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Hypergroup structures associated with Gel'fand 
pairs of compact quantum groups 

Leonid Vainerman 

1 Introduction 

A notion of a GePfand pair for compact quantum groups introduced by T.H. Koorn-
winder in [19] is a generalization of the classical one for a locally compact group G 
and its compact subgroup K such that for any irreducible unitary representation of 
G, the dimension of the space of K-bi-invariant matrix elements is not greater then 1; 
this is equivalent to the commutativity of the subalgebra of group algebra of G, formed 
by if-bi-invariant functions (see [11]). This classical notion of a Gel'fand pair can be 
formulated as the cocommutativity of the coproduct 

A(/)(*,fc) := K 
f(gkh)dfiK(k) (fiK — Haar measure for K) (1) 

on the space of all /f-bi-invariant functions on G. Considering such functions as func
tions on the set of double cosets Q = K\G/K, one can rewrite (1) in the following 
form: 

A( / ) (p , r ) = 
Q 

K(p,r,s)f(s)dfiQ(s) ( p , r € Q ) , (2) 

where . , . ) is some positive kernel, \LQ is some positive Borel measure on Q (which 
can depend on p and r in general case). A function Xa(-) o n Q {a is classifying pa
rameter) is called a character of the coalgebra given by (2) if it satisfies a product 
formula* 

Q 
K(p,r,s)xa(s)dpQ(s) = Xa(p)Xa(r) ( p , T G Q). (3) 

We will say that the coproduct (2) defines a hypergroup structure on the algebra of K-
bi-invariant functions on G with the pointwise multiplication. One can find a discussion 
of hypergroups in [5],[6],[13],[22],[26] and in references given there. In many cases the 
Xa are well known special functions. Very often we have a similar formula with respect 
to a - dual product formula. It shows that Xa is also a character of a dual hypergroup 
by the variable a. 

In this paper we consider double cosets of compact quantum group with respect to 
its subgroup and distinguish cases of a Gel'fand pair and a strict Gel'fand pair. We show 
that every strict Gel'fand pair of compact quantum groups generates a normal com
mutative hypercomplex system with compact basis [5],[6] and a commutative discrete 
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hypergroup [13], which are in duality to one another, consider corresponding examples 

and describe characters of hypergroups in terms of q-orthogonal polynomials. 

After this paper had gone to press, the essential development of the subject took 

place. On the one hand, Gel'fand pairs for non compact quantum groups were con

sidered (see, for example, [29]). On the other hand, one can consider a notion of a 

quantum subgroup of a quantum group from more general point of view then in this 

paper, using a notion of a coideal (see, for example, [9],[12],[14],[15],[20], [21],[23],[28]). 

This permits to apply the Gel'fand pair approach to exceptionally interesting classes 

of q-special functions such as Macdonalds and Askey-Wilson polynomials and Jacksons 

q-Bessel functions. This development is described in the survey [28]. 

I would like to express my gratitude to Yu.A. Chapovsky, T.H. Koornwinder and 

A.U. Klimyk for many useful discussions. 

2 Double cosets of quantum groups 

2.1. Let H : = ( # , d , 1, A , £ , S ) , H := (H,d,î,Â,e,S) be two Hopf algebras over C [ l j , 

with multiplications d, d, units 1,1, comultiplications A , A , counits £,£, antipodes 5, S 

Definition 1 We say that H , H are in duality, if there exists a doubly non-degenerate 

pairing (•,•): H x H —• C such that: 

( l , 0 = ê ( C ) , (a6,C) = ( a ® 6 , Â ( C ) ) , ( A ( a ) , C ® V > = (a,Ci?), 

( a , Î ) = e ( « ) , ( 5 ( a ) , < ) = (a ,5 (C) ) ( V a , b € H , Ç , r , € H ) . 

We can define elements £ * a : = (id ® ( ) o A ( a ) , a *£:=(( ® id) o A ( a ) , where the 

pairing is used in the first, respectively second part of the tensor product. It is possible 

to rewrite the last equalities as ((*a,r}^j= (a,r/£), ( a* ( , 7 7 ) = ( ^ C 7 ? ) - These operations 

yield left and right algebra actions of H on H: 

(C7?) * a = c * d * °0Ì a * (C7/) = ( a * c) * v (Va
 £ H, 77, e E H). 

Now let H , H be two Hopf algebras in duality, ( £ H. In.what follows we will suppose 

that another pair ( H i , H i ) of Hopf algebras in duality exists together with an epimor-

phism 7r : H —• H i and embedding i : H i —> H such that ( 7 r ( a ) , ( ) = (a, i(Q) (Va £ 

H, ( £ Hi). Left and right coactions A1 : = (TT ® id) o A , A r := (id ® TT) O A of H i on H 

define the subsets of left-, right- and bi-ivariant elements: Hi\H := {h £ H\Al(h) = 

l i ® fc}, # / # i : = {fc e H\Ar(h) = h® l i } , Hi\H/Hi := H^HHH/H^ All these sets 

are evidently unital algebras. Let an invariant integral i/i (such that ^ i ( l ) = 1) on Hopf 

algebra H i [1] exist (it always exists when Hi is a compact quantum group in the sense 

of [34]). Then we can introduce two projections wl := (z/i07r®zcZ)oA, 7 r r := ( id®i/i07r)oA 

from H to Hi\H and H/Hi correspondingly. They commute and 7 r r on1 is a projection 

from H to Hi\H/Hi (see [7],[19]). A new coproduct may be introduced on Hi\H/Hi'. 

A : = (id ® i/i o 7T ® id) o (id ® A ) o A (4) 

This definition is a generalization of (1) for Hopf algebra case. 
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Theorem 1 Let a mapping À be defined by (4). Then: 

(a) A maps # i \ # / # i into # i \ # / # i ® H^H/H^ 

(b) A ¿5 coassociative, i.e. (id ® A) o A = (A ® id) o A; 

(c) € is a counit with respect to A : (£i ® id) o A = (id ® e\) o A = id; 

(d) z/j/ is an invariant integral on H, then v is invariant with respect to A ; 

(u ® id) o A(A) = (id ® i/) o A(A) = • 1; 

(e) £/ie following relation holds: A o 5 = II o (S ® 5) o A. 

PROOF, a) Evidently, A = (id® 7r')A = (?rr ® id)A. On the other hand, (id® 7r r)A = 
A o 7rr, (IT1 ® 7r')A = A o TT'. SO for every G Hi\H/H\ we have A(fc) € Hi\H/Hi ® #. 
Similarly we see that A(A) € H ® H\\H/H\. b) Both sides of needed equality coincide 
with (7rr ® id ® 7r')(A ® id)A. c) (e ® id)A = (e ® 7r')A = TT', SO that e is right 
counit. Similarly one can see that it is also left counit. d) Replacing e by i/, we can 
prove this statement exactly as previous, e) This is implied by the following chain 
of equalities: A o S = (id ® 7r')A O 5 = (id ® ^ ^ ( ^ ® 5)A = (id ® i/a o IT ® id) 
(11 ® td)(id ® II)(5 ® 5 ® S)(A ® id)A = 11(5 ® 5)(id ® i/a o 5i o TT® id)(A ® id)A = 
n ( 5 ® 5 ) A . _ • 

Two Hopf *-algebras H , H are said to be in duality, if they are in duality as Hopf 
algebras and 

C(f) = C(S(f')) v c g H, / e H, 

where the same symbol denotes the involution in H and in H. In what follows, we will 
be considering H,Hx as Hopf *-algebras (see, for example, [25],[32],[34]) with the Hopf 
algebra structure and the involution *, 7r as an epimorphism of Hopf *-algebras, V\ as a 
state on the *-algebra H1. Then Hi\H, H/Hi and H^H/Hi will be unital ^-algebras, 
7r/,7rr, A map the cone of positive elements into the cones of positive elements of the 
corresponding *-algebras. 

Definition 2 A pair of Hopf algebras (resp. *-Hopf algebras) (H,Hi) is called a 
Gel fand pair if the coproduct A is cocommutative. A Gel fand pair is called strict 
if the algebra Hi\H/Hi is commutative. 

2.2. Now let H be *-Hopf algebra associated with a compact quantum group and H is 
its algebraic dual. We know [34] that H can be represented as 

H = 
Of 

da 

i,j=l 

Cua,j, ( 5 ) 

where ufj are matrix elements of da- dimensional unitary corepresentation of H (da < oo 

for all a running in some discrete set Q) and there exists an invariant integral v on 

H, which is a state and such that a-sum in (5) defines an orthogonal decomposition 

in the sense of the inner product given by (f,g) := v(f • g*) after a suitable choice 
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of an orthonormal basis for each representation space. In this case, the comodules 
Hi\H, H/Hi and also Hi\HjHx may be given by 

H1\H = 
a 

da 

1=1 

da 

j = l 

Cua,j; H/H1 = 
a 

da 

i = l 

d'a 

j=1 
C < 7 , 

HAH/HI = 
a 

d'a 

i,j=1 
Cia,j 

where d'a < da for all a. A notion of a Gel'fand pair for compact quantum groups 
was introduced in [19] as a pair (H,Hi) with an epimorphism 7r : H —> H1? such that 
for any irreducible unitary matrix corepresentation of H, the dimension of the space of 
bi-invariant matrix elements is not greater then 1. 

Lemma 1 A pair of compact quantum groups (H,Hi) with an epimorphism 7r : H —> 
Hi is a Gel fand pair in the sense of Definition 2, iff for any irreducible unitary matrix 
corepresentation o /H , the dimension of the space of bi-invariant matrix elements is not 
greater then 1. 

PROOF. Suppose that 2 < dp for some fixed /3 G Q. Set 771 (u£2) := 1, := 0 
otherwise and 7/2(̂ 2,1) := 1, ^{ufj) := 0 otherwise. One can check that 7/1,772 £ 
( # i \ i / / i / i ) * D H\. Direct calculations show that (A(wfi), 771 ® 772) ^ (A(uf>1), 772 ® 771), 
i.e., A is not cocommutative. Conversely, if da = 1 Va G Q, then A is obviously 
co commutative. • 

3 Connections with hypercomplex systems and hy-
pergroups 

3.1. We will use notions of a spatial tensor product for C*-algebras, a unital Hopf 
C*-algebra, a morphism, and a counit for unital Hopf C*-algebras, as well as notions of 
a coaction of a unital Hopf C*-algebra on a unital C*- algebra and finite Haar measure 
on a unital Hopf C*-algebra (see[4],[10],[34]). If H is a unital Hopf C*-algebra, then 
the coproduct defines a structure of a Banach algebra in the conjugate space H* for the 
C*-akebra H: 

Co * LJ := (u ® ^ ) o A, Vu;,a; G H*. 

H has a counit if and only if H* is a unital algebra. 
As in Section 2, we denote Va 6 H,UJ G H*: 

a; * a (id ®u)o A(a), a * u := (u ® id) 0 A(a). 

Let v be finite Haar measure on a unital Hopf C*-algebra H. One can introduce 
by means of GNS-construction a structure of the Hilbert space L<i(H, v) and the corre
sponding representation of A^ of H in this space. For every compact quantum group the 
completion of the initial Hopf *-algebra with respect to the C**-norm | • | = supp ||p(·)||, 
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where p runs over the set of all irreducible representations of H, give a unital Hopf 
C*-algebra H (see [34]). 

Now we consider the initial situation of section 2, in which: 1) H is a unital Hopf 
C*-algebra, having a finite Haar measure v and a counit e; 2) Hi is a unital Hopf C*-
algebra, having a finite Haar measure v\ and a counit e\ (such measures and counits 
always exist when H, Hi are compact quantum groups (see [34]); 3) 7r is an epimorphism 
in the category of unital Hopf C*-algebras. Then one can consider all the above men
tioned algebras as unital C*-algebras, all the above mentioned coactions and positive 
mappings as coactions of unital Hopf C*-algebras and positive mappings of C*-algebras. 
Particularly, H\\H, H/Hi, Hi\H/H\ are C*-subalgebras of H, TT̂ TT7*, A are positive 
mappings of unital C*-algebras. All the statements of section 2 are valid for unital Hopf 
C*-algebras except for those which involve an antipode. 

3.2. Let Q be a locally compact Hausdorff space, and let M be a Banach space of 
complex valued functions on Q. We denote by {Ls\s G Q} a family of left generalized 
shift operators (below Delsarte-Levitan hypergroup or simply hypergroup) [22] acting in 
M. One can find a discussion of hypergroups and their special classes in [5],[6],[13],[26] 
and references given there. The notion of a hypergroup can be formulated in terms of 
the coassociativity of the coproduct (A/)(£,s) := L8f(t). In the case when M = Cb(Q) 
is the C*-algebra of all bounded continuous functions on Q and A is a continuous 
mapping from M to M ® M, there exists a structure of a Banach algebra on the dual 
space M* = M(Q) of all finite regular Borel measures on Q with the convolution 

(/, 6. * St) = (L'f, 6t) = (L'f)(t) Vt,seQ,fe M, (6) 

(where (•,•) is the pairing for M and M*, St is the delta function concentrated at the 
point £), and with a unity Se. The hypergroup is called commutative if the algebra M* 
is commutative. We will call a function x(') € M a character of hypergroup {Lp} if it 
is a character of the algebra M*, i.e., if (Lpx)(r) = x(p)x(r) Vp, r G Q. 

In many applications, hypergroups satisfy some special conditions: 
a) the action of a hypergroup preserves positivity of functions and the function 

which identically equals to unity; 
b) there exists an involutive homeomorphism x xv of Q (the analogue of taking 

the inverse in a group) such that 

(L'f)(t) = ( i ' f l W , V / € M, r, s, t € Q, fv(t) : = / ( O 

and ev = e. The hypergroup having a property b) is called involutive. In this case 
M* is a Banach *-algebra with the involution extending the mapping 6X —• 6xv. If 
x = xw Vx G Q, the corresponding hypergroup is called Hermitian, it is automatically 
commutative. The definition of a character of an involutive hypergroup contains a 
condition x(rV) = x(r) ^r € Q-

Usually the existence of some special positive regular Borel measure v on Q with 
the property JQ Lpf(q)dv(q) = JQ f(q)dv(q) - the analogue of a Haar measure on a 
group is assumed (or is proved under some additional conditions [5],[6],[13]). Such a 
measure is also called a Haar measure. Then one can consider the hypergroup as a 
family of bounded linear operators acting in the spaces LP(Q, ̂ ),(1 < p < oo). The 
important special classes of hypergroups with the described properties were studied 
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by Yu.M. Berezanskii, S.G. Krein, A.A. Kalyuzhnyi (hypercomplex systems with a 
locally compact basis) and also by Ch.Dunkl, R. Jewett, R. Spector and others (DJS-
hypergroups). See a discussion in [5], [6], [13],[26]. 

Let us suppose that H is a unital Hopf C*-algebra with a finite Haar measure v and 
Hi\H/Hi is a unital commutative C*-algebra. Then the restristion of v to this algebra 
is generated by some finite measure on its spectrum Q, which is a compact topological 
space. We use A and v to denote the restrictions of the corresponding mappings to 
Hi\H/Hi (as well as the measure on <3, generating v). Since Hi\H/H\ is isomorphic 
to the unital C*-algebra C(Q) of all continuous functions on Q and any p G Q can be 
identified with a continuous homomorphism p : Hi\H/Hi —• C, there exists a family 
of operators Lp : Hi\H/Hi -> given by 

Lp(f) := (id ® p) o A ( / ) = p * 7 V / G H. (7) 

One can see that these operators generate hypergroup with e = e ,M = Hi\H/Hi. We 
use Hi\H/Hi and the measure v to construct the Hilbert space L2(Q,v) and consider 
Lp as operators acting in this space, defined first on L2(Q, v) fl Loo(Q,v). 

Lemma 2 Let the hypergroup Lp,p G Q, be given by (7). Then: 
1) Lp may be extended to a bounded operator for all p G Q and the mapping p »—> Lp 

is strongly continuous; 
2) L£ = id; 
3) for any positive f G L2(Q, v), Lp(f) is positive for all p G Q; 
4) L>>(l)(q) = lforallp,q€Q. 

PROOF. 1) It follows from the definition of Lp and the positivity property of A that 
Lp are bounded with \\LP\\ < 1. Moreover, for any / G H the mapping p t—• Lp(f) = 
(p <S> id)A(f) is strongly continuous. 2) This is a direct consequence of part c) of the 
Theorem 1. 3) Since A is positive, this follows from the fact that p is a homomorphism 
and from the property 1). As a cosequence of this fact we have that Lp maps real 
functions into real. 4) Since A ( l ) = 1 ® 1 and p, q are homomorphisms, we have 
L*(l)(q) = 1. • 

Remark 3.1. Let now 5, S\ be antipodes on H,Hi respectively such that 7r O S = 
Si o 7r and the restriction of S to Hi\H/Hi is continuous. Then one can define an 
involutive homeomorphism V of Q:pv = p o S Vp G Q such that the hypergroup has 
a property 

5) ev = e and (L*S(f))(p) = (Lpf)(q) for all / G L2(Q,v). 
If additionally the Haar measure v satisfies the relation 

v((p *' a)*b) = v(a\p *' 6V)), Va, b G Hi\H/Hup G Q, (8) 

then the hypergroup have an additional property 
6)(LPY = LpV, where (Lp)* is the operator adjoint to Lp in L2(Q,v). 
These considerations and Theorem 2.1 of [6] show that the described hypergroup sat

isfies all the properties of a commutative normal hypercomplex system with a compact 
basis and a basis unity. A dual hypergroup may be constructed using the considera
tions of [19] (in this paper a discrete, generally noncommutative, DJS-hypergroup was 
constructed for every Gel'fand pair of compact quantum groups, not obligatory strict). 
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Thus, every strict Gel'fand pair of quantum groups generates two commutative 
hypergroup structures dual to one another: a discrete DJS-hypergroup and a normal 
hypercomplex system with a compact basis. 

3.3. The described construction of double cosets for compact quantum groups may 
be generalized, if we replace a Hopf algebra Hi by a coideal (see[23]) in a Hopf algebra 
H. Such a generalization permits to establish general point of view based on the 
notion of strict Gel'fand pair, to the interesting examples of Askey-Wilson [3],[21] and 
Macdonald [23] polynomials (see also [12],[9]). It will be described in a separate paper. 
In this more general situation we do not know if the mapping A is positive, so that 
we can not refer neither to hypercoplex systems in the sense of [5],[6] nor to DJS-
hypergroups [13]. We can only use a duality principle for real hypercomplex systems 
with compact and discrete basis described in [27]. 

4 Examples 

4.1. It is known [25] that quantum group SLq(2,C) is generated by elements a, /?,7,< 
such that: 

a/3 = q(3a, cry = qja, (3~f = 7/?, /38 = q8/3, 

7<S = <7<$7, a6 — qj3~j = 8a — <7_1/?7 = 1, 

A(a) := a ® a + /3 ® 7, A(/3) : = a ® /3 + ¡3 ® <5, 

A(7) : = 7 ® a + 8 ® 7, A(8) := 7 ® /3 + 8 ® 6, 

e(a) = ^ ) : = l , £ ( ^ ) = 5 ( 7 ) : = 0 , (9) 

S(a) := 6, Sl((3) := -q'1^ 5(7) := -<?7, S(6) := a, q G { C \ 0 } . 

The dual Hopf algebra (quantized enveloping algebra) Uq(sl(2,C)) is generated by ele
ments A, B, C, D and relations: 

AB = qBA, AC = q~lCA, AD = DA = llt BC-CB = {q- q'1)'1 

(A2-D*),A(A) :=A®A, A{B) := A® B + B ® D,hatA(C) := A®C + C ®D, 

A(D) :=D® D,e(A) = e(D) := 1, 2(B) = 2(C) := 0, (10) 

S(A) := D, S(B) := -q^B, S(C) =:= -qC, S(D) := A (q2 / 1). 

. In [31] it was shown that these Hopf algebras are in duality with respect to the pairing 

(a, A) = (6, D) := (6, A) = (a, D) = q~i, (/3, B) = (7, C) = 1, (11) 

which equals to 0 for other pairs of generators. A real form H = SUq(2) of 5Lg(2, C) 
distinguished by an involution a* = 8, 8* = a, /3* = —97, 7* = ~q~l/3 (0 < q < 1) 
may be equipped with a structure of a compact quantum group in the sense of [34] (see 
also [31],[35]). Let Hi = U(l) be a Hopf *-algebra generated by commuting variables 
t,t~x = t* and mappings: Ai(t) := t ® t, Si(t) := t"1, €i(t) := 1. An epimorphism 
7r : H —> Hi is defined as ir(a) := t, n(8) := t"1, TT(/3) = ^(7) := 0. One can consider 7r 
as an epimorphism of unital Hopf C*-algebras and A as a positive continuous mapping 
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of commutative unital C*-algebra H\\H/Hi to its tensor square. The spectrum of 
the C*-algebra Hi\H/H\ is a compact Hausdorff space Q = {q2k\k G Z + } U {0} and 
restriction of the invariant integral v of SUq(2) to this C*-algebra is given by the Jackson 
integral: 

K / ) = ( i - 9 2 ) 
kEZ+ 

f{<R)<R V / € C(Q). (12) 

Theorem 2 [19],[30] The strict Gel'fand pair (SUq(2),U(l)) generates a Hermitiaz 
normal hypercomplex system with a compact basis Q, e = 0 and Haar measure of tht 
form (12). The corresponding operation has a form 

(LV)(r) = (A/)(p,r) = (l-<?2) 
fc€Z+ 

K(q2p', q2r"; q2k|q2) f(q2k) q2k, 

where p',r' G Z+,p = q2p\r = q2r' G Q,K(q2p',q2r'\q2k\q2) may be expressed by means 
of 3<P2'q-hypergeometric series. The series in the right-hand side of the latter equality 
converges absolutely. The corresponding complete orthogonal in L2(Q, v) system of 
characters is formed by the little q-Legendre polynomials pn{z\ 1,1|<?2), n G Z+,z G Q. 

Corollary. We have the following product formula for the little q-Legendre polynomi
als: 

(i-<?2) 
kEZ+ 

K(q2p\q2r'; q2k\q2)p,(q2k; 1,1|«2) = Pltf''; 1, ltf)*^ i U l « ' ) , 

where pl\r', I G Z+. One can find this formula and the expression for K(q2p\q2r'\ q2k\q2) 
in [18]. 

Now we can find a dual hypercomplex system applying the general construction 
from [5],[6]. It has a discrete basis Z+ and, hence, it is a DJS-hypergroup. Here we 
have 

M92";Uk2)pm(92";i,ik2) = 
l+m 

S=\L-M\ 
K(l,m,s)ps(q2n',l,l\q2), 

where the numbers K(l, m, s) are Clebsch-Gordan coefficients for the irreducible ^rep
resentations of SUq(2). One can look at this formula as at the dual product formula 
for the little q-Legendre polynomials. The kernel K(l,m,s) was expressed in [16] by 
means of q-Hahn polynomials. 

4.2. Now consider a strict Gel'fand pair (SUq(n), Uq(n — l ) ) ,n > 2. This is a gener
alization of the example considered in 4.1. It is known that [25] Uq(n) := C(£,j,tf, l ) / i # , 
where C(£,j,£, 1) is a free algebra generated by the elements of the matrix T = (ttJ), 
i, j = 1,.. . , n, the elements £, 1 and IR is a two-sided ideal generated by the relations 

RTXT2 = T2TXR, t • Uj = tij -t, t- detq(T) = detq{T) -t = l. 

Here Ti = T ® /, T2 = J ® T, J is the identity matrix in Rn, the matrix R is given by 

R:= 
l<i,j<n 

qAIIEII®EJJ + (q-q x) 

l<i<j<n 
€-ij ® Cji, 
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ßij G Mat(n x n) are matrix units, detg(T) = ><r€Sn {-qY^tia, ' . . . - W Sn is the 

permutation group, 1(A) - the length of the permutation cr, and Q G C. 
For ç G R and |ç| < 1, the structure of a *-Hopf is given by 

A(ti,j) := 

k 

U,k ® tkj, A(t) :=t®t, e(tu) := Su, e(t) := 1, 

S(ti,j) := (-q)i-j 
oESn-1 

( — qy^htoo • ... • £J-L<RJ_I ¿7+1^+1 ' ... * <N^LCRN_I, 

where cr̂  G [0, z — 1] U [i + 1 , n — 1], and the antipode 5(2) := detg(T), and the involution 
t*. : = S(tift-), r := t. 

The dual Hopf *-algebra, Uq(u(n)), is defined as [25] Uq(u(n)) := C(/J,/"-, 1 ) / JR+, 
where the free algebra C(/J-, 1) is generated by the elements /J, /" , 1, i, j = 1,... n, 
and the two-sided ideal is generated by the relations 

R~^~.Zyjk— ) R^~ L"^ L2 — L2 L"^R~^, 

where Lf = L* ® I, Lf = I ® L*, R+ = PRP (P(h ®l2) = l2®h). The coalgebra 
structure is given by 

HIT,) ••= 
nn 

k=1 

likO lkj, 

and a nondegenerate pairing is defined to be (L*,Tx... Tk) := # f » . . . • where 

Tt = / ® . . . ® T 

i 
® . . . ® J , 

i? = i? *, and i?f acts as i?* on the 0</l and component of the tensor product 
(R")®(*+i). SUq(n) is a Hopf *-algebra distinguished by the condition detg(T) = 1, 
with the same Ai ,£i , 5i, *. 

Let the generators of Uq(n — 1) be s and Hopf *-algebra epimorphism 7r : 
SUq(n) -+ Uq(n-l) be7r(tij) := 5tJ, Tr(toj) := ir(ti0) = 0, = 7r(*0o) := 5. 
It was shown in [8] that Uq(n — l)\SUq(n) is generated by the elements X{j = W S j * hj = 
0 , . . . , n — 1, SUq(n)/Uq(n — 1) - by the elements y^ = tt0^0, ij = 0 , . . . , n — l,£/g(n — 
l)\SUq(n)/Uq(n — 1) is generated by an element z = ¿00̂ 00• Since the latter unital 
algebra is commutative and S\ is trivial on it, (SUq(n)JJq(n — 1)) is strict Gel'fand 
pair. 

Let H be the completion of the algebra Uq(n — l)\SUq(n)/Uq(n — 1) with respect to 
C*-norm I • |= sup where p runs over the set of all the irreducible representations 
of SUq(n). The spectrum of this C*-algebra is Q = {q2k}kez+ U {0} and the restriction 
to it of the Haar measure v of SUq(n) is given by the Jackson integral: 

v(F(z1)) = (1 - q2n-2) 
00 

k=0 
q2k(n-^F(q2k) (13) 

(see [32]). It was shown in [8], that we have here a structure of a hypercomplex sys
tem with compact basis Q, its characters <pm can be expressed by the little ç-Jacobi 
polynomials Pm (m = 1,2,...): 

<Pm(ZI) = AmPm(2l/ç2;ç2n-4,l|ç2), Am = 
( l - ^ X W ) 

(1 _ ç-2m)(l _ ç2m+2n-2) 
(14) 
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After that we can again consider a dual hypercomplex system with the discrete basis 
Z+ (DJS-hypergroup), whose structural constants are the Clebsch-Gordan coefficients 
for the irreducible corepresentations of SUq(n). Thus we have: 

Theorem 3 There are two dual to each other structures associated with the strict 
Gelfand pair (SUq(n), Uq(n — 1)): a commutative hypercomplex system with the compact 
basis {q2k}kez+ U{0} and ^ e Haar measure given by (13), and the discrete commutative 
DJS-hypergroup with the basis Z+. Their characters are expressed by (14)-

For n > 2 the expressions for the kernels in the product formula for the little q-Jacobi 
polynomials and in dual product formula are not known. 
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