that is to say with exactly 

2g elementary transformations. For any choice of global meromorphic 1-forms a and 
¡3, there is a unique birational transformation of the form y = a(y + b) putting the 
initial Riccati equation (12) into the form (9) and we have 

a = adu 
0 = da 

a 
+ 2ab 

7 = db + ab2 du + da 
a 

b + Su(f) 
2a du 

Each zero or pole of a (or a) gives rise to an elementary transformation: if we choose a 
holomorphic, we already get 2# —2 elementary transformations with the first change of 
coordinate. We would like now ab = §(/?— ) be holomorphic (as much as possible). 
The sum of residues of ^ is 2g — 2: we can construct a meromorphic 1-form 0 having 
the same principal part as ^ , plus one extra simple pole (at, say, p) with residue 
2 — 2g. The final change of coordinate y = ay + ab is therefore a combination of 2g 
elementary transformations: the change of coordinate y = ay goes from the trivial 
bundle to K with 2# — 2 elementary transformations; the ultimate transformation 
y = y 4- ab has one simple pole corresponding to a succession of 2 generic elementary 
transformations of the same fibre (compare [24]). 
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Setting y = z'/z, z' = dz, the differential equation dy + (y2 + q^p-)dv = 0 is 
transformed into 

(14) z" + ó(v) 
2 -z = 0. 

Then the following goes back to Schwarz: 

Proposition 2.2. — Any solution f to the differential equation Sv(f) = (j)(v) takes the 
form f = z\/z2 where z\ and z2 are indépendant solutions of (14). 

Proof. — A straightforward computation shows that S(z\/z2) = — 2^- provided that 
z\ and z2 are solutions of (14). Any other solution Sv(f) = (j>(v) takes the form 
/ = e*1̂ *2 ? a quotient of two other solutions. In fact, one can take f — z\jz2 with 
Z\ = L 

Vf and Z2 = i 
Vf' 

Remark 2.3. — One can easily generalize the notion of projective structure to the 
branching case by considering triples (n : P —> C, T, cr) with a generically transversal 
to T\ branching points of the structure are those points x G C over which cr has a 
contact with T. The local projective chart then takes the form / ~ t^+1 where v G N 
is the order of contact. More generally, one can consider a singular Riccati foliation 
T generically transversal to a, or equivalently linear equation dy -f (y2 + ̂ rp-)dv = 0 
with (j) meromorphic. By the way, projective structures on the 3-punctured sphere (3 
simple poles) correspond to the Gauss Hypergeometric equation, on the 4-punctured 
sphere, to the Heun equation and on the punctured torus, to the Lame equation. 

k Remark 2.4. — Let D = J] ViPi be an effective divisor on Ep. Consider the set Vg(D) 
i=l consisting in all the projective structures on E5 branched over the points Pi with 

ramification order Vi > 0 (see [21, 22]). Notice that the case D = 0 corresponds to 
genuine projective structures on Mg As before we can describe the elements of Vg(D) 
as triples (P,T, cr), where P —• T,g is a P1-bundle with structural group PSL(2,C), 
T is a transversely projective foliation transverse to the fibres, cr is a section such 
that cr(pi) is a tangency point with T of order V{ for each i = 1,..., k and outside 
these points a is transverse to T. Projecting to T,g the branched projective structure 
induced by T on a we obtain an orbifold complex structure C over (Eg,D). We 
can make a finite number of elementary transformations centered at the tangency 
points o~(pi) in order to obtain a birationally equivalent triple (P1 ,T',&'), where T' 
is a singular Riccati foliation and a1 : C —> P' is a holomorphic section everywhere 
transverse to T'. Applying the same transversality arguments of the proof of Hejal's 
theorem to (P', J7', cr') one shows that the monodromy mapping M : Vg(D) —> lZg is 
also a local diffeomorphism. 

ASTÉRISQUE 323 



PROJECTIVE STRUCTURES AND BUNDLES 245 

3. The genus 1 case 

3.1. Monodromy and bundles 
Proposition 3.1. — LetC = C/(Z + rZ) be an elliptic curve, p : iri(C) -> PGX(2, C) 
6e any representation and (IT : P —> C, ,F) 6e £/ie associated suspension. Then we are, 
up to conjugacy, in one of the following cases: 

• p : 7Ti(C) —> C* is linear and P G Pico(C) is the compactification of a line 
bundle; P is trivial if, and only if, p(l,r) = (ec,eTC). 

• p : 7Ti (C) —> C ¿5 euclidean and either P = PQ is the semi-stable undecomposable 
bundle, or P is the trivial bundle; we are in the latter case if, and only if, 
p(l,T) = (c,rc). 

• p(l,r) = (—2, | ) and P = P_i ¿5 £/ie sta&Ze undecomposable bundle. 

Proof. — It is easy to verify that all representation p : Z2 —* PGL(2,C) appear in 
the statement. We have already noticed that a linear representation gives rise to the 
compactification of a line bundle (this is almost the definition). In fact, for linear 
representations, we have the exact sequence of sheaves 

0_+c*-+<ir^ft->o 

where O* is the sheaf of invertible holomorphic functions and the morphism O* —> Q, 
is given by / i-> y . Prom the corresponding exact sequence of cohomology groups, 
we deduce the following one 

0 ff°(C,n) Hom(7ri(C),C*) -+ Pico(C) 0. 

The first non trivial morphism associates to a holomorphic 1-form UJ the homomor-
phism 7 —> exp(/^ a;) while the second one is the suspension. In our particular case 
where C is an elliptic curve, we finally deduce 

O^Cdu^ Hom(7r1(C),C*) -> C 0 

and the first alternative of the statement follows. 
The suspension of an euclidean representation gives rise to a bundle with a section 

Goo having 0 self-intersection. If there is another section cr0 disjoint from aoo> then it 
should be either transversal, or invariant by T from (8): in the first case, <TO provides 
a projective structure on C and the monodromy satisfies p(l,r) = (c,rc) by Guning 
Theorem 1.1; in the second case, the monodromy has two fixed points and is trivial, 
so is the bundle. In the remaining case where there is no disjoint section from crQQ , 
the bundle is undecomposable with invariant e = 0 and we conclude with Atiyah 
Theorem 2.1 that P = P0. 

Finally, if p(l,r) = (—z, ^) is the irreducible representation, we note that p cannot 
be lifted to SL(2, C) and thus e is odd. On the other hand, Weil Theorem 2.2 tells us 
that P must be undecomposable (being flat with e ̂  0). From Atiyah Theorem 2.1, 
the only possibility is P = P_i. • 
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3.2. Algebraic families of bundles and Riccati foliations. — It follows from 
[24] that all degree 0 line bundles as well as PQ can be obtained after 2 elementary 
transformations of the trivial bundle. In order to obtain P_i, a third one is needed. 
We use this approach to provide an algebraic family of flat bundles and Riccati folia­
tions. 

Let p G 0, q G elmp(C x P1) and consider P = elmgelmpO. Fix trivializing 
coordinates (u, z) G C x P1 and, for simplicity, set p = (0, oo). This is irrelevant since 
all flat P1-bundles over C admit a one parameter group of automorphism lifting the 
action of du (see description of Proposition 3.1). After elementary transformation 
at the point p, we obtain the bundle 0(—[0]) having one section aoo with —1 self-
intersection and a special point p, on the fiber over u = 0 but not on <Too, through 
which all sections having 4-1 self-intersection intersect. Indeed, 4- 1-sections come 
from horizontal sections of the trivial bundle. Here, we use the fact that there is no 
holomorphic section of homology type <TQ 4- / on 0, otherwise it would be the graph 
of a regular covering C —» P1. 

p 
z 

U 

aoo 

p 

FIGURE 6. The bundle O(-[0]) 

Case 0: q = p. The elementary transformation centered at p goes back to the 
trivial bundle: P = O. 

Case 1: q = (UO,ZQ) with UQ ^ 0 and z0 ̂  oo. After vertical automorphism, one 
may assume z = 0. The sections {z = 0} and {z = oo} respectively give rise to 
disjoint sections o~o and aoo on P having 0 self-intersection. We are in Pico(C) case: 
P = L. 

The generic horizontal section {z = c} gives rise to a section a on P intersecting 
(To at u = 0 and aoo at u = uo] in other words, a is a meromorphic section of L with 
divisor Div(a) = [0] - [u0] on C: L = O([u0] - [0]) corresponds to u0 G Pie0(C) ~ C. 

Case 2: q is on the fibre over u = 0 but is neither p, nor on a^. Then, P = P0 
is the indecomposable bundle. Indeed, assume that there exists a section a on P 
disjoint from cr^. It then comes from a section of 0(—[0]) disjoint from aoo and 
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passing through q, itself coming from a section of O intersecting (Too only at u = 0, 
without multiplicity. We have already seen that this cannot happen. 

Case 3: a is on (Too, over UQ. AVe obtain the bundle (D(—[0] — [̂ o])* 

Po p 

O 
0 u0 

Coo 

O(-[u0] - [0]) 

O([u0] - [0]) 

FIGURE 7. An algebraic family of topologically trivial bundles 

Here, we have parametrized all topologically trivial flat bundles by the line bundle 
0(—[0]), see [30]. We now want to parametrize all regular Riccati foliations on topo­
logically trivial bundles. The natural way to do this is to provide an explicit family 
of Riccati equations on the trivial bundle O having appearant singular fibres whose 
desingularization span all regular Riccati foliations. For instance, consider a linear 
Riccati foliation defined on the bundle 0([^o] - [0]), uo 7̂  0- Apart from the invariant 
sections cr0 and CTQO, the leaves are multivalued sections without zero or pole; after 
trivialisation of the bundle, those multivalued sections z{u) have now a simple pole 
over u = 0 and a simple zero over u = UQ (and still have linear monodromy): their 
logarithmic derivative dz(u) is a meromorphic 1-form on C having exactly 2 simple 
poles, one at 0 with residue —1 and one at uo with residue +1. In other words, the 
Riccati equation defining the singular foliation after trivialization of the bundle is 

dz 
du 

p'{u) + p'(u0) 
2(p(u) - p(u0)) + c • z. 

Indeed, the 1-form р'(и)+ю' (un) 
2(p(u)-p(u0)) + C du has a simple pole at u = 0 with residue — 1 

since its principal part is given by \~^du and p has a double pole at u = 0; the 
other poles may come from the two zeroes of p(u) — p(uo), namely u — ±^o, but 
u = — uo is actually regular since the numerator p'(u) + p'(u0) also vanishes at this 
point: by Residue Theorem, u = uo is a simple pole with residue +1. Of course, 
any other 1-form having the same principal part must differ by a holomorphic 1-form, 
namely c- du, c G C. We have omited from our discussion the case uo = —UQ is an 
order 2 point which can be treated like u = 0. 
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After two elementary transformations of O centered at the points (u, z) = (0, oo) 
and (^o,0), we obtain by this way all (linear) foliations on the bundle 0([^o] — [0]) 
while c runs over C. This does not provide yet a universal family for linear connections 
on C since the limit of the Riccati foliation while u$ —» 0 is the vertical fibration: for 
(it, z) in a compact set not intersecting {u = 0}, {z = 0} and {z = oo}, we have 

p'{u) + p'(u0) 
2(p{u) - p(u0)) + c ~ — 

1 p'(uo) 
2 p(u0) 

1 
u0 

while UQ ~ 0. 

In other words, the 1-form uodz — uo p'{u)+p'{uo) 
2{p(u)-p(u0)) -he •zdu tends uniformly to — zdu 

on the compact set, so does the foliation. We would like to complete this C-bundle 
over uo 7̂  0 with the family dz = Co • z, Co G C, of linear connections on the trivial 
bundle O (uo = 0). A way to obtain it from our large family is obviously to set 
c = c(uo) = Co — 1/u0 and take the limit while UQ —• 0 with Co G C fixed. In other 
words, in the parameter space (UQ, c) we consider only the limit at (0, oo) while UQ —> 0 
with a special direction. The good global parameter space is obtained after separating 
the germs of curves c-f ~ = constant. This is done after 2 elementary transformations 
on O: first we blow-up (^o,c) = (0,oo) by setting c = t/uo, and then we blow-up 
(wo, t) = (0,-1) by setting t+1 = suo, so that s = 1/uo -he coincides with the expected 
parameter CQ. The resulting parameter space is the affine bundle AQ := Po — 
where cr̂  is the unique 0-section of the undecomposable bundle Po-

Now, we construct a fine moduli space as follows. Consider the product O x O 
with global coordinates ((txo, c), (ii, z)), and equipp the bundle over (UQ,C) with the 
Riccati foliation 

dz 
du 

p'(u) + p'iuo) 
2(p(u) - p(u0)) + c • z. 

This can be seen as an algebraic foliation on the total space. Now, apply the 
elementary transformations with center along the surfaces {u = 0,z = oo} and 
{u = UQ, z = 0}. Then, we modify the base (uo, c) G O by two elementary transforma­
tions so that we obtain PQ as a base and the foliation extends as a linear connections 
all along uo = 0. 

The euclidean connections on PQ are given by: 
dz 
du = p(u) + y. 

Indeed, one can check that the reduction of the singularity over u = 0 yields Po; on 
the other hand, it is clear that monodromy is given by translations. This can be 
obtained also as a limit of our previous family of connections, or better from 

dz 
du 

p'{u) + p'(uQ) 
2(p(u) - p{u0)) -he •(z-e) 

which is equivalent to the previous one by the change of coordinate z \-+ z + c. Now, 
instead of taking limit along curves c = c(uo) = Co — ~1/u0 as UQ —> 0 with c0 constant, 
we take limit along c = c(ito) = 7^0 — 1/u0 7 € C constant, i.e. CQ = 7U0. We have on 
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convenient compact sets: 
p'(u) + p'(u0) 

2{p{u) - p{u0)) 
1 

u0 
~ UQP{U) while Wo ~ 0 

so that 
dz 
du = 

p'{u) + p'{u0) 
2{p(u) - p(u0)) + c -(z-c)~ (p(u) + 7) • iuoZ + 1 - 7̂ 0) ~ P(u) + 7-

3.3. The Riemann-Hilbert Mapping. — For a given elliptic curve C = C/(Z + 
rZ), the Riemann-Hilbert Mapping provides an analytic isomorphism 

M : A0 C* x C* 

between two spaces of algebraic nature. 
The space of linear connections on C is an affine C-bundle over Pico(C) ~ C that 

we have identified with A0: it is defined by gluing the chart (uo,c) G (C — {0}) x C 
with the chart (U0,CQ) € (C, 0) x C by the transition map 

(u0,c) (uQic0) := (uo,c + 1 

u0 
The space of linear representations of 7ri(C) is C* x C*. In the main chart (w0, c), the 
analytic connection is given by 

dz 
z = 

p'{u) -h p'{uo) 
2{p{u) - p{uo)) + c • du. 

Introducing Weierstrass Zeta Function Ç(u) = — JQ p(£)dÇ, one can write p'(u)+p'(u0) 
2{p{u)-p{u0)) 

£(u — uo) — C(v>) + C(̂ o) and integrate the differential equation above by means of 
the Weierstrass Sigma Function: the general solution ̂  is therefore given by 
z(u) = a <r(u—u0) 

cr{u) eQ{u0)-u^ a £ C*, and the monodromy is given by the homomorphism 
Л = Z + rZ C* ; 7 H exp(-w0C(7) + C(̂ o)7 + erf). 

Finally we obtain the full monodromy mapping 

M : A0 -> C* x C* ; 
(ito, С) H-> (e-woC(l)+C(w0)+ĉ  e-woC(r)+C(wo)r+cr̂  
(0,c0) ^ (ec°,ec°T) 

The image by the monodromy map of the algebraic fibration defined on AQ is the 
holomorphic foliation defined on С* x C* by the linear vector field 

хдх + гуду. 
As a particular case of Narasimhan-Seshadri Theorem, the unitary representations 

S1 x S1 form a smooth real 2-dimensional torus transversal to the foliation and cutting 
each leaf once. It is the space of the leaves. It inherits, from the transversal complex 
foliation, a complex structure, namely the structure of C. The euclidean foliations 

t1) This computation was communicated to the first author by Frits Beukers; a similar computation 
but with a slightly different presentation was done in [17]. 
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4) C* x C* 

FIGURE 8. The Riemann-Hilbert Mapping 

defined on A0 by dc = p(u0) + 7, 7 G C, are sent to the linear foliations xdx + Xydy, 
À G P1 \ {r}. The space of linear connections is equipped with a group law given by 
tensor product; it is just the pull-back of the natural group law on C* x C*. We thus 
get an analytic isomorphism between two algebraic groups that are not algebraically 
equivalent. 

One can compute the group law on A0 as follows. Given two connections 

dz 
z = (p'(u) - p'{u1)) 

2{p(u) - p{ui)) + c1 du and dz 
z = 

p'(u) + p'(u2) 
2(p(u) - p(u2)) 

+ C2 • du, 

the tensor product is a connection of the form 

dz 

z 
= 

p'{u) + p'(u3) 
2(p(u) - p(u3)) + c3 • du 

with us = u\ + 2̂ (group law on Pico(C)). Then, C3 is determined by the fact that 

p'lu) -f p'iui) 
2(p(u) - pim)) + 

p'{u) + p'(u2) 
2(p(i¿) - wp(u2)) 

p'{u) + p'{u3) 
2(p(u) - p(u3)) + ci -h c2 - c3 = 

df 
f 

for a meromorphic function / on C. Looking at the principal part of the left hand 
side, one see that / must have divisor Div(/) = [ui] + [̂ 2] — [u3] — [0] so that, up to 
a scalar, we have 

f = 
p'iv) - P'(UI) - p'(u2)-p'(ui) 

P{U2)-P{U-1) 
(p(u) - p[uy)) 

p(u) - p(u3) 
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after computations, one finds that 

C3 = C1 + C2 — Y'(u2) - p'(u1) 
2(p(^2) - p(ui)) 
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