Mark Chaimovich
 New algorithm for dense subset-sum problem

Astérisque, tome 258 (1999), p. 363-373
http://www.numdam.org/item?id=AST_1999__258_363_0
© Société mathématique de France, 1999, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

NEW ALGORITHM FOR DENSE SUBSET-SUM PROBLEM

$b y$

Mark Chaimovich

Abstract

A new algorithm for the dense subset-sum problem is derived by using the structural characterization of the set of subset-sums obtained by analytical methods of additive number theory. The algorithm works for a large number of summands (m) with values that are bounded from above. The boundary (ℓ) moderately depends on m. The new algorithm has $O\left(m^{7 / 4} / \log ^{3 / 4} m\right)$ time boundary that is faster than the previously known algorithms the best of which yields $O\left(m^{2} / \log ^{2} m\right)$.

1. Introduction

Consider the following subset-sum problem (see [13]). Let $A=\left\{a_{1}, \ldots, a_{m}\right\}$, $a_{i} \in \mathbb{N}$. For $B \subseteq A$, let $S_{B}=\sum_{a_{i} \in B} a_{i}$ and let $A^{*}=\left\{S_{B} \mid B \subseteq A\right\}$. The problem is to find the maximal subset-sum $S^{*} \in A^{*}$ satisfying $S^{*} \leq M$ for a given target number $M \in \mathbb{N}$.

Although the problem is NP-hard (the partition problem is easily reduced to the SSP), its restriction can be solved in polynomial time. Denote $\ell=\max \left\{a_{i} \mid a_{i} \in A\right\}$. Introducing restriction $\ell \leq m^{\alpha}$ where α is some positive real number (or equivalently $m \geq \ell^{1 / \alpha}$), one can easily solve problems from this restricted class in $O\left(m^{2} \ell\right)$ time using dynamic programming.

This work belongs to the school of thought that applies analytical methods of number theory to integer programming (see [8], [2]). It continues the application of a new approach, the main idea of which is as follows: analytical methods enable us to effectively characterize the set A^{*} of subset-sums as a collection of arithmetic progressions with a common difference (see [7], [12], [1], [10]). Once this characterization is obtained, it is quite easy to find the largest element of A^{*} that is not greater than the given M.

Efficient algorithms have recently been derived using the new approach. In almost linear time (with respect to the number m of summands) they solve the following class

1991 Mathematics Subject Classification. - Primary: 90C10 Alternate: 05A17, 11B25, 68Q25.
Key words and phrases. - Analytical Number Theory, Integer Programming, Subset Sum Problem.
of SSP: the target number M is within a wide range of the mid-point of the interval [$0, S_{A}$] and $m>c \ell^{2 / 3} \log ^{1 / 3} \ell, \ell>\ell_{0}$ when A is a set of distinct summands ([9], [4], [6], [11]) or $m>6 \ell \log \ell$ when A is an arbitrary multi-set without any limitation on the number of distinct summands ([5]). Here and further on $\ell_{0}, c, c_{1}, c_{2}, \ldots$ denote some absolute positive constants.

The latest analytical result ([10]) allows one to apply the algorithm from [9] to problems with density $m>c_{1}(\ell \log \ell)^{1 / 2}$. The algorithm from [11] works for density $m>c_{2} \ell^{1 / 2} \log \ell$ which is almost the same as in [10]. For $m<\ell^{2 / 3}$, the time boundary for both algorithms is estimated as $O\left(\left(\frac{\ell}{m}\right)^{2}\right)$, i.e., $O\left(\frac{m^{2}}{\log ^{2} m}\right)$ for the lowest density $\left(m \sim(\ell \log \ell)^{1 / 2}\right)$.

This work refines the structural characterization of the set of subset-sums which allows us to use more efficient conditions in the process of determining the structure. These refinements are discussed in Section 2. They lead to the development of a new algorithm which is described in Section 3. It works in $O(m \log m+$ $\min \left\{\frac{\ell^{5 / 4} \log ^{1 / 2} \ell}{m^{3 / 4}},\left(\frac{\ell}{m}\right)^{2}\right\}$) time which improves [9] and [11] for $m \leq \frac{\ell^{3 / 5}}{\log ^{2 / 5} \ell}$ and yields $O\left(m^{7 / 4} / \log ^{3 / 4} m\right)$ time for $m \sim(\ell \log \ell)^{1 / 2}$.

2. Refinement of the structural characterization of the set A^{*} of subset-sums

The following Theorem 2.1 [10] determines the structure of the set A^{*} of subsetsums for $m>c_{1}(\ell \log \ell)^{1 / 2}$ as a long segment of an arithmetic progression.
Theorem 2.1 (G. Freiman). - Let $A=\left\{a_{1}, \ldots, a_{m}\right\}$ be a set of m integers taken from the segment $[1, \ell]$. Assume that $m>c_{1}(\ell \log \ell)^{1 / 2}$ and $\ell>\ell_{0}$.
(i) There is an integer $d, 1 \leq d \leq \frac{3 \ell}{m}$, such that

$$
\begin{equation*}
|A(0, d)|>m-d \tag{1}
\end{equation*}
$$

and

$$
\left\{M: M \equiv 0(\bmod d),\left|M-\frac{1}{2} S_{A(0, d)}\right| \leq c_{2} d m^{2}\right\} \subseteq A^{*}(0, d)
$$

where $A(s, t)=\{a: a \equiv s(\bmod t), a \in A\}$.
(ii) If for all prime numbers $p, 2 \leq p \leq \frac{3 \ell}{m}$,

$$
\begin{equation*}
|A(0, p)| \leq m-\frac{3 \ell}{m} \tag{2}
\end{equation*}
$$

then the assertion (i) of the Theorem holds true with $d=1$.
Simple consideration shows that verification of condition (2) is crucial for the structural characterization of a set A^{*} of subset-sums. Algorithms from [9] and [11] use this condition directly ([9]) or indirectly ([11]). Our intention is to replace condition (2) by a condition (or a set of conditions), verification of which is easier in the sense that the number of required operations is smaller. To do this we introduce the notion of d-full set. We say that set A is d-full if A^{*} contains all classes of residues modulo d, i.e., in other words, $A^{*}(\bmod d)=\{0,1, \ldots, d-1\}$.

Let us study some properties of d-full sets.

Define $S_{r(\bmod d)}=\min \left\{s \in A^{*}, s \equiv r(\bmod d)\right\}$.
Lemma 2.2. - Let A be a set of integers taken from the segment $[1, \ell]$. Suppose that A is d-full. Then for each $r, 0<r<d$,

$$
\begin{equation*}
S_{r(\bmod d)} \leq d \ell \tag{3}
\end{equation*}
$$

Proof. - Assume that for some r condition (3) is not true, i.e., $S_{r(\bmod d)}>d \ell$. This means that $S_{r(\bmod d)}=a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{k}}$ for some $k>d$. Consider the sequence of subset-sums $T_{s}=\sum_{j=1}^{s} a_{i_{j}}, 1 \leq s \leq k$. Obviously, at least two of these sums (assume T_{s} and $T_{q}, s<q$) belong to the same residue class modulo d (since $k>d$). Then $T_{q}-T_{s} \equiv 0(\bmod d)$ and subset-sum $T_{k}-\left(T_{q}-T_{s}\right)=a_{i_{1}}+\cdots+a_{i_{s}}+a_{i_{q+1}}+\cdots+a_{i_{k}} \equiv$ $r(\bmod d)$ and this subset-sum is smaller than $S_{r(\bmod d)}$. This fact contradicts the minimality of $S_{r(\bmod d)}$.
Lemma 2.3. - Suppose that the set A is d-full. Then there is a d-full subset of A with cardinality less than d.

Proof. - Let us assume that contrary to the Lemma the smallest d-full subset of A has more than $d-1$ elements. Denote this subset by $A^{\prime}=\left\{a_{1}, \ldots, a_{k}\right\}$. In fact, $d \not \backslash a_{i}$ for all i 's.

Let B be the multi-set of non-zero residues modulo d in A^{\prime}, that is B is composed with $\left|A^{\prime}(i, d)\right|$ times i for any $1 \leq i<d$. Naturally one has $B^{*}=\left(A^{\prime}\right)^{*}(\bmod d)$. Then, as a multi-set, $|B|=\sum_{i=1}^{d-1}\left|A^{\prime}(i, d)\right| \geq d$, by the assumption.

Define a sequence of multi-sets $B_{0}, B_{1}, \ldots, B_{k}$ as follows: B_{0} is an empty set and $B_{i}=\left\{b_{1}, \ldots, b_{i}\right\}$ for $i>0$. Note that $0 \in B_{i}^{*}$ (since it is the sum of an empty subset), and that

$$
\begin{equation*}
B_{i}^{*}=B_{i-1}^{*}+\left\{0, b_{i}\right\}=B_{i-1}^{*} \cup\left(B_{i-1}^{*}+b_{i}\right), 1 \leq i \leq k \tag{4}
\end{equation*}
$$

Thus, obviously, $\left|B_{i-1}^{*}\right| \leq\left|B_{i}^{*}\right|$.
Taking into account that $\left|B_{0}^{*}\right|=1$ and that $|B|=k \geq d$, for some i we have $\left|B_{i-1}^{*}\right|=\left|B_{i}^{*}\right|$ implying that residue b_{i} (and element a_{i} respectively) does not add new residue classes, i.e., $\left(B \backslash b_{i}\right)^{*}=B^{*}$. Therefore, $A^{\prime} \backslash a_{i}$ is d-full as well as A^{\prime}. This fact contradicts the assumption that A^{\prime} is the smallest d-full subset of A and proves the Lemma.

The next lemma refines the second assertion (ii) of Theorem 2.1.
Lemma 2.4. - Let A be a set of integers taken from the segment $[1, \ell]$. Assume that $|A|=m>c_{1}(\ell \log \ell)^{1 / 2}, \ell>\ell_{0}$, and suppose that A is q-full for each $q, 2 \leq q \leq \frac{3 \ell}{m}$. Then the assertion (i) of Theorem 2.1 holds with $d=1$.

Proof. - Assume that $d>1$ in Theorem 2.1. By the theorem, a long segment of an arithmetic progression belongs to $A^{*}(0, d)$. On the other hand, A is d-full (since $d \leq \frac{3 \ell}{m}$) and subset-sum $S_{r(\bmod d)}$ exists for each $r, 1 \leq r<d$. Combine a long segment of an arithmetic progression (with difference d) in interval

$$
\left[\frac{1}{2} S_{A(0, d)}-c_{2} d m^{2}, \frac{1}{2} S_{A(0, d)}+c_{2} d m^{2}\right]
$$

(belonging to $A^{*}(0, d)$) with subset-sums $S_{1(\bmod d)}, S_{2(\bmod d)}, \ldots, S_{d-1(\bmod d)}$ (these subset-sums are obtained without using elements of $A(0, d)$). Thus we obtain an interval

$$
\left[\frac{1}{2} S_{A(0, d)}-c_{2} d m^{2}+\max \left\{S_{r(\bmod d)}: 1 \leq r<d\right\}, \frac{1}{2} S_{A(0, d)}+c_{2} d m^{2}\right]
$$

all integers of which belong to A^{*}. In fact, if the length of this new interval is sufficiently large $\left(O\left(m^{2}\right)\right.$, for example), we will obtain the result of Theorem 2.1 with $d^{\prime}=1$. Actually, since we are interested only in the case $d>1$ and since $\max \left\{S_{r(\bmod d)}: 1 \leq r<d\right\}<d \ell=O\left(d m^{2} / \log m\right)$, the length of the obtained interval is

$$
O\left(d m^{2}-\max \left\{S_{r(\bmod d)}: 1 \leq r<d\right\}\right)=O\left(d m^{2}-\frac{d m^{2}}{\log m}\right)=O\left(d m^{2}\right)
$$

which completes the proof.
The latest property (Lemma 2.4) shows that in order to obtain a structural characterization of A^{*}, it is sufficient to verify that set A is q-full for all q 's, $2 \leq q \leq \frac{3 \ell}{m}$. Clearly, the new condition is weaker than (2): A can be q-full even if $|A(0, q)|>m-\frac{3 \ell}{m}$. However, from an algorithmic point of view this new condition is difficult to verify. To correct this we have to use some lemmas which determine different sufficient conditions implying that set A is q-full. We will also show that it is sufficient to verify the prime numbers only.

Lemma 2.5 ([3]). - If p is prime and

$$
\begin{equation*}
\sum_{i=1}^{p-1}|A(i, p)| \geq p-1 \tag{5}
\end{equation*}
$$

then A is p-full.
The proof of this lemma is presented here because of the difficulty in accessing of reference [3].

Proof. - Using the fact that all elements of $A(i, p), i \neq 0$, are relatively prime to p, introduce ring \mathbb{Z}_{p} of residues $\bmod p$. In the following reasoning it is implied that all arithmetic operations, including the operations for computing subset-sums, are operations modulo p in $\boldsymbol{Z}_{\boldsymbol{p}}$.

Put, as in the proof of Lemma 2.3, $B=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ for the multi-set of non-zero residues modulo p in A and define the sequence of multi-sets $B_{0}, B_{1}, \ldots, B_{k}$ where B_{0} is an empty set and $B_{i}=\left\{b_{1}, \ldots, b_{i}\right\}$ for $i>0$.

By the hypothesis, $|B|=\sum_{i=1}^{p-1}|A(i, p)| \geq p-1$. If for all $i \leq p-1,\left|B_{i-1}^{*}\right|<\left|B_{i}^{*}\right|$, then $\left|B_{i}^{*}\right| \geq\left|B_{i-1}^{*}\right|+1 \geq\left|B_{0}^{*}\right|+i=i+1$, i.e., $\left|B_{p-1}^{*}\right| \geq p$, which concludes the proof, since we are dealing with residues modulo p.

Otherwise, the fact that $\left|B_{i-1}^{*}\right|=\left|B_{i}^{*}\right|$ for some $i<p-1$ implies that for any $c \in B_{i-1}^{*}, c+b_{i}$ also belongs to B_{i-1}^{*}. Continuing this reasoning we obtain $c+$ $r b_{i} \in B_{i-1}^{*} \subseteq B^{*}$ for any r. Recalling that all operations are modulo p and that $\operatorname{gcd}\left(b_{i}, p\right)=1$, one obtains that all residues modulo p are in B^{*}, i.e., A is p-full.

Lemma 2.6 (Olson [14]). - If p is prime and

$$
\begin{equation*}
|\{i:|A(i, p)| \neq 0,1 \leq i<p\}|>2 p^{1 / 2} \tag{6}
\end{equation*}
$$

then A is p-full.
Lemma 2.7 (Theorem 7, Sárkôzy [15]). - If p is prime and

$$
\begin{equation*}
\left(\sum_{i=1}^{p-1}|A(i, p)|\right)^{3} \geq c_{5} p \log p \sum_{i=1}^{p-1}|A(i, p)|^{2} \tag{7}
\end{equation*}
$$

where $c_{5}=4 \cdot 10^{6}$, then A is p-full.
Note that condition (7) implies $\sum_{i=1}^{p-1}|A(i, p)| \geq\left(c_{5} p \log p\right)^{1 / 2}$ in view of

$$
\sum_{i=1}^{p-1}|A(i, p)| \leq \sum_{i=1}^{p-1}|A(i, p)|^{2}
$$

The next two lemmas show that it is sufficient to verify the prime numbers only.
Lemma 2.8. - If for prime numbers $p, 2 \leq p \leq Q^{1 / 2}$,

$$
\begin{equation*}
|A(0, p)| \leq m-Q \tag{8}
\end{equation*}
$$

and for prime numbers $p, Q^{1 / 2}<p \leq Q$, the set A is p-full, then the set A is t-full for all integers $t, 2 \leq t \leq Q$.

Proof. - The proof employs induction for the total number of prime divisors of t.

1. t is prime. Condition (8) ensures that Lemma 2.5 can be applied to all prime numbers $t \leq Q^{1 / 2}$. For prime numbers $t>Q^{1 / 2}$, the set A is t-full by definition.
2. For $n>1$, assume that the Lemma is true for each number whose total number of prime divisors is less than n. Now we are going to prove the Lemma for any integer t having n prime divisors.

Let $t=p_{1} \cdots p_{n}$ where $p_{1} \leq p_{2} \leq \cdots \leq p_{n}$ are the prime divisors of t. One has $p_{1} \leq t^{1 / 2} \leq Q^{1 / 2}$ and, in view of (8), $|B|=|A \backslash A(0, t)| \geq\left|A \backslash A\left(0, p_{1}\right)\right| \geq Q \geq t$.

Denote $s=t / p_{1}$. This integer s has $n-1$ prime divisors. By the induction hypothesis, A is s-full. Thus, according to Lemma 2.3, there is $A^{\prime} \subseteq A$ such that A^{\prime} is s-full and $\left|A^{\prime}\right|<s$. Put, as in the proof of Lemma $2.5, B=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ for the multi-set of non-zero residues modulo t in A and define $B_{i}=\left\{b_{1}, \ldots, b_{i}\right\}$. Without losing generality, assume that the first residues in B corresponds to elements of A^{\prime}. Thus, $B_{\left|A^{\prime}\right|}^{*}$ contains all classes of residue modulo s implying $\left|B_{\left|A^{\prime}\right|}^{*}\right| \geq s$. Continue with the same reasoning as in Lemma 2.5.

Again, if for all $i,\left|A^{\prime}\right|<i \leq t-1,\left|B_{i-1}^{*}\right|<\left|B_{i}^{*}\right|$, then $\left|B_{i}^{*}\right| \geq\left|B_{i-1}^{*}\right|+1 \geq$ $\left|B_{\left|A^{\prime}\right|}^{*}\right|+\left(i-\left|A^{\prime}\right|\right) \geq i+1$, i.e., $\left|B_{t-1}^{*}\right| \geq t$, which concludes the proof, since we are dealing with residues modulo t.

Otherwise, the fact that $\left|B_{i-1}^{*}\right|=\left|B_{i}^{*}\right|$ for some $i,\left|A^{\prime}\right|<i \leq t-1$ implies that for any $c \in B_{i-1}^{*}, c+b_{i} \in B_{i-1}^{*}$. Continuing this reasoning we obtain $c+r b_{i} \in B_{i-1}^{*} \subseteq B^{*}$ for any r. Recalling that $B_{\left|A^{\prime}\right|}^{*}$ contains $c_{1}, \ldots, c_{s}-$ different residues modulo s - we generate s disjoint sequences $c_{j}+r b_{i}$. Since
each sequence has $r=\frac{t}{s}$ elements modulo t, all sequences together cover the entire set of residues modulo t, i.e., A is t-full.
This concludes the proof that the set A is t-full for all $t \leq Q$.
Now we can formulate a sufficient condition for a long interval to exist in the set A^{*} of subset-sums:

Corollary 2.9. - Let A be a set of integers taken from the segment $[1, \ell]$. Assume that $|A|=m>c_{1}(\ell \log \ell)^{1 / 2}, \ell>\ell_{0}$, and suppose that for all primes $p, 2 \leq p \leq$ $\left(\frac{3 \ell}{m}\right)^{1 / 2}$, condition (2) holds and for all primes $p,\left(\frac{3 \ell}{m}\right)^{1 / 2}<p \leq \frac{3 \ell}{m}$, at least one of the conditions (5), (6) or (7) is satisfied. Then A^{*} contains a long interval: a segment of an arithmetic progression with difference 1 and length $O\left(m^{2}\right)$.

Proof. - The corollary follows from previously mentioned Lemmas 2.4, 2.5, 2.6, 2.7 and 2.8.

3. Algorithm

In the previous section we determined a sufficient condition, ensuring the existence of a long interval contained in A^{*}. In the case where this condition is not satisfied, namely, if for some p_{1} either condition (2) (if p_{1} is small) or conditions (5), (6) and (7) (if p_{1} is large) fail, the process similar to the process described in [9] may be applied. This process finds a number d such that an arithmetic progression with difference d belongs to the set of subset-sums. It is implemented in the first step of the algorithm. The second step of the algorithm finds all non-zero residues modulo this d in A^{*} by using a modification of dynamic programming approach modulo d.

Now we are ready to describe the algorithm.
Notation. - $n_{p}(i), 0 \leq i<p$: the counter of summands belonging to residue class i $\bmod p\left(\right.$ when all summands of A are verified $\left.n_{p}(i)=|A(i, p)|\right)$;
$r_{p}=\left|\left\{i \mid 1 \leq i<p, n_{p}(i) \neq 0\right\}\right|$: the counter of different non-zero residues modulo p;
$R_{p}=\sum_{i=1}^{p-1} n_{p}(i) ; \quad R_{p}^{\prime}=R_{p}+n_{p}(0) ; \quad S_{p}=\sum_{i=1}^{p-1} n_{p}^{2}(i) ;$
$\frac{A(0, p)}{p}=\{a \mid a p \in A(0, p)\} ;$
$\operatorname{prevpr}(x)$: the prime number preceding x;
$n \operatorname{extpr}(x)$: the prime number following x;
In this notation conditions (5), (6) and (7) will take form $R_{p} \geq p-1, r_{p}>2 p^{1 / 2}$ and $R_{p}^{3} \geq\left(c_{5} p \log p\right) S_{p}$, respectively.

Algorithm 1.

1. Finding d
(a) Initialization: $d \leftarrow 1, p \leftarrow 2, Q \leftarrow\left\lfloor\frac{3 \ell}{m}\right\rfloor$.
(b) $R_{p} \leftarrow 0$.

For each $a \in A$ where $a \equiv 0(\bmod d)$, compute $s=\frac{a}{d}-\left\lfloor\frac{a}{d p}\right\rfloor p$ and if $s \neq 0$ then advance the counter $R_{p} \leftarrow R_{p}+1$;
Continue this process until $R_{p} \geq Q$ or all elements are processed.

If $R_{p} \geq Q$ then set $p \leftarrow \operatorname{nextpr}(p)$;
otherwise set $d \leftarrow d p, Q \leftarrow\left\lfloor\frac{3 \ell}{d|A(0, d)|}\right\rfloor$ and $p \leftarrow 2$.
If $p \leq Q^{1 / 2}$ return to 1 (b);
otherwise set $p \leftarrow \operatorname{prevpr}(Q)$ and go to 1(c).
(c) $n_{p}(i) \leftarrow 0(0 \leq i<p), R_{p} \leftarrow 0, S_{p} \leftarrow 0, R_{p}^{\prime} \leftarrow 0, r_{p} \leftarrow 0$.

For each $a \in A$ for which $a \equiv 0(\bmod d)$ compute $s=\frac{a}{d}-\left\lfloor\frac{a}{d p}\right\rfloor p$ and advance the counters:
$n_{p}(s) \leftarrow n_{p}(s)+1, R_{p}^{\prime} \leftarrow R_{p}^{\prime}+1 ;$
if $s \neq 0$ then $\left(R_{p} \leftarrow R_{p}+1, S_{p} \leftarrow S_{p}+2 n_{p}(s)-1\right.$;

$$
\text { if } \left.n_{p}(s)=1 \text { then } r_{p} \leftarrow r_{p}+1\right)
$$

Continue this process until one of the following inequalities is true:

$$
r_{p}>2 p^{1 / 2}, \quad R_{p} \geq p-1, \quad R_{p}^{3} \geq\left(c_{5} p \log p\right) S_{p}
$$

or all elements are processed.
If all elements are processed $\left(n_{p}(0)>|A(0, d)|-p\right)$ then $d \leftarrow d p$. If $R_{p}^{\prime} \geq\left(\frac{16 c_{5} r_{p} \ell \log \ell}{p}\right)^{1 / 2}$ then $p \leftarrow \operatorname{prevpr}\left(\min \left\{p-1, \frac{4 r_{p} \ell}{p R_{p}^{\prime}}\right\}\right)$;
otherwise $p \leftarrow \operatorname{prevpr}(p-1)$.
If $p \geq Q^{1 / 2}$ return to $1(\mathrm{c})$; otherwise go to $1(\mathrm{~d})$.
(d) Find $n_{d}(i), 1 \leq i<d$, and r_{d} for the set A.
2. Finding C - the set of all non-zero residues modulo d in A^{*}.

Define the sequence of sets $C_{0}, C_{1}, \ldots, C_{d-1}$ in the following way: $C_{0}=\{0\}$ and, for $i>0, C_{i}=C_{i-1}+\left\{0, i, \ldots, n_{d}(i) i\right\}(\bmod d)$ if $n_{d}(i) \neq 0$ or $C_{i}=C_{i-1}$ if $n_{d}(i)=0$. Clearly, $C_{d-1}=C$.

Let v be a vector with d coordinates (numbered from 0 to $d-1$) which represents C_{i} in the way that if $j \in C_{i}$ then $v(j)=i$ and if $j \notin C_{i}$ then $v(j)=-1$.
(a) Initialization: $v \leftarrow(0,-1, \ldots,-1)$.
(b) For all $i, 1 \leq i<d$, for which $n_{d}(i) \neq 0$ do
for all $j, 1 \leq j<d$, for which $0 \leq v(j)<i$ do $v(j) \leftarrow i$ and
for s running from 1 to $n_{d}(i)$ while $v(j+s i(\bmod d))=-1$ $v(j+s i(\bmod d)) \leftarrow i$.
3. Finding S^{*}. Define $s \equiv M(\bmod d), 0 \leq s<d$.

Find $S^{*}=M-s+s_{0}$, where $s_{0}=\max \left\{s_{i} \mid s_{i} \in C, s_{i} \leq s\right\}$.
To prove the validity of the algorithm we need to ensure that its step 1 finds a proper number d such that a set $\frac{A(0, d)}{d}$ satisfies all the conditions of Corollary 2.9. Indeed, sub-steps 1 (b) and 1 (c) use the conditions of the corollary. Therefore, the only thing that needs to be proved is the validity of the condition in sub-step 1 (c) $\left(R_{p}^{\prime} \geq\left(\frac{16 c_{5} r_{p} \ell \log \ell}{p}\right)^{1 / 2}\right)$ which allows us to skip verification of some p 's.

Recall that R_{p}^{\prime} is the counter of elements of the set that have been checked for divisibility by p and that we stop the verification process for a particular prime number p once one of the conditions in (9) is satisfied. Therefore, the number of elements that have been checked for a particular p may be small (if many different non-zero
residues are found in the beginning of the process) but this value may also be quite large. However, the fact that many elements have been checked for some $p^{\prime}>Q^{1 / 2}$ ensures that A is p-full for many p 's, namely, for $p>\frac{4 r_{p^{\prime}} \ell}{p^{\prime} R_{p^{\prime}}^{\prime}}$. This is proved in the following lemma.

Lemma 3.1. - Let B be a set of integers taken from the segment $[1, \ell]$. Assume that there is a prime $p^{\prime}<\ell^{1 / 2}$ which satisfies the inequality

$$
\begin{equation*}
|B| \geq\left(\frac{16 c_{5} r_{p^{\prime}} \ell \log \ell}{p^{\prime}}\right)^{1 / 2} \tag{10}
\end{equation*}
$$

where $r_{p^{\prime}}=\left|\left\{i:\left|B\left(i, p^{\prime}\right)\right| \neq 0,0 \leq i<p^{\prime}\right\}\right|$ and c_{5} is the constant from Lemma 2.7. Then, for prime numbers $p, \frac{4 r^{\prime}, \ell}{p^{\prime}|B|}<p<\ell^{1 / 2}, p \neq p^{\prime}$, the set B is p-full.

Proof. - We are going to show that condition (7) of Lemma 2.7 is satisfied for all p 's from the required interval. From this point on, for convenience we will use r without a subscript to denote $r_{p^{\prime}}$.

Let $\left\{b_{1}, \ldots, b_{r}\right\}$ be the set of all classes of residues modulo p^{\prime} of the set B and let $t_{i}, 1 \leq i \leq r$, be the number of occurrences of residues from class b_{i} in the set B. Without losing generality, assume that $t_{1} \geq t_{2} \geq \cdots \geq t_{r}$. Among the t_{i} elements which are in the class of b_{i} modulo p^{\prime}, only $\left\lceil\frac{\ell}{p p^{\prime}}\right\rceil<\frac{2 \bar{\ell}}{p p^{\prime}}$ elements can belong to the same class of residues modulo $p, p \neq p^{\prime}$. Therefore, these t_{i} elements of B belong to at least $\left\lceil\frac{t_{i} p p^{\prime}}{2 \ell}\right\rceil$ different classes of residues modulo p.

To estimate from above the value of $\sum_{i=1}^{p-1}|B(i, p)|^{2}$ in the left-hand side in (7) we have taken the worst case scenario where the number of different classes of residues modulo p is the smallest possible. For a given $|B|$, this case occurs when each class of residues contains the maximum possible number of elements. Thus, the number of classes is at least $\left\lceil\frac{t_{1} p p^{\prime}}{2 \ell}\right\rceil$ and each class can include the following number of elements of B : less than $\frac{2 \ell r}{p p^{\prime}}$ elements in $\left\lceil\frac{t_{r} p p^{\prime}}{2 \ell}\right\rceil$ classes, $\frac{2 \ell(r-1)}{p p^{\prime}}$ elements in $\left\lceil\frac{t_{r-1} p p^{\prime}}{2 \ell}\right\rceil-\left\lceil\frac{t_{r} p p^{\prime}}{2 \ell}\right\rceil$ classes, \ldots, and $\frac{2 \ell}{p p^{\prime}}$ elements in $\left\lceil\frac{t_{1} p p^{\prime}}{2 \ell}\right\rceil-\left\lceil\frac{t_{2} p p^{\prime}}{2 \ell}\right\rceil$ classes. (Recall that $|B|=\sum_{i=1}^{r} t_{i}$ is being given.) Using these values we can estimate

$$
\begin{aligned}
\sum_{i=1}^{p-1}|B(i, p)|^{2} \leq & \left(\frac{2 \ell r}{p p^{\prime}}\right)^{2}\left\lceil\frac{t_{r} p p^{\prime}}{2 \ell}\right\rceil+\left(\frac{2 \ell(r-1)}{p p^{\prime}}\right)^{2}\left(\left\lceil\frac{t_{r-1} p p^{\prime}}{2 \ell}\right\rceil-\left\lceil\frac{t_{r} p p^{\prime}}{2 \ell}\right\rceil\right) \\
& +\cdots+\left(\frac{2 \ell}{p p^{\prime}}\right)^{2}\left(\left\lceil\frac{t_{1} p p^{\prime}}{2 \ell}\right\rceil-\left\lceil\frac{t_{2} p p^{\prime}}{2 \ell}\right\rceil\right)-|B(0, p)|^{2} \\
= & \left(\frac{2 \ell}{p p^{\prime}}\right)^{2}\left(\left\lceil\frac{t_{r} p p^{\prime}}{2 \ell}\right\rceil(2 r-1)+\left\lceil\frac{t_{r-1} p p^{\prime}}{2 \ell}\right\rceil(2 r-3)\right. \\
& \left.+\cdots+\left\lceil\frac{t_{1} p p^{\prime}}{2 \ell}\right\rceil \cdot 1\right)-|B(0, p)|^{2}
\end{aligned}
$$

$$
\begin{aligned}
\leq & \left(\frac{2 \ell}{p p^{\prime}}\right)^{2}\left(\frac{t_{r} p p^{\prime}}{2 \ell}(2 r-1)+\frac{t_{r-1} p p^{\prime}}{2 \ell}(2 r-3)\right. \\
& \left.+\cdots+\frac{t_{1} p p^{\prime}}{2 \ell}+r^{2}\right)-|B(0, p)|^{2} \\
\leq & \left(\frac{2 \ell r}{p p^{\prime}}\right)^{2} \cdot \frac{|B|}{r} \cdot \frac{p p^{\prime}}{2 \ell}+\left(\frac{2 \ell r}{p p^{\prime}}\right)^{2}-|B(0, p)|^{2} \\
= & \frac{2 \ell r|B|}{p p^{\prime}}\left(1+\frac{2 \ell r}{|B| p p^{\prime}}-\frac{p p^{\prime}|B(0, p)|^{2}}{2 \ell r|B|}\right)
\end{aligned}
$$

and, taking into account (10) and that $|B|>\frac{4 r \ell}{p p^{\prime}}$, we continue

$$
\begin{aligned}
\sum_{i=1}^{p-1}|B(i, p)|^{2} & \leq \frac{|B|^{3}}{8 c_{5} p \log \ell}\left(1+\frac{1}{2}-\frac{2|B(0, p)|^{2}}{|B|^{2}}\right) \\
& =\frac{\left(\sum_{i=1}^{p-1}|B(i, p)|\right)^{3}}{8 c_{5} p \log \ell} \cdot \frac{\frac{3}{2}-2 \alpha^{2}}{(1-\alpha)^{3}}
\end{aligned}
$$

where $\alpha=\frac{|B(0, p)|}{|B|}$. To prove now the validity of (7) for p it is sufficient to show that $\frac{\frac{3}{2}-2 \alpha^{2}}{(1-\alpha)^{3}} \leq 8$. It is easy to see that the function in the left-hand side of this inequality increases with α for $\alpha<\frac{2}{3}$ and, therefore, the inequality holds true for $\alpha \leq \frac{1}{2}$. Indeed, since the number of elements in one class of residues modulo p cannot exceed $\frac{2 \ell r}{p p^{\prime}}$ and $|B|>\frac{4 \ell r}{p p^{\prime}}, \alpha=\frac{|B(0, p)|}{|B|} \leq \frac{1}{2}$ that concludes the proof.
The complexity. - Step 1 checks the divisibility of elements a_{i} by different prime numbers p. Since $a_{i} \leq \ell$, the number of prime divisors of a_{i} cannot be more than $\log _{2} \ell$. Therefore, the overall number of occurrences where some p divides some element of A is $O(m \log m)$. In order to estimate the number of occurrences where some p does not divide some element of A we need to investigate each part of Step 1 separately.

In Step 1(b), in the worst case, we may find Q elements not divisible by p while verifying this number p. Since this part of Step 1 deals with prime numbers less than $Q^{1 / 2}$, the number of operations in Step 1(b) where some p does not divide some element of A is $O\left(Q^{3 / 2}\right)=O\left(\left(\frac{\ell}{m}\right)^{3 / 2}\right.$). (Recall that $Q \sim \frac{\ell}{m}$.)

In step 1(c), again, no more than p elements not divisible by p may be found. Thus, the number of operations in Step 1(c) where some p does not divide some element of A is limited by $O\left(Q^{2}\right)=O\left(\left(\frac{\ell}{m}\right)^{2}\right)$. In fact, for $m \leq \frac{\ell^{3 / 5}}{\log ^{2 / 5} \ell}$ this estimate can be improved.

If the number of verified elements is sufficiently large $\left(R_{p}^{\prime} \geq\left(\frac{16 c_{5} r_{p} \ell \log \ell}{p}\right)^{1 / 2}\right)$ for some p, we are able to skip verification of some numbers according to Lemma 3.1. (The above "skipping" condition supersedes condition $R_{p}^{\prime}>\frac{4 r_{p} \ell}{p^{2}}$ for $p>\ell^{2 / 5}$ which ensures that the next number to be verified is less than p.)

Let us analyze this situation. The worst scenario (from a complexity point of view) occurs when we do not reach the "skipping" condition during verification. Thus, the number of operations in Step 1(c) where some p does not divide some element of A
is limited by

$$
\sum_{p=\left\lceil Q^{1 / 2}\right\rceil}^{\left\lfloor\ell^{2 / 5}\right\rfloor} p+\sum_{p=\left\lfloor\ell^{2 / 5}\right\rfloor+1}^{\lfloor Q\rfloor}\left(\frac{16 c_{5} r_{p} \ell \log \ell}{p}\right)^{1 / 2}=O\left(\int_{Q^{1 / 2}}^{\ell^{2 / 5}} x d x+\int_{\ell^{2 / 5}}^{Q} \frac{(\ell \log \ell)^{1 / 2}}{x^{1 / 4}} d x\right)
$$

Here we took into consideration the first condition in (9) which implies $r_{p} \leq 2 p^{1 / 2}$. By keeping after integration only the most significant term in each integral, we obtain complexity

$$
\begin{equation*}
O\left(\ell^{1 / 2} Q^{3 / 4} \log ^{1 / 2} \ell\right)=O\left(\frac{\ell^{5 / 4} \log ^{1 / 2} \ell}{m^{3 / 4}}\right) \tag{11}
\end{equation*}
$$

This estimate is obtained assuming $p>\ell^{2 / 5}$. Observe that p can be greater than $\ell^{2 / 5}$ only for $m \leq \ell^{3 / 5}$ since $p \leq Q \sim \frac{\ell}{m}$. Comparing (11) with the first estimate $O\left(\left(\frac{\ell}{m}\right)^{2}\right)$ - one can see that (11) improves it for $m \leq \frac{\ell^{3 / 5}}{\log ^{2 / 5} \ell}$.

Combining the results for sub-steps 1 (b) and 1(c), one can get the overall complexity of the process that verifies divisibility of elements of A :

$$
\begin{equation*}
O\left(m \log m+\min \left\{\left(\frac{\ell}{m}\right)^{2}, \frac{\ell^{5 / 4} \log ^{1 / 2} \ell}{m^{3 / 4}}\right\}\right) \tag{12}
\end{equation*}
$$

This estimate also holds true for the overall complexity of the algorithm, since in the worst scenario both steps $1(\mathrm{~d})$ and 2 have complexity $O(m)$.

In conclusion, the only thing that remains is to analyze the above expression (12). The second term dominates for $m \leq \ell^{2 / 3} \log ^{1 / 3} \ell$. It is equal to $O\left(\frac{\ell^{5 / 4} \log ^{1 / 2} \ell}{m^{3 / 4}}\right)$ for $m \leq \frac{\ell^{3 / 5}}{\log ^{2 / 5} \ell}$ and $O\left(\left(\frac{\ell}{m}\right)^{2}\right)$ otherwise. This improves the algorithms from [9] and [11] for low density $\left(m \leq \frac{\ell^{3 / 5}}{\log ^{2 / 5} \ell}\right)$. In the worst case $\left(m \sim(\ell \log \ell)^{1 / 2}\right)$ time is $O\left(m^{7 / 4} / \log ^{3 / 4} m\right)$.

References

[1] Alon N., and Freiman G. A., On Sums of Subsets of a Set of Integers, Combinatorica, 8, 1988, 305-314.
[2] Buzytsky P., and Freiman G.A., Analytical Methods in Integer Programming, Moscow, ZEMJ., (Russian), 1980, 48 pp .
[3] Chaimovich M., An Efficient Algorithm for the Subset-Sum Problem, a manuscript, 1988.
[4] Chaimovich M., Subset-Sum Problems with Different Summands: Computation, Discrete Applied Mathematics, 27, 1990, 277-282.
[5] Chaimovich M., Solving a Value-Independent Knapsack Problem with the Use of Methods of Additive Number Theory, Congressus Numerantium, 72, 1990, 115-123.
[6] Chaimovich M., Freiman G.A., and Galil Z., Solving Dense Subset-Sum Problem by Using Analytical Number Theory, J. of Complexity, 5, 1989, 271-282.
[7] Erdôs P., and Freiman G., On Two Additive Problems, J. Number Theory, 34, 1990, 1-12.
[8] Freiman G.A., An Analytical Method of Analysis of Linear Boolean Equations, Ann. New York Acad. Sci., 337, 1980, 97-102.
[9] Freiman G.A., Subset-Sum Problem with Different Summands, Congressus Numerantium, 70, 1990, 207-215.
[10] Freiman G.A., New Analytical Results in Subset-Sum Problem, Discrete Mathematics, 114, 1993, 205-218.
[11] Galil Z., and Margalit O., An Almost Linear-Time Algorithm for the Dense Subset-Sum Problem, SIAM J. of Computing, 20, 1991, 1157-1189.
[12] Lipkin E., On Representation of r-Powers by Subset-Sums, Acta Arithmetica, LII, 1989, 353-366.
[13] Martello S. and Toth T., The 0-1 Knapsack Problem, in Combinatorial Optimization, ed: N. Christofides, A.Mingozzi, P. Toth, C.Sandi, Wiley, 1979, 237-279.
[14] Olson J., An Addition Theorem Modulo p, J. of Combinatorial Theory, 5, 1968, 45-52.
[15] Sárkőzy A., Finite Addition Theorems II, J. Number Theory, 48, 1994, 197-218.

[^0]
[^0]: M. Chaimovich, 7041 Wolftree Lane, Rockville MD 20852, USA

 E-mail : mark.chaimovich@bellatlantic.COM

