
Astérisque

PÉTER BÁLINT

NIKOLAI CHERNOV

DOMOKOS SZÁSZ

IMRE PÉTER TÓTH
Geometry of multi-dimensional dispersing billiards

Astérisque, tome 286 (2003), p. 119-150
<http://www.numdam.org/item?id=AST_2003__286__119_0>

© Société mathématique de France, 2003, tous droits réservés.

L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique l’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AST_2003__286__119_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Astérisque 
286, 2003, p. 119-150 

GEOMETRY OF 
MULTI-DIMENSIONAL DISPERSING BILLIARDS 

by 

Péter Bálint, Nikolai Chernov, Domokos Szász & Imre Péter Tóth 

Abstract. — Geometric properties of multi-dimensional dispersing billiards are studied 
in this paper. On the one hand, non-smooth behaviour in the singularity subman­
ifolds of the system is discovered (this discovery applies to the more general class 
of semi-dispersing billiards as well). On the other hand, a self-contained geometric 
description for unstable manifolds is given, together with the proof of important reg­
ularity properties. All these issues are highly relevant to studying the ergodic and 
statistical behaviour of the dynamics. 

1. Introduction 
Let Q be an open connected domain in Wl or on the eZ-dimensional torus T(i. 

Assume that the boundary dQ consists of a finite number of Ck smooth (k ^ 3) 
compact hypersurfaces (possibly, with boundary). Now let a pointwise particle move 
freely (along a geodesic line with constant velocity) in Q and reflect elastically at the 
boundary ÔQ (by the classical rule "t he angle of incidence is equal to the angle of 
reflection'*). This is what is commonly refered to as a billiard dynamical system. 

Billiards make an important class in the modern theory of dynamical systems. 
Many classical and quantum models in physics belong to this class, most notably, 
the Lorentz gas [Si] and hard ball gases studied as early as the XIX century by 
L. Boltzmann [Bo]. 

The periodic Lorentz process is obtained by fixing a finite number of disjoint convex 
bodies B\, Bs C Td with smooth boundary and putting the moving particle in 
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the exterior domain Q = Td \ (UBlt). This system models the motion of an electron 
among a periodic array of molecules in a metal, as it was introduced by H. Lorentz 
in 1905. 

Mathematical studies of billiards have begun long ago. Ya. Sinai in his seminal 
paper of 1970 [Si] described the first large class of billiards with truly chaotic behavior 
— with nonzero Lyapunov exponents, positive entropy, enjoying ergodicity, mixing, 
and (as was later discovered by G. Gallavotti and D. Ornstein [GO]) the Bernoulli 
property. Sinai billiards are defined in two dimensions (d — 2), i.e. for Q C t2 or 
Q c T 2 , and the boundary of Q must be concave (i.e., convex inward Q), similarly to 
the Lorentz process (where the bodies BL are convex). Due to the geometric concavity, 
the boundary dQ scatters or disperses bundles of geodesic lines falling upon it, see 
Fig. 1. For this reason, Sinai billiards are said to be dispersing. 

FIGURE 1. Scattering effect 

Lorentz processes in two dimension have been studied very thoroughly since 1970. 
Many fine ergodic and statistical properties have been established by various re­
searchers, including P. Bleher, L. Bunimovich, N. Chernov, J. Conze, C. Dettmann, 
G. Gallavotti, A. Krâmli, J. Lebowitz, D. Ornstein, K. Schmidt, N. Simanyi, Ya. Sinai, 
D. Szâsz, and others (see the references). The latest major result for this model (the 
exponential decay of correlations) was obtained by L.-S. Young [Yl]. The success in 
these studies had significant impact on modern statistical mechanics. The methods 
and ideas originally developed for the planar Lorentz process were applied to many 
other classes of physical models — see recent reviews by Cohen, Gallavotti, Ruelle 
and Young [GC, Ru, Y2]. 

On the other hand, the progress in the study of the multidimensional Lorentz 
process (where d > 2) has been much slower and somewhat controversial. Relatively 
few papers were published covering specifically the case d > 2, especially in contrast 
to the big number of works on the 2-D case. Furthermore, the arguments in the 
published articles were usually rather sketchy, as in Chernov's paper [Chi]. It was 
commonly assumed that the geometric properties of the multidimensional Lorentz 
process were essentially similar to those of the 2-D system, and so the basic methods 
of study should be extended from 2-D to any dimension at little cost. Thus, the 
authors rarely elaborated on details. 
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Recent discoveries proved that spatial dispersing billiards are very much different 
from planar ones. Bunimovich and Rehâcek studies of astigmatism [BR], in the 
somewhat different context of focusing billiards, emphasized the known fact that 
the billiard trajectories may focus very rapidly in one plane and very slowly in the 
orthogonal planes. Astigmatism is unique to 3-D (and higher dimensional) billiards, 
it cannot occur on a plane. It plays an improtant role in higher dimensional focusing 
billiards as investigated in [BR]. 

In this paper we consider multidimensional dispersing billiards. We show that 
multi-dimensionality has great effect on the dynamics in the dispersing case as well 
— the system requires much more elaborated study than the 2D process. What is 
worse (cf. section 3), the singularity manifolds in the phase space of a spatial Lorentz 
process have pathologies — points exist where the sectional curvature is unbounded 
(blows up). Actually, singularity manifolds are in these pathologies — which form 
two-codimensional submanifolds of them — not even differentiable. Indeed, as it 
will be shown in section 3, the unit normal vector to the singularity manifold has 
different directional limits at the pathological points — the geometry is pretty much 
like the classical Whitney umbrella x2z — y2 in ]Rl*. This phenomenon is again unique 
to billiards in dimension d ^ 3. All these facts call for a revision of some earlier 
arguments and results on the multidimensional Lorentz process. This is much the 
more important since the studies of physically relevant multiparticle systems will 
require the same methods as those used for the high-dimensional Lorentz process. 

Throughout the paper we conduct a systematic study of the geometry of the Lorentz 
process in any dimension d > 2, aiming at the future investigation of its ergodic and 
statistical properties (in particular, the decay of correlations). First we describe our 
recent discovery — pathological behavior of singularity manifolds — and show exactly 
where it occurs (in order to "localize the pathology"). Then we develop tools for the 
study of basic geometric properties of the dynamics — operator techniques in the 
Poincaré section of the phase space. By applying these geometric tools we provide 
rigorous proofs of important properties for unstable manifolds: we show absolute 
continuity, distorsion bounds, curvature bounds and alignment. All these facts are 
absolutely important for the studies of ergodic and statistical properties of the Lorentz 
gas, but strangely enough, their proofs (in the case of dimension d > 2) have never 
been published before. Lastly, we show how our results can be used in the study of 
the decay of correlations, which will be done in a separate paper. 

2. Preliminaries 

There are two ways of considering billiard dynamics, the motion of a point particle 
in a connected, compact domain Q C Td = W1 /Ul, d ^ 2 with a piecewise (73-smooth 
boundary. The phase space of the flow can be identified with the unit tangent bundle 
over Q — the configuration space is Q while the phase space is M :— Q x §ri_1 
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(Sfi_1 is the surface of the unit d-ball). In other words, every phase point x is of the 
form (g, v) where q G Q and v G Sd_1. We denote the flow by S* : —oo < t < oo. 

On the other hand there is a naturally defined cross-section for this flow. The 
phase space of the Poincaré section map (or simply, of the billiard map) is M : = 
dQ x §!fr\ where + means that we only take into account the hemisphere of the 
outgoing velocities (for a more precise definition of the phase space, see subsection 4.1). 
For any x G M we set t+(x) := inf{£ > 0 | Sfx G M}, and T+x := St+^x (of course, 
T+ : A4 —» A-/). Then the Poincaré section map T : M —> M is defined as follows: 
Tx := T+x for x G Af. 

We require the following properties from the system to be studied: 

- Our billiard is dispersing (a Sinai-billiard): each 0Qt is strictly convex (had we 
required convexity only, our billiard would be semi-dispersing). 

~ The scat terers B, are disjoint. This ensures the C^-smoothness of the boundary 
dQ, i.e. that there are no corner points. 

- The condition that the horizon is finite says exactly that t+(x) < oc for any 
x G M. 

Finally, some more notation. Let n(q) be the unit normal vector of the boundary 
component 0Qt at q G dQr directed inwards Q. Then the invariant Liouville-measure 
of the discretized map is 

(2.1) dfi(q, v) := const. (n(q). v) dq dv 

where dq is the induced Riemannian measure on DQ whereas dv is the Lebesgue-
measure on 1. 

Throughout the paper, unless otherwise emphasized, we are considering this dis­
cretized dynamics. 

2.1. Fronts. — In billiard theory, several basic constructions and concepts are 
based on the notion of a local orthogonal manifold, which - for simplicity - we will 
call front. A front W is defined in the whole phase space rather than in the Poincaré 
section. Take a smooth 1-codim submanifold E of the whole configuration space, and 
add the unit normal vector v(r) of this submanifold at every point r as a velocity, 
continuously. Consequently, at every point the velocity points to the same side of the 
submanifold E. Then 

W = {(r.c(r)) \ reE}cM, 
where v : E —> §r/_1 is continuous (smooth) and v _L E at every point of E. The 
derivative of this function c, called B plays a crucial role: dv = Bdr for tangent 
vectors (dr,dv) of the front. B acts on the tangent plane TrE of E, and takes its 
values from the tangent plane J — Tvrr)^>d~l of the velocity sphere. These are both 
naturally embedded in the configuration space Q, and can be identified through this 
embedding. So we just write B : J J. B is nothing else than the curvature 
operator of the submanifold E. Yet we will prefer to call it second fundamental 
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form (s.f.f.), in order to avoid confusion with other curvatures that are coming up. 
Obviously, B is symmetric. 

Notice that fronts remain fronts during time evolution - at least locally, and apart 
from some singularity lines. 

When we talk about a front, we sometimes think of it as the part of the (whole) 
phase space just described (for example, when we talk about time evolution under 
the flow), but sometimes just as the submanifold E (for example, when we talk about 
the tangent space or the curvature of the front). This should cause no confusion. 

2.2. Evolution of fronts. — The evolution of a front during free propagation (that 
is, from one collision to the other) is described by the formula 

(2.2) B~ = ({B+yl +Tld)~l 
where r is the length of the free run between the two collisions, B+ is the s.f.f. of the 
front just after the first collision, and B^ is the s.f.f. just before the next one. 

For this formula — and the next one — to make sense, we need to identify the 
tangent planes of the front at different moments of time. Let T — TrdQ be the 
tangent plane of the scatterer at a collision point r. Just like J\ T is viewed together 
with its natural embedding into Q. The identification of different J\ is done in the 
usual way (cf. [SCh], [KSSz]): 

- by translation parallel to v from one collision to the other. 
- by reflection with respect to T (or, equivalently, by projection parallel to n) from 

pre-collision to post-collision moments. 
Notation for the unitary operator that executes this identification is U. however, 

for brevity, we will often omit U if it causes no confusion. 
At a moment of collision the curvature of the front changes lioii-coiitiiiuously (the 

front is "scat tered"): 
(2.3) B+ = B~ + 29 = B~ + 2(n, v)V*KV 
where(1) 

- B : J' —> J is the s.f.f. just before collision, 
- B+ :/T —> J is the s.f.f. iust after collision, 
- V : J —* T is the projection parallel to v: Vdv = dv [dvji) r 

dd.+d1 
G T for dv G J , 

- F* : T —> J (the adjoint of V) is the projection parallel to n: V*dq = dq — 
d+d1d (sssn.v) n e J for dq G T, 

K : T —> T is the s.f.f. of the scatterer at the collision point, 
- {n,v) = cos(/;, where 0 G [0, | ] is the so-called collision angle, 
- and the operator 9 : J —» J\ 9 = (n,v)V*KV is the so-called collision term. 

(^This convention on the collision term (0 = (n, v)V*K) will be useful in the geometric description 
of the phase space, see section 4. 
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2.3. Singularities . —- As it can be easily seen the billiard map T is discontin­
uous at pre-images of tangential reflections. Indeed, consider the set of tangential 
reflections: 

So :=dM = {(q,v) \ (v,n(q)) = 0} 

(which is nothing else than the boundary of the phase space). Its pre-images are: 

Sk=T-kS0 (k > 0). 

(From section 4 on it will be useful to introduce the notation for the set of all 
singularities up to /c, i.e. = Uk=lSt.) The map T is discontinuous precisely at the 
points of <Si(= S^). Furthermore — related to the smallness of the term (n, v) — the 
derivative DT is unbounded near «Si. As a consequence, to get a well-behaved dynam­
ics, the phase space is partitioned into homogeneity layers by introducing secondary 
singularities (for a detailed discussion see [BSC2] or subsection 4.1). 

To consider higher iterates of the dynamics — the maps Tk (k > 1) — the sets Sk­
ene to be investigated. We view all these sets as (finite unioins of) topologically em­
bedded one codimensional compact submanifolds with boundary. They have smooth 
manifold structure in the interior, however, in the multi-dimensional case (as it is 
demonstrated in subsection 3.1) the behaviour at the boundary is irregular (the cur­
vature diverges). This behaviour is related to the fact that in the multi-dimensional 
case, in addition to unbounded derivatives, the dynamics is highly non-isotropic near 
singularities. 

3. Geometry of singularities 

In several papers that appeared, singularities were assumed — either explicitely or 
implicitely — to consist of smooth 1-codim submanifolds of the phase space. Often, 
even a uniform bound on the curvature was assumed, independent of the order of 
the singularity. This is true in 2-dimensional billiards. However, it is not true in 
higher dimensions. In this section we present a counter-example in a 3-dimensional 
dispersing billiard. In correspondence with the notations introduced in subsection 2.3, 
we will use the notation S\ and S2 for the set of those phase points the trajectories of 
which have tangential first and second collisions, respectively. We will demonstrate 
that already the curvature of £2 has no upper bound, i.e. the curvature blows up near 
a point where the singularity manifold is not even differentiable. 

To avoid confusion let us make one further remark. As already mentioned, billiard 
dynamics has singularities: points where the billiard map is not continuous. These 
singularities occur on one codimensional submanifolds of the phase space. The de­
velopment of the theory is based on considering connected and essentially smooth 
components of the singularity manifolds. The recently discovered phenomenon de­
scribed below shows that these components are, indeed, only essentially smooth. On 
certain two-codimensional submanifolds of them pathologies occur: singularities in 
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lim lim 
y-^0vy^0 ax 

d 
r(x,y,vx,Vy)\x=v-o. 

(we will see that it is important to fix x = vx = 0). 
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the sense of algebraic singularity theory. To avoid confusion we will refer to these sin­
gular two-codimensional submanifolds as pathologies (in contrast to the singularities, 
the singularity manifolds of the dynamics themselves). 

3.1. Counter-example for bounded curvature . — In this section we prove that 
even in a 3D dispersing billiard, already the two-step singularities have no bounded 
curvature. The proof is rather implicit. We start with the indirect assumption that 
the curvature is bounded, and find that the two-step singularity intersects the one-
step singularity tangentially at every point of their intersection, except for a one-
codimensional degeneracy, where the intersection is not tangent. However — as a 
consequence of bounded curvature — our indirect asumption implies that the unit 
normal vector of S2 is a continuously differentiate function of its base point. Thus 
the set of those points where the two singularity manifolds intersect non-tangentially 
is open in S\ fl S2- This way we get a contradiction. 

Consider the situation demonstrated on Figure 2. To perform as transparent an 
argument as possible 

- the parameters on the figure and in the calculations below are different, 
- the first scatterer, the surface where the trajectories start out is a plane — thus 

it is not strictly convex. 
Nevertheless the reader can easily see that these modifications have no real signif­
icance. We are in 3 dimensions, so take a standard 3D Cartesian coordinate sys­
tem. Let the first 'scatterer' be the {z — 0} plane. Let the second scatterer be 
the sphere with centre 0\ = (0,-1,1) and radius R — 1. Let the third scatterer 
be the sphere with centre O2 = (1,0,2) and radius R — 1. We look at the com­
ponent of the phase space corresponding to the first scatterer, near the phase point 
(xo = 0,2/0 = 0,vxo = 0,1^0 — 0). Of course, vzo = 1, and the trajectory is the 
z axis. We are interested in the singularity manifold belonging to a tangent second 
collision. To describe this, let D G M4 be the set of those points (x,y,vx,vy) the 
trajectories of which hit the first sphere. Let r : D —> R be the distance of the 
trajectory and O2. That is, the singularity manifold we are looking at is the set 
S2 = {(x,y,vx,vy) G D I r(x,y,vx,vy) = 1}. So, if we want to construct the normal 
vector of the singularity manifold, we just need to calculate the gradient of r. We will 
directly calculate the partial derivatives. Since (xo,yo,VxQ,vyo) = (0,0,0,0) is on the 
boundary of D, we can only hope to find one-side partial derivatives. What is even 
worse: (x,y,vx,vy) = (x, 0,0,0) G D only if x — 0, so we cannot differentiate with 
respect to x. The same is true for vx. What we can do is take these partial derivatives 
at the points (0,y,0,vy) and than the limits 
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plane 

ni 

sphere i 
n2 sphere2 

FIGURE 2. The studied billiard configuration 

We start with the indirect assumption that S2 has bounded curvature. This implies 
that the unit normal vector of S2 is a continuously differentiate function of its base 
point with bounded derivative. In this way it makes sense to define the normal vector 
of £2 on the boundary points of S2 as the limit of (unit) normal vectors on the interior. 
For 11s the indirect Rssnrrmtion will mpa.n that the limit 

eradrfO, 0.0.0) : = lim 
_{2c;ib

2(6-2")cti+kswksw 

gradrfx, y, vr, vu) 

exists. 
The closer a reflection is to tangential, the less effect it has on the "neutral" di­

rection. In our case, the reflection on the first sphere causes "no scattering" in the 
x direction. That is, let (v'x,vf ,vfz) be the velocity after the first collision. The "rr" 
direction being the "neutral" direction means that 

lim -
dvd 

d 
vrd 

i/.(0,y,0,0) = l 

which implies that 

lim 
2/—0 c 

d_ 
9vx 

(0,y,0,0) = -2 

Similarly, 

lim 
3/-C 

d_ 
9 * * 

0,^,0,0) = 0 

which imnlies that 

lim 
d 

y-+0 0VX 
•r(0,y,0,0) = - 1 . 
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According to our indirect assumption, this means that 
d 

dx 
( 0 , 0 , 0 , 0 ) = - ! and d 

dvx 
0,0.0,0) = -2 . 

For the other two components, fix x — vx = 0. So the trajectory is in the {x = 0} 
plane, the scattering is just a 2D problem. We will calculate the one-side partial 
derivatives ^ r ( 0 , 0,0,0) and ^ r ( 0 , 0 ,0 ,0 ) . 

To find out about v', let cp be the angle of the first sphere's radius at the first 
collision point and the (0,1,0) vector. If vy — 0, then 1 — cos0 = —y (y < 0, of 
course), which, in leading order, gives 0 = ^/—2y. It can be seen that after the 
reflection v'y = sin 20. That is, the trajectory is far from being a line. However, it is 
diverted in the very direction which - in the first order - does not affect its distance 
from 0'2- Instead, in leading terms, r2 = 1 + (v'y)2. 

Putting these together, we get r = y/1 — 8y, that is, 
d 
8y v 

- (0 .0 .0 .01 = -4 . 

If we fix y = 0, the exact same consideration gives r = yjl — Svy, that is, 
d 

ÔVy 
(0,0,0,0) = -4 

as well. All together, we get 

gradr(0, 0,0,0) = ( -1 , -4 , -2 , -4 ) . 
This is (the limit of) the normal vector of the singularity at the point (x — 0, y — 0, 
Vx = 0, vy = 0). 

It is easy to see that the singularity corresponding to a tangent reflection on the 
first sphere has the normal vector 

grcxdr0(x'y,vx,vv) = (0,-1,0,-1). 

That is, the two singularities are not tangent at this point. 
The previous consideration for grad r also shows that this behaviour is exceptional. 

It is the result of the fact that in the first order r was unaffected by v'. If the 
radii at the reflection points (x,y,z) — (0,0,1) and (x,y,z) = (0,0,2) had not been 
orthogonal, the result would have been 

dr 
dy 

= oo. dr 
dd = oo, 

corresponding to a normal vector (0,1,0,1), meaning that the two singularities are 
tangent. Non-tangentiallity of the two singularities is a one-codimensional degeneracy. 

As we have pointed out at the beginning of the subsection, this contradicts our 
indirect assumption on the boundedness of the curvature. In this way we have only 
proven that the assumption was false. However, we believe that the picture of the 
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singularity suggested above is correct, the singularities are tangent almost everywhere, 
and their curvature only blows up near the pathological points described. 

3.2. Discussion. -— For a rigorous proof of some finer properties (such as correla­
tion decay) of multi-dimensional dispersing billiards it seems essential to characterize 
singularities in a systematic way. Such a characterization should be subject to future 
research (some possible ideas related to this question are discussed in [BChSzT]). 
In this subsection we do not plan to give rigorous proofs; we would like to point 
out some analogies to and emphasize some interesting features of the irregularities 
demonstrated above. 

The Whitney-umbrella. — Consider the one-codimensional set in R3 defined by the 
polynomial equation: 

fel/,2)Gddddl3|A = 2/2}, 
the Whitney-umbrella (for more details see [AGV]). 'One half of this set (its inter­
section with the quadrants xy ^ 0) is shown on Figure 3. For simplicity we use the 
notations: W2 for this 'half-umbrella' and W\ for the {z = 0} plane. Clearly 

- W2 terminates on W\ (in the points of the x-axis), thus W\ n W2 = dW2-
- at every point of the x-axis where x 7̂  0 the intersection of W2 and W\ is 

tangential. 
- W2 has smooth manifold structure in its interior; nevertheless, near the origin its 

curvature is unbounded as the normal vector changes rapidly (actually, the normal 
vector does not even have a well-defined limit at the origin). 

FIGURE 3. The Whitney Umbrella 

By these properties the geometry of singularities described in subsection 3.1 is 
analogous to Figure 3.̂ 2̂  W\ corresponds to Si, W2 corresponds to c>2 while the 

(2)To be precise, the situation on Figure 3. has one dimension less — in contrast to W2 the singu­
larities are 3-dimensional manifolds — but this has little significance to the analogy. 
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origin corresponds to the set of those doubly tangential reflections where the two 
radii are orthogonal (this set is one-codimensional in S\ Pi £2). 

Generalization I. — First let us consider the first-step singularity S\. By the nota­
tions of the previous subsection we may characterize the points of (x, y, vx, vy) belong­
ing to S\ easily. These are precisely those for which d(x, y, vx,vy) = 1, where .,.,.) 
is the distance of the point 0\ = (0, —1,1) from the line that passes through the point 
(x, y, 0) and has direction specified by the velocity components vx,vy. As d is a smooth 
function of its variables there is no curvature blow-up for S\ — and, for first-step sin­
gularities in general. Thus £2 is a pre-image of a smooth one-codimensional compact 
submanifold, however, the map under which the pre-image is taken has unbounded 
derivatives and is highly an-isotropic. Curvature blow-up occurs only at those points 
of £2 (near its intersection with <Si) where the map behaves irregularly. 

In correspondence with the above observation we conjecture that curvature blow­
up is not a peculiar feature of £2 , it is present in the pre-images of one-codimensional 
smooth submanifolds in general. Consider for example two-step secondary singulari­
ties T2 — those phase points for which at the second iterate instead of tangentiality 
the collision angle ((n,v)) is a given constant (see section 4 for more detail). In the 
specific example of subsection 3.1 such secondary singular trajectories are precisely 
those that touch tangentially a sphere of radius Rf (Rf < 1) at the second iterate. It 
is clear that the geometry of T2 is completely analogous to 52-

Generalization II. — Our calculations in subsection 3.1 do not use any speciality 
of the explicitly given billiard configuration. Doubly tangential reflections for which 
the normal vectors of the scatterers at the consecutive collisions are orthogonal can 
be found in any multi-dimensional semi-dispersing billiard. Near such trajectories a 
similar calculation can be performed. 

Generalization III. — All in all, the discovered pathology is general. In addition, the 
higher step singularities Sk] (k ^ 3) may show even wilder behaviour near their inter­
sections. Nevertheless, we strongly conjecture that a nice geometric characterization 
— suggested by the analogy with the Whitney-umbrella in the case of — can be 
performed. This question is subject to future research. 

4. Geometric properties of u-manifolds 

Throughout sections 4 and 5 we investigate u-manifolds (their counterparts, s-
manifolds can be treated similarly), u-manifolds are d — 1-dimensional submanifolds 
of the phase space with tangent planes in the (appropriately defined) unstable cone. 
Possibly the most important tools in studying ergodic and statistical properties, local 
unstable manifolds (or LUMs for short) are suitable limits of u-manifolds (for details 
see [ Y l , Ch2, Ch3]). In contrast to the 2d — 3-dimensional (one-codimensional) 
singularity manifolds, u-manifolds behave in a uniformly regular way. In section 4 
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we introduce a natural geometrical description that turns out to be very useful for 
studying multi-dimensional dispersing billiards. Proofs for some basic properties of 
u-manifolds are also included. More involved technicalities — that play a crucial role 
in investigating the statistical behaviour of a billiard system (cf. [Yl, Ch2, Ch3]) 
— are discussed in section 5. 

4.1. The phase space. — We shall work with the discrete time (collision to col­
lision) dynamical system, thus our phase space — which we denote by M — is the 
Poincaré phase space, the collection of possible collision points supplied with outgoing 
velocities. Mathematically this space is a bundle over the scatterers <9Q, the fibers of 
which consist of the possible outgoing velocities. At every base point q the fiber is the 
(d — l)-dimensional hemisphere with boundary which we shall denote by S+-1. Note 
that this bundle can be viewed as a subbundle (of vectors of unit length) in the direct 
sum of the tangent and normal bundles over the scatterers. Thus, by the Riemannian 
structure of <9Q, there is a naturally defined parallel translation on our bundle (see 
the description of the tangent plane below). Local coordinates on our phase space will 
be denoted x — (q,v). Additionally we shall use all the notations for local quantities 
introduced in the previous section(s) (eg. n(q), qo). 

Some conventions. — Throughout the paper the superscripts and ' — ' denote post-
and precollisional values, respectively, for certain functions, operators, hyperplanes 
etc. (e.g. v+ and v~). The dynamics and its derivative are denoted by T and DT, 
respectively. In correspondence with x\ — Tx (ôx\ — DTSx), the subscript T' means 
the value of a certain quantity at the first iterate. We shall usually prime the points, 
trajectories, operators etc. infinitesimally close to a reference point or trajectory. 

The tangent plane. — At any point x — (q, v) the tangent plane has a natural splitting 
TXM = TqdQ+TvSd~l = T+J. The two planes J and T are related by the projection 
operator V : J —> T and its adjoint V* (for their description see the section 2). 

For two points x = (q,v) and x' — (q'' ,v') infinitesimally close, the tangent vector 
pointing from x to x' is 

Sx = (ôq, Sv) ôq = q — qôv — Q0~1v/ — v 

where Qo is the rotator that takes T to T'. Up to first order: 

(4.1) Q0u = u - (u,dn)n + (u,n)dn for u G Rd; 

(4.2) Q0~1u = u + (u,dn)n - (u,n)dn for u G Rd 

and thus: 
Sv — dv — (v,n)V*dn 

Here dv = v' — v and dn = n' — n. These formulas execute (up to first order) the 
parallel translation of the bundle M. 
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4.2. Important submanifolds 
Singularity manifolds. — The dynamics T is discontinuous, the singularity manifold 
is <S(1) = Si = T_1«So where S0 = dM = {(q,v) \ (v,n) = 0} is just the boundary of 
the phase space. However, as already mentioned, to get a well-behaved dynamics we 
should partition the original phase space into homogeneity layers: 

h = {(q,v) e M I (fc + l)"2 < (v,n(q)) < k~2} and 

(4.3) I0 = {(q,v)eM\(v,n(q))>kô2} 

Here the integer constant ko is arbitrary. The boundary of this partitioned phase 
space, M is 

T0 = dM = ur=ko{(q,v)\(v,n)=k-2} 
Correspondingly, the count ably many manifolds in the set = T~1To are the so 
called secondary singularities. For a higher iterate of the dynamics, Tn, the primary 
and secondary singularities are, respectively: 

g(n) _ £(1) y rp-lg(l) y . . . j.-n+l£(l). p(n) _ p(l) y j--lp(l) y . . . j—n + lpO^ 

Fronts. — As introduced in section 2, (d — l)-dimensional submanifolds in Q, the 
configurational space of the flow, everywhere orthogonal to the flow direction will 
be referred to as fronts. When supplied with their normal vectors v (the velocities), 
fronts can be viewed as submanifolds of the flow phase space A4. Vectors (in the 
tangent bundle over Ai) tangent to fronts are denoted by (dr,dv) = (dr,Bdr) where 
B is the second fundamental form (s.f.f.) of our submanifold in Q (here, of course, 
dr _L v). 

Let us consider a front directly after (before) collision. It leaves a trace of velocities 
on the scatterer which can be viewed either as a (unit) vector field over <9Q or as a 
(d — 1)- dimensional submanifold in the Poincaré phase space. Direct calculations 
show that for a vector (dr, dv) = (dr, B+dr), tangent to the post-collisional front, the 
corresponding vector in the Poincaré phase space is Sx — (ôq, Ôv) where: 

Sq = Vdr; 

Sv — dv — (v,n)V*dn — dv — (v,n)V* KSq 

(4.4) = [B+Vl - (v, n)V*K)ôq - Fôq. 

The operator F : T •—• J plays an important role, it describes the tangent plane of 
our (d — l)-dimensional manifold in the Poincaré phase space. 

A front will be called convex/diverging whenever B+ is positive semi-definite 
(B+ ^ 0). Convex fronts remain convex under time evolution. The convex cone 
consists of those tangent vectors ôx that are tangent to some convex front. 

Lemma 4.1. — There are constants mo € N and 4>o < TT/2 that depend only on the 
billiard domain itself such that out of mo consecutive reflections at least for one of 
them for the collison angle qt> we have: ab < (J)Q. 
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Proof. — Let us assume the contrary: there is a sequence xn of phase points which 
have trajectories with n consecutive collisions, all with collision angle 0 > TT/2 — 1/n. 
By compactness there is a limit phase point with infinitely many consecutive tangen­
tial reflections. This, however, contradicts the finite horizon assumption. • 

u-manifolds and homogeneous u-mamfolds. — We shall consider the mo-image of 
the convex cone as our unstable cone. A manifold is a u-manifold if it has all tangent 
vectors in C%> u-manifolds remain u-manifolds as C% is invariant under the positive 
powers of T. 

A u-manifold is said to be homogeneous if it is contained in one homogeneity layer. 
There will be two metrics used on u-manifolds. Before their introduction we men­

tion that for any vector dz in T or in J \\dz\\ is the notation for the Euclidean length 
and for oprators O acting on these spaces ||0|| denotes the naturally induced norm. 

The p-metric 
\\Sx\\p=\\dr\\ 

measures distances on the corresponding front while the Euclidean metric 

\\ôx\\e = ^ôq2 + ôv2 

in the Poincaré phase space. A priori the p-metric seems to be degenerate but as 
we shall see it is a good metric on the cone C7̂ . Time evolution in the p-metric is 
given by: 

(4.5) H&ciHp = ||dn|| = \\dr + Tdv\\ = \\(I + TB+)dr\\ 
Some further notation. — For any u-manifold W: the quantities J^(x) and J^y(x) 
are the Jacobians of the dynamics in the p- and e-metrics, respectively. 

Remark. — All the above introduced concepts have their natural counterparts (with 
the corresponding nice properties) for the reversed dynamics: concave/convergent 
fronts, s-manifolds etc. 

4.3. Properties of F and equivalence of metrics 
Some conventions. — Constants that depend only on the billiard table itself (like 
7~mim 0o---) will be called global constants. 

For an invertible operator O the meaning of the relations c -< O -< C is that there 
are two positive global constants C\ and C<2 that bound the norms of the operator 
and its inverse: 

\\0\\<CX; lio-1!! < ^2-
Note that the operator O is not necessarily symmetric, even more, it need not be an 
automorphism. The values of the constants C\ and C2 are usually irrelevant. 

Two quantities / and g defined on the unstable cones will be called equivalent 
(/ ~ g) if there are some global constants C\ and C2 such that C\f ^ g ^ C2/. 
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Throughout this subsection we restrict our considerations on the vectors of the 
unstable cone. 

Sublemma 4.2. — Let us consider any u-front with incoming and outgoing s.f.f.-s B~ 
and , respectively. Then c -< B+ and c -< B~ -< C. 

Proof. — By the collision equations the operator f?+ — B~ is always positive semi-
definite, thus it is enough to prove c -< B~ -< C as it implies c -< B+. The upper 
bound is trivial by (2.2) and the lack of corner points (there is a lower bound on the 
free path: r ^ rm-m). Thus it remains to prove c B~, what is an easy consequence 
of Lemma 4.1. Indeed, our submanifold is an mo-iterate of a convex front . By 
the lemma out of these mo reflections there is definitely at least one with collision 
angle smaller than 0o- We shall denote the collision term that corresponds to this 
particular reflection by Go- Of course, c Oo as the spectrum of Bo is bounded below 
by &min cos 0o (here km-in is the lower bound on the spectrum of K — the curvature 
operator of the scatterers <9Q). Now let us consider any dr G J. By the evolution 
equations (2.2) and (2.3): 

{dr.B'dr) ^ (dr, ((Bo)"1 + m0rm^I)~'1dr) ^ ((/cmin cos 0O)_1 + m0rmax)_1 (dr, dr). 

Thus we have the desired lower bound. • 

Now we can formulate our most important technical lemma. 

Lemma 4.3. — Assume K' : T —• T and B' : J —> J are both symmetric, positive 
definite and c -< B'\K' -< C'. Then: 

c<B'V-x + (v,n)V*K' <C. 

Proof — The upper bound is obvious since \\V 1\\ = 1 and (i;, n)||F*|| = 1. 
By the definition of V, we have 

Vu — u - (u, n) 
(v,n) 

-v for u G J 

and 
V lu — u — (u, v)v for u G T 

Similarly, 

(4.6) V*u = u-
(u. v) 
(v, n) 

\ for u G T 

and 
(V*) 1u = u—(u,n)n for u£j 

It is then easy to arrive at 

(V*) 1V 1u — u — (u, v)v + (u, v)(v, n)n 

and 
(v, n)2VV*u = (v, n)2u + (u, v)v — (u, v)(v, n)n 
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Adding the two equations above yields 

(4.7) (F*)-1!/-1 + (v,n)2VV* - (1 + (v,n)2)I 

where / is the identity operator in T. 
Another useful observation: Since IK^')-1!! ^ C and IK^')"1!! ^ C for a global 

constant C > 0, all the eigenvalues of B' and K' are bounded below by c' = 1/C. 
Hence 

(4.8) (B'u,u) > c\\uf for a G J 

and 

(4.9) (Kfu,u) > c'\\u\\2 for M G 7 

Now, let u G T, \\u\\ = 1. Then HF-1^ < 1, and 

{B'V~lu+ {v,n)V*K'u,V-lu) = {B'V~lu, V~lu) + {v,n){K'u,u) 

Here all three scalar products are positive, hence 

(4.10) \\B'V-lu+ (v, n)V*K 'u\\ ^ c'\\V-lu\\ 

due to (4.8). Next, we have (v, n)\\V*u\\ ^ 1, and 

{B'V~lu + (v, n)V*Kfu, (v, n)V*u) = (B'V-lu, (v, n)V*u) + (K'u, (v, n)2VV*u) 

Substitution of (4.7) and using (4.9) gives 

WB'V^u + (v,n)V*K'u\\ ^ c\\u\\2 - c'WV^uW = c' - c " ^ - 1 ^ 

for some global constant c" > 0. Combining this with (4.10) yields 

\\B'V-lu+ {v,n)V*K'u\\ > c 

with c — c'/{1 + c"/c'). The lower bound is proved. • 

Corollary 4.4. — There are global constants c and C such that for any u-front c -< 
F -< C'. As a consequence, for all vectors of the unstable cone, ôx G C% the norm 
\\Sx\\e is uniformly equivalent to both \\Sq\\ and \\ôv\\. Furthermore, the p-metric is 
non-degenerate on the cone Cxl (nonzero vectors in Cx have nonzero p-length). 

Proof. — This is an easy application of Lemma 4.3 with B1 = B~ and K' = K (see 
also formula (4.4)). • 

Corollary 4.5. — The p-metric and the e-metric are equivalent in a 'dynamical' sense: 
for any Sx G Q ; \\DT6x\\p ~ ||<fa||e. 

Proof — Indeed, by the evolution equation (4.5): 

\\DTSx\\p = ||(J + TB+)dr\\ = + rJB+)y~1<5(?||. 
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Now we may apply Lemma 4.3 with K' = 2K and B' = I + rB~ (remember that the 
free path r is uniformly bounded from below and above). Together with Corollary 4.4 
we get: 

\\{I + TB+)V-Hq\\~\\8q\\~\\8x\\e. 
The two equations together give Corollary 4.5. • 

Before going into further details we would like to make an important remark. 

Remark 4.6. — From the next section on we turn to a closer investigation of u-
manifolds. We will see that — as long as the properties discussed in the rest of 
the paper are concerned — u-manifolds are no less regular in multi-dimensional bil­
liards than in the planar ones. This can be easily checked if our results are compared 
to those proved in the literature for the two-dimensional case, see especially [Ch2], 
Section 6 and the references cited there. 

Nevertheless, there are important differences from planar billiards in the way how 
u-manifolds are actually described. Anisotropy of the geometry is reflected in the 
use of linear operators. It is of course much more difficult to handle operators than 
numbers, thus the proof of the very same regularity properties becomes more technical 
as one switches from dimension two to three. 

4.4. Geometry and hyperbolicity of u-manifolds. — Now we would like to 
turn to the hyperbolic and geometric properties of the unstable cone. Unless otherwise 
stated, any vector Ox mentioned is an element of the u-cone C%-

Uniform hyperbolicity in the p-metric is guaranteed by the uniform bound r > Tm-in 
and Sublemma 4.2. Indeed: 

\\DT6x\\p = \\{Id + rB+)dr\\ > A\\ôx\\p. 

Here A > 1 is a global constant. On the other hand, by Sublemma 4.2 again (together 
with the evolution equations) for the (d— 1) eigenvalues of the symmetric operator B+: 

Ai-(cos0)_1; Xi ~ 1, z = 2 , . . . , d - l . 

As a consequence, for an arbitrary u-manifold W the Jacobian in the p-metric behaves 
as 

^ - ( c o s M ) - 1 . 
In the e-m,etric we have by Corollary 4.5: 

(4.11) \\DTn6x\\e > \\DTnSx\\p > A"_1||L>Tfe||p > CA"||fe||e. 

This implies that for a .sufficiently high fixed power of the dynamics, T\ = Tmi: 

(4.12) \\DTi6xWe > Ai\\Sx\\e with Ai > 1 global. 
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To calculate J^y(x) for any u-manifold W consider the operator G : T —> TXW 
that acts by the rule ôq (ôq,F(Sq)) = Sx. Then one can easily check that in our 
notation 

DT\w (x) = Gi o Vi o Ui o (I + TB+) O V"1 o G~l 
in correspondence with equation (4.5) that describes evolution in the p-metric. Now 
we may get a formula for the Jacobian in the e-metric: 

(4.13) J^(x) =detGi det V1 J^(x) (det V f 1 (det G)"1. 

We observe that 

(4.14) (det G)2 = det(J + FT) 

Indeed, there is an orthonormal basis in T and an orthonormal basis in J such that 
F : T J is represented, in those bases, by a diagonal matrix (this follows from the 
singular value decomposition theorem in linear algebra). For a diagonal matrix F, 
the relation (4.14) is easily verified by direct inspection. 

Now it is easy to see that there are global constants c and C such that: c < det G < 
G for the operator G at any u-manifold. Direct calculation gives: 

(4.15) Jew{x) ~ det(Vi) ~ (cos^i))"1. 

Let us consider a further restriction of DT onto a subspace R C TXW of the tangent 
plane. Applying the above argument for the restriction DT \R we get: 

(4.16) det(Dr|*)~det(Vi \w) 

where R' = (Vf1 o G^1 o DT)(R). 

Now we turn to some geometric properties of our submanifolds. Transversality 
— the property that the stable and unstable cones are uniformly transversal — is 
justified by the following theorem: 

Theorem 4.7. — The u-manifolds and s-manifolds in M are uniformly transversal. 
Precisely, there is a global constant Co > 0 such that for any u-manifold Wu and any 
s-manifold Ws at any point of intersection x G Wu Pi Ws the angle between Wu and 
Ws is greater than CQ. 

Proof. — We use the subscripts u and s to denote various quantities and operators 
related to the submanifolds Wu and WSl respectively. According to (4.4), 

Fu = UB-U-lV~l + (v,n)V*K 

and 
F8 =BfV~l - (^,n)V*K 

Note that the operator — Bf is symmetric, positive definite and satisfies c -< —Bf -< C 
(this is the counterpart of the previously established property c -< B~ -< C). Hence, 
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the operator B' := UBUU 1 — B+ is symmetric, positive definite and satisfies c -< 
B' < C. Now Lemma 4.3 implies 

(4.17) c<Fu-FS^C 

Next assume that Theorem 4.7 is false. Then, by using Corollary 4.4, one can easily 
conclude that for any e > 0 there are a u-manifold Wu, an s-manifold Ws intersecting 
Wu at some point x = (</, v), and a nonzero vector ôq G T such that 

\\Fu(ôq)-Fs(ôq)\\<e\\ôq\\ 

This clearly contradicts (4.17). Theorem 4.7 is proved. • 

Remark. — Observe that the above proof goes through even if instead of the s-
manifold Ws we have just an arbitrary convergent front Wo- Indeed, for the crucial 
equation (4.17) it is enough to have the upper bound — BQ -< C (which trivially holds 
for any convergent front Wo), the lower bound c -< —B+ — which is only true for 
s-manifolds — is, however, not essential. 

As a consequence we are able to prove the so-called alignment property. 

Corollary 4.8. — The u-manifolds are uniformly transversal to all the singularity man­
ifolds S C S^ and S C T^n\ n ^ 1. Precisely, there is a global constant Co > 0 such 
that for any u-manifold Wu intersecting any manifold S C S^ or S C at a point 
x there is a (d — 1)-dimensional submanifold S' C S through x such that the angle 
between Wu and S' is greater than c$. 

Proof. — We have S — T~kSo for some 1 ^ k ^ n and a domain So C So (or 
So C To). Let XQ = (qoiVo) = Tkx G So- Define a small (d — l)-dimensional 
submanifold S0 C So through XQ by S0 = {y = (r, v) G M \ v — QoVo}, where Qo is 
the rotator of Rd taking n(q0) to n(q), as defined by (4.1). 

First let us discuss the primary singularities (i.e. the case So C <So). We claim that 
S' = T~kSf0 is a limit, in C° metric, of a sequence of convergent fronts. Indeed, we 
first approximate S0 by a sequence of (d — l)-dimensional manifolds defined as 
follows. Pick a sequence of vectors G Sd~l such that —> vo as i —> oo and 
(vtf\n(q0)) > 0 for all i. Then we put = {y = (q, v) G M \ v = Qov(0l)}. For each 
submanifold SQ \ the tangent plane at every point (q,v) G is characterized by 
Sv = 0, hence F = 0 in our notation. According to (4.4), we now have UB~U~l = 
— {v,n)V*KV~l, which is a negative definite operator. So, the trajectories of SQ\ 
as they flow backward in time, make a convergent front. Therefore, T~kS^ is a 
convergent front for every i. As i —>• oo, these fronts converge to S; = T_/cS0, as we 
claimed. Now, Theorem 4.7 (in view of the remark above) completes the proof for 
the case of primary singularities. 
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In the secondary case (i.e. S C r^n^) the (d — l)-dimensional manifold S' = 
T~kS0 is a convergent front itself. Thus we may refer to the theorem and the remark 
directly. • 

Remark. — Recall that singularity manifolds are 2d — 3-dimensional. The above 
Corollary roughly states that there is a d — 1-dimensional subbundle in their tan­
gent bundle that lies in the stable cone field. However, the tangent space may behave 
wildly in the further d — 2 directions, in correspondence with the curvature blow-up 
discussed in section 3. 

5. Technical bounds on u-manifolds 
After introducing the basic structures and tools now we would like to turn to the 

discussion of some more complicated technical properties. Unless otherwise stated, 
all calculations refer to the unstable cone (field) and we use all other conven­
tions from the previous section as well (e.g. quantities corresponding to a trajectory 
infinitesimally close to a reference one are primed). 

Our main reference will be Lemma 4.3. Before discussing the important specific 
properties in the subsections, we record a few immediate consequences of this Lemma. 
For every u-manifold W, at every reflection we have 

(5.1; c -< B+V~l •< C. 

This bound has its adjoint version 

(5.2) c -< {v*y1B+ -< c. 

Let r be the time between the current and the next reflections (or, more generally, 
any number satisfying TM;N/10 < T ^ rmax). Then 

(5.3) (I + TB+W'1 -< C 

and we also have an adjoint version of (5.3) 

(5.4) c < (V*)~Hl + TB+) -< c. 

Note that if c -< A -< C for any operator A, then also c < A 1 -< C. Hence, all the 
above inequalities remain true for the inverse operators as well. For example, we have 

(5.5) (I + TB+)~1V* •< C and V(I + rB^)'1 < C. 

5.1. Curvature bounds on u-manifolds. — In this subsection we would like to 
prove that there is a uniform bound on the curvature of u-manifolds. More precisely 
we prove that the tangent plane of a u-manifold is a Lipschitz function of the base 
point, with a uniform (global) Lipschitz constant. The tangent plane is described by 
the operator F, thus we should prove that F depends smoothly enough on the base 
point. 

ASTÉRISQUE 286 



GEOMETRY OF MULTI-DIMENSIONAL DISPERSING BILLIARDS 139 

First we will get the relevant curvature bounds in the phase space of the flow; in 
other words, we investigate the smoothness of the dependence for s.f.f.-s B that de­
scribe any front corresponding to some u-manifold (which we refer to as u-fronts for 
short). Let W be any such u-front and x = (r, v) G W. Let x' = (r1\v') G W be 
infinitesimally close to x, and dr = r' — r, dv — v' — v the infinitesimal displacement 
vectors in Q and Sd_1, respectively. Clearly, dr,dv G J and dv = [Byv(x)](dr). Con­
sider the evolution of the displacement vector (drt,dvt) = St(dr1dv). If no collisions 
occur on an interval (£, t + At), then dvt+At — dvt and 

(5.6) drt+At = drt + Atdvt = [7 + A*£t](drt) 

where Bt = T ^ ^ ) . By Sublemma 4.2 we know that (Btu,u) ^ &min|M|2 for all 
u e J. Therefore 

(5.7) \\drt+At\\ > (1 +At6min)||drt|| 

hence 

(5.8) ||(7 + AtB^W ^ (1 + AJ^nin)-1. 

Now consider a moment of reflection. The tangent vector dxt — (drt,dvt) changes 
discontinuously, in correspondence with (2.3): dr = <ir+ = Udr~ and dv — dv^ — 
U(dv~) + 0(<7r+). The two trajectories reflect at the points q,q' G dQ in the time 
moments t, t' , respectively. For the infinitesimal differences we use the notations 
dt G R, 5q G T and dn = n(q') — n(q) = Kôq G T. As to their relations: 

(5.9) ||dr+||< IÎ H; |di| < 2||<5ç||; ||dn|K dddd d and ||du|| < C\\Sq\\. 

Indeed, these bounds are straight consequences of the formulas (2.3) and (4.4), the 
boundedness of K, the triangle inequality \dt\ $C \\dq\\ + ||<ir+|| and our crucial 
Lemma 4.3. 

We need to compare the operators O and O' taken at the points (q,v) and (q1, t/), 
respectively. They act in the hyperplanes J and J' orthogonal to v and v', respec­
tively. Consider the operators V*,K, V entering (2.3) at the reference point (q,v) 
and their counterparts (V'Y, 7C, V at the nearby point (q'', v'). Let Q — Qv,v> be the 
rotation in Rd taking v to v' and leaving invariant all the vectors perpendicular to v 
and v'. Then Q takes J to J'. More specifically, Q acts by the rule 

(5.10) Qu = u — (u, dv)v for for u G J 

and its inverse acts by 

(5.11) Q~lu = u + (u,dv)v for îoruej' 

where the terms of the second order in dv are dropped. Furthermore we shall use 
another rotator, Qo, that takes T to T'\ this later one we have already introduced at 
the description of the parallel translation of the tangent bundle (see (4.1), (4.2)). 
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Instead of V and V*, it is now more convenient to work with more "tame" operators 
V = (v,n)V and V* = {v,n)V*. They act by the rules 

(5.12) Vu = (v,n)u — (u,n)v for uej 

and 

(5.13) V*u — (v,ri)u — (u,v)n for ueT 

Similar formulas hold for V and (V1)*, where v' ,n' are substituted for v,n. 
Put Al/ = Q^V'Q - V, AV* = Q^ÇV'YQo - V* and AK = Qô1K'Q0 - K. 

Direct calculations based on (5.12), (5.10) and (4.2) yield 

[AV](w) = {(dv, n) + (v, dn))u -f ((v, dn) — (u, n)(v, dn))n — (u, dn)v — (u, n)dv 

hence 

(5.14) ||AF|| ^2||<fo||+4||dri|| 

Note that AV* is the adjoint of AV, hence 

(5.15) ||AV*|| = \\AV\\ ^2| |dv| |+4| |dn| | 

Now, because <9Q is C3 smooth we have 

(5.16) \\AK\\ < C\\Sq\\ 

for some global constant C > 0. 

Sublemma 5.1. — There is a global constant C > 0 SIAC/I THAT FOR /or any r G 
(̂ min/10, Tmax) 

||(/ + rB+)-1(Q-1e'Q - e ) ( j + TS+)-1!! ^ c\\sq\\ 

Proof. — Recall that 

9 = 2(v,n)V*KV = 2(v,n)~1V*KV 

and similar formulas hold for 0'. We have, to the first order of \\Sq\\, 

Q~lQ'Q - 0 = 2((v',nf) - (v,n))V*KV 
(5.17) +2(v, n)-l(AV*KV + V*AKV + r ^ A V ) 

Note that (v* ,n') — (v,n) = ((dv,n) + (v,dn)), to the first order in \\Sq\\. Thus we can 
rewrite (5.17) in this way: 

Q-le'Q - 0 = 2((dv, n) + (v, dn))l/*iv V + 2(AV*KV + V*AKV + 1/*KAT/) 

Now we apply (5.5) and then (5.14)-(5.16) with (5.9). This completes the proof of 
the sublemma. • 
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After so much preparation we are ready to discuss curvature bounds for the flow, 
i.e. for u-fronts W. 

We need to estimate the 'derivative' of the second fundamental form Bw(x) with 
respect to x G W. The operator Bw(x) acts in the hyperplane J that also depends 
on x. For points x' = (r',vf) G W infinitesimally close to x, let Q = Qvy be the 
rotator in Rd that takes J to J' as defined by (5.10). Then the 'increment' of B is 
defined by Q~lB'Q — B, where B = B^{x) and B' = B^{x'). Now consider 

Dw{x) := max WQ^B'Q - B||/||dr|| 
dr^O 

where the maximum is taken over all nonzero infinitesimal displacement vectors dr = 
r' — r. 

Lemma 5.2 (Curvature bounds -1). — There is a constant Dmax such that for any di­
vergent wave front W and x G W there is a to — £o(W,x) such that for all t > to 
we have the following: if no collisions occur in the interval (t — rm-ul/2,t), then 
DWt(xt) max • 

Proof — For short, we put Dt = Dwt(xt). First we show that Dt decreases during 
free runs between collisions. 

Sublemma 5.3. — If there are no collisions in a time interval (t,t + At), then 

Dt+At <: (1 +A*6min)-3A 

Proof — For short, we put B = Bwt(xt) and B\ = %+At(xt+At)- Similarly, we 
define B' and B[ at the points x't and xft+At. Now, if A\ and A2 are two invertible 
linear operators acting in the same space, then obviously 

(5.18) Al-A2 = -A^Aî1 - A2:l)A2 

Applying this trick twice and using (2.2) yields 

Q-lB[Q - £1 = Q-\I + At B')~lQ [Q~lB'Q -£](/ + At B)~l 

Now the sublemma easily follows, with the help of (5.7) and (5.8). • 

Sublemma 5.4. — If there is a collision in a time interval [t,t + rmin/4), then 

A + W 2 <Dt + D 

where D > 0 is a global constant. 

Proof — Let s = t + rmin/2. Note that there are no collisions in the interval 
(t + "̂min/4, s). For short, we put B — Bws(xs) and B' = Bws(x's). Denote by 
t\ and t\ the moments of reflection of the trajectories of the points xt and x't, re­
spectively, that occur in the interval (£, t + rmin/4). Put dt = t[ — t\, r — s — t\ and 
T' = s — t[. Note that r > rmin/4 and r' > rm-m/A. Put B+ — Bwti+Q{xtl+o) and 
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B'+ = Byyt, (avi+o). -̂ et Q be the rotation of Rd that takes i; = vs to i/ = t^. It 
acts on J — JXs by the rule (5.10). Applying the trick (5.18) twice yields 

Q~lB'Q - B = -Q-lB'Q(dtI)B 

(5.19) +Q~\I + T'B'+^Q [Q-LB'+Q - B+] {I + rB+)'1 

Note that ||jE?|| ^ 1/r ^ 4/rmin, and likewise \\B'\\ ^ 4/rmin. Hence, 

|| -Q-lB'Q(dtI)B\\ <: C|rft| 

for a global constant C > 0. Next, we have B+ = UB-\J-X + 8 by (2.3), and, 
similarly J5/+ = U'B'~U'~l -f O'. Then we can further decompose the last term in 
(5.19): 

WQ^B'Q - B\\ < C\dt\ + \\Q-lU'B'-U'-yQ - UB'U^W 

+ \\Q-\I + T'B'+)-1Q \Q-LQ'Q - 9] (/ + TB+Y1 || 

Using Sublemma 5.1 (and its notation) gives, up to the first order in ||<5g||, 

\\Q-\I + T'B'+)-1Q [Q-'G'Q - 0] (/ + rB+y1 ii 

= ||(/ + rB+)-1[Q"1e 'Q-e] (I + rB+r^l^CWôqW 

Note that 

(5.20) \\Q~lU'B'-U'-lQ - UB~U-l\\ = \\Q^1B'-Ql - B~\\ 

where Qi = U'~1QU is the rotator that takes the hyperplane J~ = JXt 0 to J'~ = 
Jxit . We apply the trick (5.18) twice and act as in (5.19) and easily obtain 

'i_0 
(5.21) WQ^B'-Q, - £ T K \\B'~\\ \dt\ \\B~\\ + \\Q?B[Qi - B1\\ 

where B\ = B\^t(xt) and B[ = Bwt(x't). 
Combining the above estimates gives 

\\Q~lB'Q - B\\ <: C\dt\ + C\\6q\\ + \\Q^1B[Q1 - B^ 

for some global constant C > 0. Note that drs = (I + rB+)drJr = (I + TS+JV-1^ , 
and due to (5.3) we have ^ C||drs||. Lastly, |cfc| ^ 2\\Sq\\ by (5.9) and ||dr4|| < 
||drs||, which easily follows from (5.7). Therefore, 

\\Q~lB'Q - B\\l\\dra\\ H Q r ^ i Q i " Bi\\/\\drt\\ 

where D is a global constant, which proves the sublemma. • 

We now complete the proof of Lemma 5.2. Let t > 0 satisfy the condition of the 
Lemma, and n be the number of collisions on the interval (0,t). Then combining 
Sublemmas 5.3 and 5.4 gives 

Dt ^ ÀnA) + (l + A + --- + Àn)D 

where A = (1 + Tmin6miri/4)~3 < 1. Since D is a global constant, the Lemma follows. 
• 
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In all that follows we will only consider u-fronts W for which Dw(x) ^ £)max for all 
x G W provided the trajectory StxJ —rm[n/2 < t < 0, does not collide with dQ. As we 
are mainly interested in those u-manifolds that approximate LUM-s, this convention 
is justified by Lemma 5.2. Indeed, if the front W corresponds to a LUM, than S-tW 
is a divergent front for any t > 0. 

Remark. — A useful estimate (5.21) obtained in the proof of Sublemma 5.4 can now 
be restated. Recall that \dt\ ̂  2||<fy||,(q'\v')•(q'\v')^ l/r?nin (a global bound) and 

HQr^ iQi -Bi l l ^ Anax||drt|| 

by the above convention. Also note that \\drt\\ ^ IMr~|| = ( q ' \ v ' ) = ( q ' \ v ' ) ^ ll&zll-
Hence, 

(5.22) IIQ^B'-Qi-B-H ^ C\\dr\\ 

with a global constant C > 0. 

Finally we should prove the curvature bounds on u-manifolds W in the Poincaré 
phase space, in other words, that the 'derivative' of F along u-manifolds is uniformly 
bounded. 

We will denote by dist\v(x,y) the distance between x, y G W in the Euclidean 
metric on W. Let x = (q,v) and x' — (q'\v') be two infinitesimally close points of 
a u-manifold W, and F and F' the corresponding operators at x and x'. Using our 
previous notation, we consider the increment of F defined by Q~1F/QQ — F. Here 
again Qo is the rotator taking n = n(q) to n' = n(q') and Q is the rotator taking v 
to v'. 

Theorem 5.5 (Curvature bounds - II). — There is a global constant C > 0 such that 

\\Q-iF'Q0-F\\^C\\ôq\\ 

Proof — Using the second formula in (4.4) and our earlier notation V* = (v,n)V* 
gives 

WQ-'F'Qo - F\\ < \\Q-1V"QoQû1K"Q0 - V*K\\ 

+ \\Q-1U'B'-U'-1QQ-1V'-lQ0 - UB~U-lV-l\\ 

The first, term is bounded by C \\6q\\ for some global constant C > 0, according to 
our earlier estimates (5.15) and (5.16). To bound the second term we need two more 
estimates. One is 

(5.23) \\Q-lV'-lQ{)- V-l\\^±\\dv\\+2\\dn\\^C\\5q\\ 

which is proved just like (5.14) and (5.15), we omit the details. The other is 

(5.24) \\Q-lU'B'-U'-lQ - UB^U~l\\ <i C\\5q\\ 
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for a global constant C > 0. In the proof of Sublemma 5.4 we introduced the rotator 
Qi = Uf~lQU that takes the hyperplane J~ to J'~~. With this, (5.24) is simply 
equivalent to our early estimate (5.22). Theorem 5.5 is now proved. • 

5.2. Distorsion bounds. — This subsection is devoted to the question, how 
smoothly the volume expansion rates vary at nearby points on the same u-manifold 
(distorsion bounds) and at different u-manifolds joint by holonomy maps along 
s-manifolds (absolute continuity). Actually, the reason for introducing homogeneity 
strips and secondary singularities (see (4.3)) is that we would like to control these 
distorsions. Let us consider the evolution under Tn of a u-manifold W. Due to (4.11) 
distances grow exponentially in n, and the same is true for the (d — l)-dimensional 
volume of TnW. However, at almost grazing reflections, when (v,n) ~ 0, the 
expansion of u-manifolds is highly nonuniform, and so distortions are unbounded. 
Nevertheless, as we shall prove in Theorem 5.7, the situation is much better with 
homogeneous u-manifolds. 

Throughout the subsection all metric quantities (norms, distances, volume ele­
ments, Jacobians) are understood in the e-metric, thus we often drop the sub- or 
superscripts e. 

Sublemma 5.6. — If W is a homogeneous u-manifold, then for any two points x — 
(q, v) and x = (q, v) of W we have 

\(v, n) — (v, n)\ ^ C (v, n) distw(x,x 
1/3 

where n = n(q) and C > 0 is a global constant. 

Proof. — Let W D Ik ^ 0 for some k. Then 
(5.25) \{v,n) - (v,n)\ <Ci (fc + 1)-3 

with a global constant Ci, according to our construction of Ik- Next, for any point 
x' — (q',v;) infinitesimally close to x, we have, up to the first order in ||&E||(= ||(5x||e), 
(5.26) \{v',n') - {v,n)\ = \(dv,n) + (v,dn)\ ^ C2\\Sq\\ ^ C3\\Sx\\ 
with some global constants C<2,Cz, see (5.9) and Corollary 4.4. Integrating (5.26) 
from x to x yields 

(5.27) \(v,n) — (v,n)\ ^ C3dist(x,x) 

Now (5.25) and (5.27) give 

\(v,n) - (v,n)f ^ C?C3 (k + 1)~6 dist(x, x) 
Lastly, recall that (v,n) ^ (k + 1) 2 if k > 0 and (v,n) ^ k0 2 if k = 0, hence 
(v,n) ^ kâ2(k + l)-2 for any k. Therefore, 

\{v,n) - {v,n)\3 <: ClCzkl (v, nf dist(x, x) 
This proves the sublemma. 
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Let W be a u-manifold, x G W and Tn continuous at x. Denote by Jw,n(%) the 
expansion factor of the (d — l)-dimensional volume of the manifold W under Tn at 
the point x, i.e. Jw,n(%) '•— \ detDTn \w (x)\. 

Theorem 5.7 (Distorsion bounds). — Let W be a small u-manifold on which Tn is con­
tinuous. Assume that Wi := TlW is a homogeneous u-manifold for each 0 ^ i ^ n. 
Then for all x, x G W 

I In JM/N (x) - ln JWjn (x) | < C • dist wn (Tnx, Tnx) 

for a global constant C > 0. 

Proof. — Note that Jw,n(%) — 117=0 Jwt)\(Tlx). Hence, it is enough to prove the 
lemma for n — 1, because dist(T?x, Tlx) grows uniformly exponentially in i due to 
(4.11). So we put n = 1. 

Denote x\ — Tx and x\ — Tx. We will also use a variable point x' G W infinites­
imally close to x, and put x[ = Tx'. For convenience, we will use the subscript 1 to 
denote quantities (including operators, hyperplanes, etc.) related to the points x\,x\ 
and x[. In a similar way, bars are used to denote quantities related to the points x and 
xi, and primes are used for quantities related to x' and x[. For example, we denote 
by B+, B and B,+ the second fundamental forms of the wave front (corresponding 
to the u-manifold W) at the points x, x, and x7, respectively. Similarly, F, F, and F' 
denote the F operator (4.4) taken at x, x and x;, respectively. In a similar way, F\, 
Fand F[ are the F operators taken at xi, x\ and x[, respectively, etc. 

Note that the basic quantity, Jw,i(%) was already calculated as J^(x) in the previ­
ous section (formula (4.13)) where we also introduced the operator G. In view of this 
formula, to prove Theorem 5.7 with n = 1, it is now enough to prove three claims: 

— r i1/3 
Claim 1. — | l n d e t l / - IndetFl < C • distVy(x,x) . 
Claim 2. — I ln det G - ln det G\ ^ C • distvy (x, x) 

Claim 3. — I lndet(7 + r ^ + ) - l n d e t ( / + r,B+) | ^ C- distTu/(^i,^i) 1/3 

By C we denote some global constants. Indeed, the bounds in Claims 1 and 2 will 
also hold at the points x\ and Xi, because TW is a homogeneous u-manifold, and 
Theorem 5.7 will then easily follow. 

Proof of Claim 1. — Since det V — (v,n)~1, the claim is a direct consequence of 
Sublemma 5.6. 

Our proofs of Claims 2 and 3 use the following 
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Sublemma 5.8. — Let A be an invertible linear operator in an m-dimensional space, 
and A A an infinitesimal operator. Then, up to the first order of ||A^4||, 

|lndet(A + AA) - lndet,4 | = Itr^"1 • AA)\ ^ mWA'1 • AA\\ 

Proof — We have lndet (A + A A) = lndet A + lndet (7 + A~l • AA), and the rest is 
straightforward. • 

Proof of Claim 2. — It is enough to prove 

(5.28) I lndet G' - lndet G\ < C \\8x\\ 

for infinitesimally close points x,x' G W, then the integration from x to x will give 
the bound in Claim 2. 

As to the value of detG, we refer to formula (4.14). Now, by Sublemma 5.8, we 
have 

I ln det G' - lndet G| ^ | ln det(7 + F'*F') -det(7 + F*F)| 

= I lndet(7 + Q^F'+F'Qo) - det(7 + F*F)| 

< (d - 1) ||(7 + F*F)~1(Q0~1F/*F/Q0 - F*F)\\ 

(the introduction of Qo defined by (4.1) was necessary to ensure that both operators 
act in the same space). It is obvious that ||(7 + F*F)_11| < 1, and by Corollary 4.4 
and Theorem 5.5 we have 

\\QûlF'*F'Q0-F*F\\^C\\dr\\ 

This proves (5.28), and so Claim 2 is proved. 

Proof of Claim 3. — To shorten some formulas, we put R = I + TB+ (and, respec­
tively, define R and R' at the points x and x'). It will be enough to prove that 

(5.29) | lndet#' - lndetfl| < C|(i/,n) - (v,n)\{v,n)~l + C \\5x\\ + C || 

for infinitesimally close points x,x' G W. Note that \\ôx\\ ^ C||o\xi|| by (4.11). Then 
the integration of (5.29) from x to x (and, respectively, from xi to x\) will give 

| lndet ï ï - lndet i î | ^ C\(v,ïî) - (v,n)\ (iKn)"1 + C |dist7W(zi,âi) 

After that Claim 3 will follow by Sublemma 5.6. 
Wre now prove (5.29). By Sublemma 5.8 we have, to the first order in 

ln det R' - ln det R = ln det Q~LR'Q - ln det R 

(5.30) = tr [R-1{T'Q-1B'+Q - rB+)\ 

(the introduction of Q defined by (5.10) was necessary to ensure that both operators 
act in the same space). Note that ||F_1|| ^ C by (5.8). Next, we have, again to the 
first order in ||fe||, 

r'Q-lB,+Q - r/3+ = dr B+ + r{Q-lU'B'~U'-lQ - UB-IJ-1) 

(5.31) +r(Q-1B/Q-B) 

ASTÉRISQUE 286 



GEOMETRY OF MULTI-DIMENSIONAL DISPERSING BILLIARDS 147 

Observe that 

(5.32) ll^/T1!! ^ C and \\R~lV*\\ < C 

according to (5.3) and (5.4). Using (2.3) now yields 

(5.33) \\R~lB+\\ ^ \\R~l\\ \\B~\\ + 2 ||iTlV*KV\\ ^ C 

Now recall that \dr\ ^ 2\\5q\\ + 2||<fyi|| by (5.9). Hence we have, by (5.33), 

I tr (dr R-lB+) | < (d - 1) |dr| IliT^+H < C(\\Sq\\ + ||^i||) 

so the first term in the right hand side of (5.31) is properly taken care of. 
Denote AB~ = Q^U'B'-U'^Q - UB'U'1. We then have, using (5.20) and 

(5.22), 

\ti-iTR~1 AB~)\ ^ (d-1) |T | H/n1 AB-| | 
SfcWHiT1!! WQ^B'-Qr-B-W 
<C\\Sq\\ 

which takes care of the second term in (5.31). 
Lastly, we use (5.17) to handle the third term in (5.31): 

I tr (R-\Q-l<d'Q - 0 ) ) K 2 \(v', n) - (v, n)| | tr (RTlV*KV)\ 
+2 I tr (fT1 AV*KV)\ + 2 I tr (R~lV* AKV)\ 

(5.34) +2\tr{R-lV*KAV)\ 

We note that 

tv{R-lAV*KV) = tr{AV* KVR~l) = tr (R'W^KAV) 

where the first equation follows from a general formula tr(AB) = tr(BA) in linear 
algebra, and the second is due to the fact that the operators AV*KVR~l and 
R~lV*KAV are adjoint to each other. Using this observation, we can rewrite 
(5.34) as 

I ti{R'\Q~l&Q - 9)) I ̂ C\{v',ri) - (v,n)\ {v,n)-1 \\R~lV*KV\\ 
+C WAV^KVR^W + C \\R-lV*AKV\\ 

We now apply (5.32) and (5.15)-(5.16) with (5.9) and obtain 

I tr (R-\Q-le'Q - O)) K C\(v',ri) - (v, n)\ (v, n)'1 + C \\5x\\ 

This completes the proof of (5.29) and hence Claim 3. Theorem 5.7 is now proved. • 

After proving that the expansion factors vary nicely between nearby points on the 
same u-manifold, we now investigate their behaviour at points of different u-manifolds 
that lie on the same s-manifold. This is the absolute continuity property. Just like it 
was with the distorsion bounds, it is important to consider homogeneous manifolds. 
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Theorem 5.9 (Absolute continuity). — Let Ws be a small s-manifold, x,x G Ws, and 
WU,WU two u-manifolds crossing Ws at x and x, respectively. Assume that Tk is 
continuous on Ws and TlWs is a homogeneous s-manifold for each 0 ^ i ^ k. Then 

\\nJWu,k(x) ~ lnJWu,k(Ë)\ < c 
where C is a global constant. 

Proof. — For any z G WS1 let Jws,k(z) be the volume expansion factor of Ws under 
Tk at the point z, i.e. JWSM(Z) — I det DTk \ws (z)\. By the analogue of Theorem 5.7 
for homogeneous s-manifolds, we have 

(5.35) \hiJWs,k(x)-lnJWs.k(x)\ ^ C 
for a global constant C. 

Let \DTk(x)\ denote the Jacobian of Tk at a point x — (q, v) G M with respect 
to the Lebesgue measure SqSv on M in our local coordinates (q,v). Note that the 
T-invariant measure is dv = (v,ri) ôqôv. Hence, \DTk(x)\ — (v, n)/(vk, rik) where 
Xk = (qk,Vk) — Tkx and nk = n(qk). Similarly, \DTh{x)\ = (v,n)/(v~k,nk), where the 
notation is quite clear. Since both Ws and TkWs are small homogeneous s-manifolds, 
Sublemma 5.6 implies that the quantity (v,n) does not vary much over either Ws 
or TkWs. In fact, c < (v,n)/(v,n) < C and c < (i^,nk)/(vk,nk) < C for global 
constants C > c > 0. Hence, 

(5.36) 0 < c < \DTk(x)\/\DTk{x)\ < C < oc-
for some global constants c and C. Now Theorem 5.9 follows easily from (5.35), (5.36), 
and Theorem 4.7. • 

6. Outlook 
The results of this paper can be summarized as follows. We have some bad news 

(non-smooth behaviour) related to the singularity submanifolds in multi-dimensional 
hyperbolic billiards. On the other hand, there are important good news related to 
the u-manifolds in the multi-dimensional dispersing case. It is proved that practically 
all important regularity properties (uniform hyperbolicity, alignment, curvature and 
distorsion bounds) are just as valid as they are in the multi-dimensional case (cf. 
Remark 4.6). 

In billiard theory one is mainly interested in the ergodic and statistical properties 
of the dynamical system. We emphasize that the above results are highly relevant 
to these issues. As to the ergodic properties, a major breakthrough was achieved 
with the proof of the Fundamental (or Local Ergodicity) Theorem ([SCh, KSSz]). 
However, for some measure theoretic estimates, the original arguments in these papers 
implicitly assumed uniform curvature bounds on the singularities. Thus these proofs 
have to be checked. In a separate paper ([BChSzT]) we will show that — at least, 
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for billiards with algebraic scatterers — the original proofs of local ergodicity remain 
valid if some suitable modifications are performed. 

Much less is known about statistical properties. As to the multi-dimensional dis­
persing case, no optimal result (exponential decay of correlations) has been achieved 
so far. Nevertheless, we conjecture that the rate of mixing is, indeed, exponential. 
The recently developed method of Markov-returns ([Yl]) turned out to be especially 
powerful in the study of decay rates for planar billiards ([Ch2, Ch3]). It is the 
growth of unstable manifolds that is to be investigated for Young's method to work. 
Essentially all important features of unstable manifolds have been checked in sec­
tions 4 and 5 to control growth of LUMs, the only thing we do not know yet how to 
handle is the irregular behaviour of singularities. We conjecture that, given a system­
atic geometric characterization of singularities, exponential decay of correlations for 
multi-dimensional dispersing billiards could be proved. 
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