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A RIGID ANALYTIC APPROXIMATION THEOREM 

Zachary Robinson 

1. Introduction 

The main result of this paper is Theorem 5.1, which gives a global Artin Approxi
mation Theorem between a "Henselization" Hm,n of a ring Tm+n of strictly convergent 
power series and its "completion" 5m,n. These rings will be defined precisely in Sec
tion 2 

A normed ring (A, v) is a ring A together with a function v : A R+. such that 
v(a) = 0 if, and only if, a = 0; v(l) = 1; v(ab) < v(a)v(b) and v(a + b) < v(a) + v(b). 
For example, when K is a complete, non-Archimedean valued field, the ring 

n M, M := M°/M°° C (5 M°/M°° C (5 » 0 as |/^| = ^i + . . . /im —> oo 

of strictly convergent power series endowed with the Gauss norm 

| = ^i + max |aM| 

(see [6] or Section 2, below) is a complete normed ring. Another example may be 
obtained by endowing a Noetherian integral domain A with the 7-adic norm induced 
by a proper ideal I of A. 

An extension A C A of normed rings is said to have the Approximation Property 
iff the following condition is satisfied: 

Let / i , . . . , / r £ A[X\,... ,X8] be polynomials. For any | = ^i +E A such that 
f(x) — 0 and for any e > 0, there exist x\,...,x8 G A such that f(x) — 0 and 
maxi<«<5 v(xi - xi) < e. 

Let C[£J be the ring of formal power series and C{£} the ring of convergent power 
series in several variables £, with complex coefficients. The prototype of the result 
proved in this paper is the theorem of Artin [1] that the extension C{£} C C[[f] has 
the Approximation Property with respect to the (£)-adic norm, which answered a 
conjecture of Lang [9]. 
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In [4], Bosch showed that the extension K((g)) C K{£) has the Approximation 
Property with respect to the Gauss norm, where K((£)) denotes the ring of overcon-
vergent power series 

| = ^i +| = ^i |K((g)) C = ^i +| = ^i for some e > 1 lim I K((g)) C ^$ 

and K{£) is the ring of strictly convergent power series defined above. (In fact, Bosch's 

result is much stronger.) From this result, he recovered the result of [5] that K((£)) 

is algebraically closed in K{£), which generalized [15]. 

In this paper we prove another approximation property possessed by the rings of 

strictly convergent power series. Namely, the extension i?m,n C 5m,n (for definitions, 

see Section 2, below) has the Approximation Property with respect to the (p)-adic 

norm (Theorem 5.1, below). From Theorem 5.1 it follows that #m,n, defined as a 

"Henselization" of the ring Tm+n — AT(fi,. . . ,£m;Pi> • • • ->Pn), is in fact the algebraic 

closure of Tm+n in the ring 5m?n = °f separated power series (see [11, 

Definition 2.1.1]). Moreover, from Theorem 5.1 and the fact that the Sm,n are UFDs, 

it follows that the Hm,n are also UFDs. 

The following is a summary of the contents of this paper. 

In Section 2, we define the rings ifm,n of Henselian power series. We also summarize 

(from [11]) the definition and some of the properties of the rings 5m?n of separated 

power series. 

In Section 3, we use a flatness property of the inclusion of a Tate ring Tm+n into a 

ring 5m,n, together with work of Raynaud [13], to deduce a Nullstellensatz for i/m,n-

In Section 4, we show that Hm,n is excellent and that the inclusion iJm,n —> 

5m?n is a regular map of Noetherian rings. We define auxiliary rings Hm^n(B,e) and 

Sm,n(B,e) that in their (p)-adic topologies are, respectively, Henselian and complete. 

The inclusion Hm^B^e) Sm,n{B,e) is a regular map of Noetherian rings. These 

auxiliary rings play a key role in the proof of the Approximation Theorem. 

Section 5 contains the proof that the pair Hm^n C Sm^n has the (p)-adic Approx

imation Property. The proof uses Artin smoothing (see [14]) and the fact that the 

rings Hmin(B,e) C Sm,n(B,e) have the (p)-adic Approximation Property. 

I am happy to thank Leonard Lipshitz, who posed the question of an Approxi

mation Property of the sort proved in this paper, and Mark Spivakovsky for helpful 

discussions. 

2. The Rings of Henselian Power Series 

Throughout this paper, K denotes a field of any characteristic, complete with 

respect to the non-trivial ultrametric absolute value | • | : K —>• M+. By K°, we denote 

the valuation ring of K, by K°° its maximal ideal, and by K the residue field. For 
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2. THE RINGS OF HENSELIAN POWER SERIES 153 

integers m,n G N, we fix variables £ = (£i , . . . ,£m) and p = (p i , . . . ,pn) , thought 
(usually) to range, respectively, over K° and K°°. 

Let i£ be an ultrametric normed ring, let denote the formal power series ring 
in m variables over E. and bv denote the subrine: 

E(0 := ((g)) 
K((g)) 

K((g)) C K((g)) lim fl/x = 0 

The ring is called the ring of strictly convergent power series over K, which we 
often denote by Tm. The rings Tm are Noetherian ([6, Theorem 5.2.6.1]) and excellent 
([3, Satz 3.3.3] and [8, Satz 3.3]). Moreover, they possess the following Nullstellensatz 
([6, Proposition 7.1.1.3] and [6, Theorem 7.1.2.3]): For every fOt G MaxTm, the field 
Tm/dJl is a finite algebraic extension of the field K. Let |-| denote the unique extension 
of the absolute value on the complete field K to one on a finite algebraic extension 
of K, and by ~ denote the canonical map of a ring into a quotient ring. Then the 
maximal ideals of Tm are in bijective correspondence with those maximal ideals m of 
the polynomial ring K[£] that satisfy | ^ | < 1 in K[£]/m, 1 < i < m, via m m • Tm. 
Moreover, any prime ideal p G SpecTm is an intersection of maximal ideals of Tm. 

There is a natural K-algebra norm on Tm, called the Gauss norm, given by 

K((g)) 
K((gK(() := max I (g)) C 

Put 

T° := { / G Tm : | | / | | < 1}, 

T°° := { / € Tm : U/H < 1} , 

Tm := T ° / T ° ° = ^ K ] 

The rings Tm are the rings of power series over K which converge on the "closed" unit 
polydisc {K°)m. 

The rings *SVn,n of separated power series (see [10], [11] and [2]) are rings of power 
series which represent certain bounded analytic functions on the polydisc (K°)m x 
(K°°)n. When the ground field is a perfect field K of mixed characteristic, there is 
a complete, discretely valued subring E C K° whose residue field E — K. Then an 
example of a ring of separated power series is given by 

K((g)) C K((g)) C K((g)) 

where <8>E is the complete tensor product of normed E-modules (see [6, Section 2.1.7]). 
Clearly Tm+n C Sm,n. In this paper 5m,n plays the role of a kind of completion of 

T т+П' 
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154 A RIGID ANALYTIC APPROXIMATION THEOREM 

In general the rings of separated power series are defined by 

H{beE[ai:ieN Bp —> Bp C KBp —> Bp C K 

Bp —> Bp C K lim Bp —> Bp C K 

where 55 is a certain directed system (under inclusion) of complete, quasi-Noetherian 

rings B C K°. (For the definition and basic properties of quasi-Noetherian rings, see 

[6, Section 1.8].) The elements B G S are obtained as follows. Let E be a complete, 

quasi-Noetherian subring of K°, which we assume to be fixed throughout. When 

Char K ^ 0, we take E to be a complete DVR. (If, for example, K is a perfect field 

of mixed characteristic, we may take E to be the ring of Witt vectors over K.) Then 

a subring B C K° belongs to 05 iff there is a zero sequence {a*}ieN C K° such that 

B is the completion in |-| of the local ring 

E[ai : i G H{beE[ai:ieN]:\b\=i} 

It follows from the results of [6, Section 1.8], that each B G 03 is quasi-Noetherian; in 

particular, the value semigroup \B \ { 0 } | C t f \ { 0 } is discrete. It is easy to see that 

03 forms a direct system under inclusion and that lirn̂  B^B — K°. Furthermore, 

for a fixed e G K° \ { 0 } and for any B G 03, there is some Bf G 03 such that 

K°C\€~1 • B C B'; indeed, this is an immediate consequence of the fact that the ideal 

{b G B : 161 < \e\} C B is quasi-finitely generated. It follows that Tm+n C 5m,n, and 
Bp —> Bp C K 

By B denote the residue field of the local ring B. If E = if, then 5 = i f for all 
B G 03. In any case, forms a direct system under inclusion and lin^ BG&B = 

K. We will need certain residue modules obtained from an element B G 03. Since 

the value semigroup of B is discrete, there is a sequence {6p}PeN C B \ { 0 } with 

1^ \ W l — (IM}p€N an(i 1 = | M > IM > • • •. The sequence of ideals 

Bp : = {a G B : \a\ < |6P|}, p G N, 

is called the natural filtration of 5 . For p G N, put Bp := Bp/Bp+i; then B = B0 C K. 

By ~ : iC0 denote the canonical residue epimorphism. Then for p G N, we may 

identify the B-vector space Bp with the B-vector subspace (b^Bp)" of K via the 

map (a + BP+I) I-̂  (6~1A)^'. This yields a residue map 

7TP : Bp —> Bp C K : a (bp1a)~. 

When p > 0, the above identification of £?p with a B-vector subspace of K is useful, 

though not canonical. 

There is a natural if-algebra norm on Sm ni cdso called the Gauss norm, given by 

Bp —> Bp 

Bp —> Bp C = maxla^^l. 
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2. THE RINGS OF HENSELIAN POWER SERIES 155 

We have S^n = { / G 5m,n : | | / | | < 1}, and, unless K is discretely valued, this ring is 

not Noetherian. Put 

çroo {/ € Sm,„ : l/l < 1} , and 

Bp —> Bp C K no / coo lim Sm,„ : l/l < 

Note that if E = K then 5m,n = [[/>]]• In any case, by [11, Lemma 2.2.lj, 5m,n 

is Noetherian, (p) • 5m,n C radSm,n and i f the (p)-adic completion of 5m,n, is 

faithfully flat over 5m,n. It follows by descent that Sm,n is a flat Tm,n-algebra. 

We recall here some basic facts about the rings 5m,n. The rings 5m,n are Noetherian 

([11, Corollary 2.2.4]). Moreover, let M C (Sm,n)r be an Sm)n-submodule, and put 

M° := (Sm,Jr <~l M, M°° := (S™n)r n M, M := M°/M°° C (5m,„)r. 

Lift a set gi,...,g3 of generators of M to elements # 1 , . . . ,ga of M ° . Then for every 

/ € M , there are hi,...,hs G Sm,n such that 

/ = 
8 

i=l 

hiÇi and max | 
Ki<s 

\hi\\ = ||/||; 

in particular, p i , . . . , #s generate the 5^n-module M° ([11, Lemma 3.1.4]). Note that 

the above holds also in Tm = Sm,o. 

The rings 5m,n satisfy the following Nullstellensatz ([11, Theorem 4.1.1]): For 

every 971 G Max5m,n, the field 5m,n/9Jl is a finite algebraic extension of K. The 

maximal ideals of 5m,n are in bijective correspondence with those maximal ideals 

m of K[£,p] that satisfy | ^ | < 1, \p$\ < 1 in K[£,p]/m, 1 < i < m, 1 < j < n, 

via m t-> m • 5m,n. Moreover, any prime ideal of 5m,n is an intersection of maximal 

ideals. It follows that Tm+n H 9JI G MaxTm+n for any 9tt G Max5m,n. Finally, for 

any VJl G Max Sm,n, the natural inclusion Tm+n —>• 5m?n induces an isomorphism 

Sm,„ : l/l < 1}Sm,„ : l/l < 1}Sm,„ 

where m := Tm+n D 9Jt and denotes completion of a local ring in its maximal-adic 

topology ([11, Proposition 4.2.1]). Since 5m>n is Noetherian, it follows from [12, 
Theorem 8.8] by faithfully flat descent that 5m,n is a flat Tm+n-algebra. 

Definition 2.1. — The ring Am,n (n > 1) is given by 

Sm,„ : l/l < 1}Sm,„ : l/l < 1}Sm,„ : l/l < 1} A° (T° ) r Q° 
^m,?! ' \ m+n) l+(p) m,n' 

We have A° = { / G Am,n : | | / | | < 1}. Put 

^m,n :_ { / ^ ^m,n • 11/11 < 1}Î ^m,n •— ^m,n/^m,n ~ (^m+n)1+(p) * 

Note that (p) • A0mn C radA^ n. By [13, Chapitre XI], there is a Henselization 

( i f^N,( /9) ) of the pair ( A ^ n , (/>)), but unless K is discretely valued, H^n is not 
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156 A RIGID ANALYTIC APPROXIMATION THEOREM 

Noetherian. Finally, the ring ifm,n of Henselian power series is defined by 

Hm,n := K ®K° #m,n* 

3. Flatness 

In this section, we show that i/m,n is a regular ring of dimension m + n and that 

Hm,n satisfies a Nullstellantz similar to that for 5m,n- The main result is Theorem 3.3: 

the canonical Am,n-morphism iJm,n 5m,n is faithfully flat. 

The next lemma will allow us to effectively apply the results of [13]. 

Lemma 3.1. — The following natural inclusions are flat. 

Sm,„ : l/l < 1}Sm,„ : l/l < 1} 

(\\\ A° Co 
(iii) Am,n — • 5m>n. 

Moreover, the maps in (ii) and (iii) ore even faithfully flat. 

Proof. — Suppose we knew that T^+n 5 ^ n were flat; then since (p) • 5 ^ n C 
radS£^n, also A^5n <-> 5^>n would be flat by [12, Theorem 7.1]. The induced map 

k°(0 = A°m,n/(P) • S°mJ(p) K®Ko A^$^$ 

is an isomorphism. Since (p) • n C rad^l^ n, it follows that no maximal ideal of 

A°mn can generate the unit ideal of 5 ^ n; hence A^ <-> n is faithfully flat by 

[12, Theorem 7.2]. This proves (ii). 

By faithfully flat base-change 

Am,n = K ®Ko A°miT {K®Ko A^n) °m,n/(P) •S°mJ(K®Ko A 

is faithfully flat. This proves (iii). 
It remains to show that T^+n 5 ^ n is flat. 

Claim (A) . — Let M C {Tm)r be a Tm-module, and put 

M° : = r o r n M , M°° - ( C ) r n M , M := M°/M°° C (fm)r. 

Suppose gi,..., gs G M generate the Tm-module M, and find g\,..., gs G M° that lift 

the fa. Put 

N:= K®Ko AK®Ko AK®Ko AK®Ko A 

i=l 

8 

fi9i = 0 

AT' := ' ( / ! , . . . , / , ) G (fm)s: 
»=1 

fift = o] 

Then N' = N. 
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3. FLATNESS 157 

Clearly, N C N'. Let / = ( A , . . . , / , ) G N' and find h = (hu ••-,hs)e (T^)8 that 
s 

lifts / . Since || < 1? and since the gi generate M, by [11, Lemma 3.1.4], 
i=l 

there is some ti = (h[,..., h's) G (T^°)s such that 
s 

i=l 

K®Ko A 
15 

$^$ 
e TV' • 

Put f :=h- h'\ then / G iV° and / lifts / . This proves the claim. 

Claim (B). — LetM C (Tm+n)r 6e 
tt Tm-\-n-module and put L :— M - Sm,n C (Smin)r. 

Then L° = M°-S^n. 
Find generators p i , . . . ,gs of M and, using [11, Lemma 3.1.4], lift them to gener

ators # 1 , . . . ,g8 of the T^+n-module M ° . Let N and Nr = N be the corresponding 
modules, as in Claim A. (It follows from [11, Lemma 3.1.4], that № is a finitely 
generated T^+n-module.) Suppose / 1 , . . . , / « € 5^jfl; by [11, Lemma 3.1.4], we must 
find elements hi,..., h8 of 5 ^ n such that 

^^ 

¿=1 

ù^$ 
s 

i=l 

hiQi and max 
l<i<8 

hi\ 
i=l 

s 
fi9i 

For this, we may assume that 

(3-1) max 
l<i<s 

\fi 

s 

1=1 

fi9i > 0 . 

Let B G ! 8 (see Section 2 for the definition of *8) be chosen so that / i , . . . , f8 G 
9u--->98 e (B(£,p))r, and (B(£,p})s contains generators of the T£+n-

module № (hence by Claim A, (B[£,p])8 contains generators of TV'). Since the 

value semigroup \B \ { 0 } | C ffi+ \ { 0 } is discrete, it suffices to show that there are 

hu...,h8 G B{£)Hp] with 

(3.2) 
8 

1=1 

fi9i = 
ù$ 

¿=1 

hiQi and max N 1 max 
l<i<s 

$^ù 
m 

Let B = Bn D Bi D • • • be the natural filtration of 5 and find o G N so that 

( / i , . . . , / . ) € (£p(£> M ) s \ (^p+i ( 0 M ) s -

By 7TP : £p ->> f?p C i f denote the jB-module residue epimorphism a i-» (6~1a)"' and 

write i f — Bp 0 V for some B-vector space V. By (3.1), Yli=i np(fi)9i — 0. Since 

K[£,p] <-+ Sm n is flat (see Section 2), by [12, Theorem 7.4(i)l, 

e TV' • Sm e TV' • Sm 
(/.)) e TV' • Sm,n. 

Since 

£ [ M = s P [ £ ] M ® ^ ] M 
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158 A RIGID ANALYTIC APPROXIMATION THEOREM 

as £[£][[p]]-modules, and since (B[Ç,p])s contains generators of TV', we must have 

(/i,...,/r)G(Tm+n(/i,.. )G(Tm ^$ 
nN'yBP[$M-

Thus by Claim A, there is some ( / { , . . . , fs) G ) M ) S such that 

s 

i=l 
f'i9i = 0 and fi-fie BP+1(OM , 1 < t < s. 

Putting hi := fi - ft, 1 <i < s, satisfies (3.2). This proves the claim. 
Now let # i , . . . ,gr G T^+n and put 

M:={( / i , . . . , / r )G(Tm+n)r 
r 

i=l 

fi9i = 0 } , 

W :={( / i , . . - , /r)€(Sm,n)r 
¿=1 

(/i,...,/r) 

By [12, Theorem 7.6], to show that T^+n S^n is flat, we must show that № = 
M° • 5 ^ n. But since Tm+n M> 5m,n is flat (see Section 2,) this is an immediate 
consequence of Claim B. • 

By [13, Exemple XI.2.2], the pairs (J3(f) [ p ] , (p)) are Henselian. Since the pair 
(Sm,ni (P)) 1S tne direct limit of the Henselian pairs (B(Ç) [[p]], (p)), B G *B, it follows 
[13, Proposition XI.2.2] that ( 5 ^ n, (p)) is Henselian. By the Universal Mapping 
Property of Henselizations ([13, Definition XI.2.4]), it follows that there is a canonical 
A^n-algebra morphism H^n - » n. We wish to show that this morphism is 
faithfully flat. It then follows from [12, Theorem 7.5], that, in particular, we may 
regard H°mn as a subring of S^n. 

Lemma 3.2 (cf. [13, Proposition VII.3.3]). — Let (A, I) be a pair with I C rad A. Then 

the following are equivalent: 

(i) (A, I) is Henselian. 

(ii) / / (E, J) is a local-étale neighborhood of (A, I), then A -» E is an isomorphism. 

Proof 

(ii)=>(i). Let (A', / ' ) be an étale neighborhood of (A, I). By [13, Proposition XI.2.1], 
we must show that there is an A-morphism A' -» A. Put E := A'1+/,, J := I' • E\ 

then (E, J) is a local-étale neighborhood of (A,I). Hence the map <p : A -> E is an 

isomornhism. and the r.omnosition 

A' -)> A'1+// — 
(/i,..n$^ù$ 

is an A-morphism, as required. 

(i)=>(ii). Let (E, J) be a local-étale neighborhood of ( A , / ) ; then there is an étale 

neighborhood (A', J') of ( A , / ) such that E = A'1+//, J = V E. By [13, Proposi

tion XI.2.1], there is an A-morphism <p : A' A. Since <p(I') — I C rad A, <p extends 
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3. FLATNESS 159 

to an A-morphism ip : E A, and we must show that Ken/; = (0). For this, it 
suffices to show that the image of Ker-0 in En is (0) for every maximal ideal n of E. 

Let n G MaxE; then there is some m G Max A such that n = V-1(m)- (Indeed, 
since J C ib~l(I), xb induces an A-morphism 

All s A! IV s El J —> All, 

which must be an isomorphism; but J C radE and / C radA) It therefore suffices 

to show for each m G Max A that the map 

Ami y Am 

induced by <p is an isomorphism, where m' := (p 1(m). 

We now apply the Jacobian Criterion ([13, Theoreme V.2.5]). Write 

A' = A[Yu...,YN]/a 

for some finitely generated ideal a of A[Y], and by b denote the inverse image of Ker(p 

in A[Y]. Then a C b. Let m G Max A, put m' := <£-1(m) and let 9JI be the inverse 

image of m' in A[Y]. We conclude the proof by showing that a • -A[y]m = b • ^ [ y ] ^ . 

Since A' is étale over A, there are / i , . . . , fjy G a such that the images of / 1 , . . . , /JV 
in ^ [ y ] ^ generate a • ^ [ y ] ^ and det (dfi/dYj) £ 3DÎ. Then since / 1 , . . . , /JV G b and 

since A[Y]/b = A is étale over A, the images of / 1 , . . . , / N in ^ [ y ] ^ also generate 

b-A[Y]m;i.e.,a-A[Y]m = b-A[Y]m. • 

Theorem 3.3. — The canonical A°mn-morphism H^n -» n is faithfully flat; it 

follows by faithfully flat base-change that Hm^n Sm,n is also faithfully flat. 

Proof. — It suffices to prove that n is flat over H^n. Indeed, since (p) • c 
rad H° and since the induced man 

K°(0 = H°mJ(P) s°mJ(P) = K°(0 

is an isomorphism, this is a consequence of [12, Theorem 7.2]. 

Now, H!^n is a direct limit of local-etale neighborhoods (E,I) of (A°mn,(p)) by 

[13, Theoreme XI.2.2]. Therefore, it suffices to show that the induced map E —> 5 ^ n 

is flat. 

Since by Lemma 3.1 n is a flat A°m n-algebra, the map 

E (/i,...,/r)G(Tm+n(/i,... 

induced by 1 0 id is flat. It therefore suffices to show that the map 

M : (Sm,n ®A ,̂n E)l+(p) • qo 

induced by ^ fi ® 9i fi9i is an isomorphism. 

Now, since (S^ni (p)) ŝ a Henselian pair, by Lemma 3.2, it suffices to show that 

((̂ m,n ®A°mn -^)I+(P)>*0 ls a local-etale neighborhood of (5^>n,(p)), where J : = 
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160 A RIGID ANALYTIC APPROXIMATION THEOREM 

(p) ' (Sm,n ®A°min E)1+{py For some étale neighborhood ( £ ' , / ' ) of ( A ^ n , (p)), we 
have 

(/i,...,/r)G(Tm+n(/i,...,/r)G 

where V — (p) • Since localization commutes with tensor product, it suffices to 

show that 

= {/ € Hm,n : 11/11 < = {/ € Hm,n : 11/11 < 

is an étale neighborhood of (5^n , (p ) ) . But this is immediate from [13, Proposi

tion 11.2]. ' • 

From now on, we regard ifm,n as a subring of Smin. In particular, the Gauss norm 
||-|| is defined on Hm n. 

Corollary 3.4. — #m,n = { / € Hm,n : 11/11 < 1} 

Proof. — We must show that H^n = S^n n JJm,n. Clearly, H^n C S^n n ffm,n; 

we prove D. Let / G S^n D #m,n; then for some e e K° \ { 0 } , e / G # ^ n . But by 

[12, Theorem 7.5], eH^n = H^n n ^5^,n. It follows that / G ' • 

Since 5m,n is a faithfully flat i7m)n-algebra, any strictly increasing chain of ideals of 

Hm,n extends to a strictly increasing chain of ideals of 5m,n. Since 5m,n is Noetherian, 

we obtain the following. 

Corollary 3.5. — Hm,n is a Noetherian ring. 

Theorem 3.3 on the faithful flatness of n —> n allows us to pull back to 
iJm,n information from 5m,n on the structure of maximal ideals and completions 
with respect to maximal-adic topologies. 

Corollary 3.6 (Nullstellensatz for Hm,n). —For every m G Max#m?n, the field iJm?n/m 
is a finite algebraic extension of K. The maximal ideals of Hm,n are in bijective cor

respondence with those maximal ideals n of K [£, p] that satisfy 

(3.3) \^ \ < 1 , \-pjl < 1 , l < t < m , l < i < n 

in i f [£,p]/n via the map n H> n • Hm,n. Moreover, each prime ideal of Hm,n is an 

intersection of maximal ideals. 

Proof — Let n G Maxif[£,p] satisfy (3.3), and put m := n • ifm,n, 9Jt := n • 5m,n. 

Since Hm,n -> 5m,n is faithfully flat, m = iiim,n D 9JI; hence Hmjn/m -> 5m,n/9Jl is 

injective. Since i f C #m,n and 5m?n/9Jl is a finite algebraic extension of if, by [12, 
Theorem 9.3], m G Maxiym>n. Moreover, #m,n/m is a finite algebraic extension of 

if. 

Let m G MaxiJm,n be arbitrary. Since i?m,n - » Sm,n is faithfully flat, there is 

some 3PT G Max5m,n with 9PT D m • 5m,n and m = Hm,n n 9PT. By the Nullstellensatz 
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for 5m,n, = tt • 5m,n for some n G MaxK[£,p] satisfying (3.3). Since n C m, it 
follows that m = n • #m,n, as desired. 

Now let p G Spec ifm>n and put 

q := 
m EM ax i/m,n 

mDp 

m, $^^ù$ 

971G Max 5M,N 

3K; 

we must show that pDq. Let / G q C q. By the Nullstellensatz for 5m,n, /* G p-5m,n 
for some £ G N. Since i/m,n 5m,n is faithfully flat, / ' G p, and since p is prime, 

/ е р . 

Corollary 3.7. — Le£ 9JÎ G Max5m,n and consider the maximal ideals put m := 

Hm,n fl 3Dt, n := Am,n H SDt and p := lf[£,p] fl SDt. T/ien tàe inclusions K[£,p] c—>• 

Am,n <->• #™,n ^ £m,n induce isomorphisms 

K[ 1P~ = 
ù$ù$ù — (-̂ ra,n)m — (*5m,n)s[)Î5 

wftere denotes the maximal-adic completion of a local ring. Moreover Hm^n is a 

regular ring of Krull dimension m + n. 

Proof. — It follows by descent, from Lemma 3.1 and Theorem 3.3, that each of 

the inclusions Am^n ffm,n -+ 5m,„ is faithfully flat. Let £ G N. Since by [11, 
Theorem 4.1.1] 9PÎ = p5m,n, each of p£, n*, and 9Jl£ is generated by the monomials 

of degree I in the generators of p, it follows that the natural maps 

(Am?n)n (^m,n)m 
m,n : 11/11 < 

are injective. But by [11, Proposition 4.2.1], (Am,n)n -> (Sm,n)m - K[£,p]p is 

surjective; thus also (ffm,n)m ~> (5m,n)sw — ^[£,p]p is surjective. By Hilbert's 

Nullstellensatz p can be generated by m + n elements, and dim K[£,p]p — m + n. In 

particular K[£, p]p is a regular local ring of dimension m + n. Since m = p#m,n and 

(Hm,n)m = i f [£, p]p, it follows that (^m,n)m is a regular local ring of dimension m + n. 
Moreover by [12, Theorem 19.3], #m,n is a regular ring. • 

4. Regularity 

To obtain our Approximation Theorem, we will apply [14, Theorem 1.1]. For that, 

we need to know that certain maps are regular maps of Noetherian rings. 

Proposition 4.1. — #m,n is excellent; in particular it is a G-ring. 

Proof — By [12, Theorem 32.4], to show that Hm,n is a G-ring, it suffices to show 

that the map 

(Hm,n)m ^ (^m,n)m 
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is regular for each m G MaxiJm>n. Fix m G Max#m?n, and q G Spec(i/m,n)m; we 
must show that 

H(q) := (ffm,n)m ®(tfm,»)m «(q) 

is geometrically regular over ft(q), the field of fractions of {Hm,n)m/q. 
Since 

Am,n is a localization of the excellent ring Tm n, it is a G-ring. In particular, 
by Corollary 3.7, 

H(p) := (#m,n)m 0(Am,n)n «(P) = (̂ m,n)iT®(Am,n)B «(p) 
is geometrically regular over /c(p), where n := Am,n n m and p := (Amjn)n D q G 
Spec(74m,n)n. Suppose we knew: (i) that H(q) were a localization of H(p), and (ii) 
that tt(q) were separably algebraic over «(p). Then by (i), we would have (i') # ( q ) 
is geometrically regular over ft(p), and by (ii), we would have (ii') ft / = (0) 

MI) / K(P) 
by [12, Theorem 25.3], (where O / is the module of differentials of «(q) over 

(̂fl) / MP) 

«(p)). 
Let a be a maximal ideal of H(q); then by (i'), H(q)a is geometrically regular over 

/c(p). By [12, Theorem 28.7], H(q)a must be a-smooth over «(p). Hence by (ii') and 
[12, Theorem 28.6], H(q)a is a-smooth over /c(q). By [12, Theorem 28.7], this implies 
that iJ(q)a is geometrically regular over «(q) . Since this holds for every maximal ideal 
a of H(q), # ( q ) must be geometrically regular over rc(q). The proposition follows. 

It remains to prove (i) and (ii). By [13, Theoreme XI.2.2], (H^^ (p)) is a direct 
limit of local-etale neighborhoods (E,I) of {A°m n, (p)); thus (ifm,n)m is a local-ind-
etale (Am,n)n-algebra. By [13, Theoreme VIII.4.3], 

H(p) := (#m,n)m ®(Am,n)n «(p) = ((#m,n)m/p ' (#m,n)m)p 

is a finite product of separable algebraic extensions of /c(p). It follows that rc(q) is 
the localization of H(p) at the maximal ideal q • #(p), and that Ac(q) is a separable 
algebraic extension of K,(p). This proves (ii). Note that 

H(q) = (Hm,n)m ®(tfm,n)m fl"(p)q.H(p)» 

which is a localization of 

H(p) = (Hmtn)Z ®(Am,n)n «(p) = (#m,n)m ®(Hm>n)m # (p), 

proving (i). 

Theorem 4.2. — The inclusion Hm^n —> 5m,n is a regular map of Noetherian rings. 

Proof. — Let 971 G Max5m n and put m := Hmn fl 9K; we remark that 

(4.1) = {/ € Hm,n : 11/11 < = {/ € Hm,n 

is regular. Indeed, since (Sm,n)m -> (S'm,n)sw is faithfully flat, [12, Theorem 8.8], by 
[12, Theorem 32.1], it suffices to show that (ffm>n)m (5m,n)ajt is regular. But by 
Corollary 3.7 (iJm,n)m = (Sm,n)fm, hence this follows from Proposition 4.1. 
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Let p G Speci7m,n. Since 5m,n is flat over Hm^n (Theorem 3.3), to show that 
Hm,n ~* Sm,n is regular, we must show that S(p) Sm,n ®iJm,n K(P) is geometrically 
regular over ft(p). Let q G Spec5(p); it suffices to show that 5(p)q is geometrically 
regular over /s(p). Put := *̂ m,n n c| and let DJl G Max Sm^n be a maximal ideal 
containing Put m := Hm,n (1971 and 

5«w(p) := (S'M.NJSM ®(tfm,n)m (̂P * (#ro,n)m). 

Note that S«m(p) = (S(p))sw and that q = qj - 5(p). Since SDt D it follows that 
5(p)q is a localization of San(p)? which, by the regularity of (4.1) is geometrically 
regular over «(p • (-ffm,n)m) = «(p)- Therefore, 5(p)q is geometrically regular over 
«(p), as desired. • 

Let B G 05, let £ G K°° \ {0} and let I(B,e) be the ideal 

J(fl,e) := {beB:\b\<\e\}GB. 

It follows from the definition of quasi-Noetherian rings (see Section 2 and [6, Sec
tion 1.8]) that B/l(B,e) is Noetherian. Put 

Tm+n(B) := B(£,p), i4M,N(B) := TM+N(B)1+(RT and Sm,n(fl) : = B ( f ) M . 

Note that 

Tm+n(B,e) := (B/l(B,e)) K,p] 

is Noetherian, and 

(-B,e) := Tm+n(i?,£:)1+(p), 

being a localization of a Noetherian ring, is Noetherian as well. Moreover, (p) • 

Am>n(J5,£) C rad^4m5n(JB,£). Let (Hmin(B,e),(p)) be a Henselization of the pair 

(Am,n(JB,e),(p)). 
The (p)-adic completion of ,Am n(2?,£) is 

STO,„(B,e) := (B/l(B,e))[$\p\, 

which must coincide with the (p)-adic completion of Hm,n{B,e). 

(Indeed, (Amin(B, e) / (pY, (p)) being (p)-adically complete, is a Henselian pair by 
[13, Exemple XI.2.2]. If (E,I) is a local-etale neighborhood of (Am,n(J5,e), (p)), 
then by [13, Proposition II.2], (E/(p)£,I • E/(p)1) is a local-etale neighborhood of 
(Amin(B, e)/(p)£, (p)). By Lemma 3.2, E/(pY is isomorphic to Amin(B,e)/(pY- Since 
Hm,n(B,e) is a direct limit of local-etale neighborhoods of Am,n(Bye)/(p), the (p)-
adic completions of Hm,n(B,e) and i4mjn(JB,e) coincide.) 

Since the rings Am?n(2?, s) and Hm^n(B, e) are both Noetherian, Sm,n(i?, e) is faith
fully flat over both Am,n(B,e) and Hmin(B,e) by [12, Theorem 8.14]. Therefore, by 
[12, Theorem 7.5], we may regard Hm,n(B,e) as a subring of Smin(B,e). 

Proposition 4.3. — Fix B G 05 and e G if00 \ {0}. The inclusion Hm,n(B,e) -> 

Sm,n(B^e) is a regular map of Noetherian rings. 
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Proof. — Find e' G Koo\{0} such that \e'\ = max{|6| : b G BnK00}. For convenience 

of notation, put 

A :— Am,n(f?,£), i f :— ifm>n(i?,£), S := Sm>n(i?,£) 

A := Am,n(B,e'), i f := ffm,n(£,e'), 5 := Sm,n(B,e'). 

Note that 

A = B[Ç,p]1+(p) and 
= {/ € Hm,n : 11/1 

where B is the residue field of the local ring B. Furthermore, by the Krull intersection 

theorem [12, Theorem 8.10], ideals of A, i f and S are closed in their radical-adic 

topologies. It follows that 

A = A/I(B, e') - A, H = H/I(B, e') if, S = 5 / 7 (5 , s') • S. 

Let p G Specif; we must show that S ® # /c(p) is geometrically regular over ft(p). 

Each element of I(B,e') • H is nilpotent; hence I{B,e') • i f C p. Let p G Specif 

denote the image of p in if. Then 

S®H «(p) = S®îj «(p), 

and it suffices to show that 5 ® ^ «(p) is geometrically regular over /c(p). 

_ Wejiote the following facts, (i) The maps ^ 9Jt • A + (p), № \-+9ttH + (p), 
9Jt i-> 9Jt • S 4- (p) are bijections between the elements of Maxf?[£] and the elements, 

respectively, of Max A, Max H and Max S. (ii) Let 9Jt G Max 5, 9Jt := HnM G Max 5 

and n := A n 9Jt G Max A; then A —• i f —>> 5 induces isomorphisms 

= {/ € Hm,n : 11/11 < = {/ € 

(iii) The ring A, being a localization of the excellent ring B[£,p] is excellent, and in 

particular, a G-ring. 

Arguing just as in the proof of Proposition 4.1, we show that i f is a G-ring. Then 

we argue as in Theorem 4.2 to show that S <S>^ «(p) is geometrically regular over 

/c(p). • 

5. Approximation 

Theorem 5.1 (Approximation Theorem). — For a given system of polynomial equa

tions with coefficients in ifm,n, any solution over 5m,n can be approximated by a 

solution over Hmin arbitrarily closely in the (p)-adic topology. 

Proof. — Let Y = ( Y i , . . . , Yjv) be variables, let J be an ideal of ifm?n[Y], and 

consider the finitely generated ifm?n-algebra C := Hmìn[Y]/J. Suppose we have a 

homomorphism (p : C —> Sm,n; then (p(Y) is a solution over 5m,n of the system of 

polynomial equations with coefficients in ifm,n given by generators of the ideal J. Fix 
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£ G N. We wish to demonstrate the existence of a homomorphism <p : C —> i/m,n such 

that each (p(Yi) - (p(Yi) G (p)£ • 5m,n. 

Since Hmin - » 5m,n is a regular map of Noetherian rings, by [14, Theorem 1.1], 

we may assume that C is smooth over i/m,n- Let E be the symmetric algebra of the 

C-module J/ J2. By Elkik's Lemma ([7, Lemme 3]), Spec E is smooth over Spec ifm,n 

of constant relative dimension JV, there is a surjection 

Hm,n [Yi, . . . , Y2N+r] -> E 

for some r G N, and there are elements # i , . . . , <7N+r, ft € #m,n[KI sucn that 

ft-ffm,n[y] + J ft-ffm,n[ 

where J := (#i, . . . , #;v+r), and 

(l) = ft-ffm,n[y] + J. 

Since SpecE is smooth of relative dimension N over Spec#m,n, Q^/„ is locally 
t, J Hm,n 

free of rank N. It follows that 

hd G 9Jt + / 

for some d G N, where SDT is the ideal in iJm,n I X ] generated by all (N + r) x (iV + r) 

minors of the matrix 

M ( F ) := 
$ 
^15 l<i<7V+r 

l<j<2JV+r 

We may extend (p to E\ in particular, g(<p(Y)) = 0. Replacing F by a *F for a 

suitably small scalar a G F \ { 0 } and normalizing by another scalar, we may assume 

gu .. .,gN+r, h e H°[Y], <p(Y) e (S°)2N+r, and 

(5.1) 
ft-ffm,n[y] + J 

[¥} + ' 
AT+r 

¿=1 
9iH°m<n[Y] 

(5.2) ft-ffm,n[y] + J 
JV+r 

JV+r 

ft-ffm,n[y] + 

for a suitably small s G if00 \ { 0 } , where 971° is the ideal in H^n[Y] generated by all 

(N + r) x (N + r) minors of the matrix M, above. 

For each B G <B, let (Hmjn(B), (p)) be a Henselization of the pair (i4m>n(i?), (p)). 

Since A°mn = lir^i4m>n(B), we have a canonical isomorphism limi7m,n(B) = H^n. 

Find 5 G 03 such that 

£(Yx), . . . , £ Q W ) G Sm,n(£) := B ( 0 [ [ p l , 

and such that #i , . . . , #iv+r € i?"m,n(.B)[y]. Consider the commutative diagram 
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JV+rJV+rJV+r 
* Hm,n(B) Sm,n(B) 

#m,n(-£>£2d+#m,n(-£>£2d+ " #m,n(-£>£2d+2) -
#m,n(-£>£2d+#m,n 

where the two outer vertical arrows represent reduction modulo I(B,e2d+2) and the 

other arrows represent the canonical morphisms. It follows from the Universal Map

ping Property for Henselizations that all the vertical arrows must be surjective. Thus 

by Proposition 4.3 and [14, Theorem 11.3], there are 771, . . . , n2iv+r G H^n such that 

ru - (p(Yi) G (p)2'+1 • S^n, 1 < i < 2N + r, and l l p i M I I < |s2d+2|, 1 < i < N + r. 

Replacing Y by 77 in (5.1), we find g', h' G H^n such that h(rj)h' = e( l - £2d+V ). 

It follows that there is some 5 G K° \ { 0 } with |<5| > \e\ and some unit h" of .ff^n 
such that h(n) = 8h". Replacing Y by 77 in (5.2), we find some g" G #™,n such that 

ed+1{(h")d - ed+1g") G 9Pt°(r;), where 9Jl°(r7) is the ideal of H^n generated by all 

(N + r) x (N + r) minors of the matrix M (77). Since h" is a unit of it follows 

that 

ed+1 G 971° (77). 

We follow the proof of Tougeron's Lemma given in [7] to obtain yi,..., 2/2j/v+r ^ ^m,n 
such that yi-rjiE (p)£ • 1 < i < 2N + r, and £1(77) = • • • = gN+r(v) = 0. 

Let /xi,..., /JLS denote the monomials in p of degree L Since the ideal generated by 
the (N + r) x (N + r) minors of M(T7) contains the £d+Vn there are (2N + r) x (N + r) 

matrices N1,..., Ns such that 

M ( 7 7 ) ^ - ed+1pildN+ri 

where Id;v+r is the (N + r) x (N -h r) identity matrix. We will find elements = 

(ui,u • • •, w»,2iv+r) e ((p) • i^n)2iV+r, 1 < i < 5, such that 

9j(v + 
¿=1 

s 
ed+1jüti») = 0, 1 < j < N + r. 

We have the Taylor expansion 

,n(-£>£2 
$ù$ 

¿=1 

ed+Vitt*) 

0N+r(r? + 
$ 

i=i 

ed+1ßiUi) 

9i(v) 

9N+r(v) 

s 

+ E 
¿=1 

ed+ViM(77) 

. U>i,2N+r 

#m,n(-£>£2d+#m,n(-£>>£2 
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where each P{j is a column vector whose components are polynomials in the ui of 
order at least 2. We must solve 

(5.3) 0 = 
9i(v) 

. 9N+r(rj) 

+ 
i=l 

s 
eD+1PIM{ri) 

Щ,1 

. Ui,2N+r 
$^$ù 

#m,n(-£>£2d+#m,n(-

Since ||ft(i,)| | < \S2D+2\ and 9i(r,) E (p)2^1 • we have 

9i(ri) 

9N+r(ri) i,3 

ed+1piM{ried+1p 
fijl 

fijN+r 

where the Ujk € (p) • H^n. Thus (5.3) becomes 

0 = ' 

1=1 

s 
SD+1»IM(r,) 

S 
p^ù 

l i = i 

fijl 

JiiN+r 

+ 

¿=1 

$ù$ 
ed+VzM(/7) 

Щ,1 

Ui,2N+r 

+ 
^^m 

2=1 

ed+1piM{ri 
^$ù^^ 

ù:;,b, 
1piM{ri 

and it suffices to solve 

(5.4) 0 = 

w»,i 

Wi,2iV+r . 

^$$ 

,;l^$ 

^=$ ed+1p 
/til 

fijN+r 

l<i<8. 

Since 0 is a solution of this system modulo (p), and since its Jacobian at 0 is 1, the 

system (5.4) represents an étale neighborhood of (H^n, (p)), hence has a true solution 

(uij). Putting 

(Vi) := (%) + 

$ù 

s 
£ + №>JUJ1 

we obtain a solution in i ? ^ n of the system # = 0 which agrees with (p{Y) up to order 
I in p. ' • 

Corollary 5.2. — #™,n «s o t/FD. 

Proof. — Let / E #m,n be irreducible. We must show that / • Hm^n is a prime ideal. 
Since Sm n is a faithfully flat iJm,n-algebra (Theorem 3.3), and since Sm.n is a UFD 
([11, Theorem 4.2.7]), it suffices to show that / is an irreducible element of Sm n. 
That is a consequence of Theorem 5.1. • 
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