Astérisque

BERNADETTE PERRIN-RIOU

Exposé IV : Représentations p-adiques ordinaires

Astérisque, tome 223 (1994), Séminaire Bourbaki, exp. nº 4, p. 185-207 http://www.numdam.org/item?id=AST_1994__223__185_0

© Société mathématique de France, 1994, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Exposé IV

REPRÉSENTATIONS p-ADIQUES ORDINAIRES

par Bernadette Perrin-Riou (avec un appendice par Luc Illusie)

1. — Présentation

1.1. — Soient k un corps parfait de caractéristique p, K_0 un corps local complet de caractéristique 0 de corps résiduel k, non ramifié sur \mathbb{Q}_p et K une extension finie de K_0 totalement ramifiée sur K_0 . On choisit une clôture algébrique \overline{K} de K, une clôture algébrique \overline{k} de k et on note G_K le groupe de Galois de \overline{K}/K . Soit I_K le sous-groupe d'inertie de G_K . On note σ l'endomorphisme de Frobenius absolu sur K_0 et sur k. On note P_0 le corps des fractions de $W(\overline{k})$.

Nous sommes intéressés ici dans un certain type de représentations p-adiques de G_K dites ordinaires et en leur description complète en termes de certains (φ, N) -modules filtrés. Ces représentations p-adiques interviennent en géométrie algébrique. Bloch-Kato puis Hyodo ont en effet montré que sous certaines hypothèses sur la variété X, les représentations p-adiques données par la cohomologie étale de la variété X sont ordinaires (cf. l'appendice de L. Illusie). D'un autre point de vue, Greenberg [G89] a élaboré une théorie d'Iwasawa pour les représentations p-adiques ordinaires qui généralise celle déjà connue pour les variétés abéliennes ordinaires et pour le module de Tate cyclotomique. Nous n'en dirons pas plus ici dans ces deux directions. Tous les résultats du texte qui suit sont dus à J.-M. Fontaine.

1.2. — Notons χ le caractère cyclotomique, c'est-à-dire le caractère à valeurs dans \mathbb{Z}_p^{\times} donnant l'action de G_K sur les racines de l'unité d'ordre une puissance de p. Une représentation p-adique V de G_K est dite **ordinaire** s'il existe une

filtration $(Fil^iV)_{i\in\mathbb{Z}}$ de V, décroissante exhaustive et séparée, par des sousespaces Fil^iV stables par G_K et telle que le groupe d'inertie I_K agit sur $Fil^iV/Fil^{i+1}V$ par χ^i . Remarquons que V est ordinaire si et seulement si sa restriction à I_K est ordinaire.

Pour la commodité du lecteur, nous reprenons quelques définitions tirées des exposés II et III de ce volume. Un (φ, N) -module filtré sur K est un K_0 -espace vectoriel D muni d'un isomorphisme σ -linéaire φ , d'un endomorphisme N vérifiant

$$N\varphi = p\varphi N$$

et tel que le K-espace vectoriel $D_K = K \otimes_{K_0} D$ soit muni d'une filtration par des K-sous-espaces vectoriels $(D_K)^i$ qui soit décroissante, exhaustive et séparée. Les **nombres de Hodge** d'un (φ, N) -module filtré D de dimension finie sont les nombres de Hodge de la filtration

$$h_H(D,i) = \dim_K(D_K)^i / (D_K)^{i+1}$$
.

Les **nombres de Newton** du (φ, N) -module filtré D sont ceux du φ isocristal sous-jacent, c'est-à-dire que si $\alpha = r/s$ est un rationnel et si $D_{[\alpha]}$ est le sous- K_0 -espace vectoriel de $P_0 \otimes_{K_0} D$ engendré par les x vérifiant $\varphi^s x = p^r x$, on a

$$h_N(D,\alpha) = \dim_{K_0} D_{[\alpha]}.$$

Posons

et

$$t_N(D) = \sum_{\alpha} \alpha \ h_N(D, \alpha)$$
$$t_H(D) = \sum_{i} i \ h_H(D, i).$$

Un (φ, N) -module filtré D de dimension finie est dit **faiblement admis**sible si

$$t_N(D) = t_H(D)$$

et si pour tout sous- K_0 -espace vectoriel D' de D stable par φ et par N, on a

$$t_H(D') \le t_N(D')$$

où $D'_K = K \otimes_{K_0} D'$ est muni de la filtration induite par celle de D_K . Un (φ, N) -module filtré est dit **ordinaire** s'il est faiblement admissible et si ses

nombres de Hodge et de Newton coïncident. Une manière concrète de décrire un (φ, N) -module filtré ordinaire est la suivante. Posons $\overline{D} = P_0 \otimes_{K_0} D$, $\overline{D}_{[r]} = P_0 \otimes_{K_0} D_{[r]}$. Alors, $D^{[r]} = D \cap \overline{D}_{[r]}$ est un K_0 -sous-espace vectoriel de D dont la dimension est égale à $h_N(D, r)$ et qui est stable par φ : en effet, \overline{D} est un P_0 -espace vectoriel muni d'une action naturelle de G_k et $\overline{D}_{[r]}$ en est un sous-espace vectoriel dont on vérifie facilement qu'il est stable par G_k ; on en déduit par descente galoisienne [S68] qu'il provient d'un K_0 -espace vectoriel qui est $D^{[r]}$. On montrera en 2.6 que le (φ, N) -module filtré D est ordinaire si et seulement si les nombres de Newton de D sont des entiers et si l'on a

(1)
$$D_K = (D_K)^i \bigoplus \left(\bigoplus_{j < i} (D^{[j]})_K \right)$$

pour tout entier i. Cela signifie aussi qu'il existe un réseau M de D, c'est-à-dire un sous-W(k)-module libre de D de rang maximal, et une décomposition de M en somme directe

$$M = \oplus M^{[i]}$$

telle que $p^{-i}\varphi$ induise sur $M^{[i]}$ un automorphisme (σ -linéaire) et telle que, si $D^{[i]}=K_0\otimes_{W(k)}M^{[i]}$, on ait

$$D_K = (D_K)^i \bigoplus \left(\bigoplus_{j < i} (D^{[j]})_K \right).$$

Il est clair que le (φ, N) -module filtré D est ordinaire si et seulement si le (φ, N) -module filtré $P_0 \otimes_{K_0} D$ déduit par extension des scalaires est ordinaire.

1.3. — On renvoie à l'exposé II pour la définition des anneaux de périodes p-adiques B_{dR} , B_{cris} et B_{st} . Choisissons une valuation v de \overline{K} à valeurs dans \mathbb{Q} . Rappelons que B_{st} contient B_{cris} , est muni d'une action de G_K , d'une structure de K_0 -espace vectoriel, d'un endomorphisme φ σ -linéaire commutant à l'action de G_K , d'une filtration décroissante, d'une B_{cris} -dérivation N telle que $N\varphi = p\varphi N$ (Exp. II, 3.2). Il existe un élément t de B_{cris} engendrant $\mathbb{Z}_p(1)$ tel que $\varphi t = pt$ et un élément u de B_{st} tel que B_{st} est une algèbre de polynômes sur B_{cris} en u, N est alors la B_{cris} -dérivation

tel que Nu = 1 et on a $\varphi u = pu$. Enfin, le choix d'un logarithme de \overline{K}^{\times} prolongeant le logarithme usuel permet de définir un plongement

$$K \otimes_{K_0} B_{st} \longrightarrow B_{dR}$$

(Exp. II, 4.2.4). On note encore u l'image de u dans B_{dR} .

1.4. — Si V est une représentation p-adique, on pose

$$\underline{D}_{st}^*(V) = \operatorname{Hom}_{\mathbb{Q}_n}(V, B_{st})^{G_K}.$$

Le K_0 -espace vectoriel $\underline{D}_{st}^*(V)$ est muni d'une structure naturelle de (φ, N) module filtré induite par celle de B_{st} et on a $\dim_{\mathbb{Q}_p} V \ge \dim_{K_0} \underline{D}_{st}^*(V)$. Si Dest un (φ, N) -module filtré, on pose

$$\underline{V}_{st}^*(D) = \{ x \in \operatorname{Hom}_{K_0}(D, B_{st}) \text{ t.q. } \varphi x = x, \ Nx = 0,$$

$$1 \otimes x \in (K \otimes_{K_0} \operatorname{Hom}_{K_0}(D, B_{st}))^0 \}$$

(le K-espace vectoriel $K \otimes_{K_0} \operatorname{Hom}_{K_0}(D, B_{st})$ est muni de la filtration naturelle $(K \otimes_{K_0} \operatorname{Hom}_{K_0}(D, B_{st}))^i$). C'est aussi le \mathbb{Q}_p -espace vectoriel des homomorphismes de D dans B_{st} dans la catégorie des (φ, N) -modules filtrés. Le groupe de Galois G_K agit sur $\underline{V}_{st}^*(D)$ et cette action en fait une représentation p-adique de G_K .

Une représentation p-adique V est dite semi-stable si

$$\dim_{\mathbb{Q}_p} V = \dim_{K_0} \underline{D}_{st}^*(V) .$$

Le (φ, N) -module filtré D est dit admissible s'il existe une représentation p-adique semi-stable V telle que $D = \underline{D}_{st}^*(V)$.

On pose de même $\underline{D}_{cris}^*(V) = \operatorname{Hom}_{\mathbb{Q}_p}(V, B_{cris})^{G_K}$. C'est un φ -module filtré (N=0). La représentation p-adique V est dite **cristalline** si

$$\dim_{\mathbb{Q}_p} V = \dim_{K_0} \underline{D}^*_{cris}(V).$$

Le φ -module filtré D est dit **admissible** s'il existe une représentation p-adique cristalline V telle que $D = \underline{D}_{cris}^*(V)$. Une représentation p-adique cristalline (resp. un φ -module filtré admissible) est semi-stable (resp. un (φ, N) -module filtré admissible).

1.5. Théorème. — Supposons que K est une extension finie de \mathbb{Q}_p . Il existe une anti-équivalence de catégories entre la catégorie des représentations p-adiques ordinaires de dimension finie de G_K et la catégorie des (φ, N) -modules filtrés ordinaires de dimension finie donnée par

$$D = \underline{D}_{st}^*(V), \quad V = \underline{V}_{st}^*(D).$$

En particulier, toute représentation p-adique (resp. (φ, N) -module filtré) ordinaire de dimension finie est semi-stable (resp. admissible).

Nous démontrons dans le paragraphe 2 que tout (φ, N) -module filtré ordinaire est admissible et ceci sans restriction sur le corps K. Dans le paragraphe 3, nous étudions les extensions semi-stables de \mathbb{Q}_p par $\mathbb{Q}_p(j)$ pour tout entier j lorsque K est une extension finie de \mathbb{Q}_p et de \mathbb{Q}_p par $\mathbb{Q}_p(1)$ sans restriction sur K. Dans le paragraphe 4, nous démontrons que toute représentation p-adique ordinaire est semi-stable.

2. — (φ, N) -modules filtrés ordinaires

- **2.1.** Soit $i \in \mathbb{Z}$. Posons $\mathbb{Q}_p(i)$ la représentation p-adique de dimension 1 donnée par le caractère χ^i . Si V est une représentation p-adique, on pose $V(i) = V \otimes_{\mathbb{Q}_p} \mathbb{Q}_p(i)$. On note $K_0[i]$ le (φ, N) -module filtré donné par K_0 , $\varphi(1) = p^i \cdot 1$, $(K_0[i]_K)^i = K_0[i]$, $(K_0[i]_K)^{i+1} = 0$. Si D est un (φ, N) -module filtré, on pose $D[i] = D \otimes K_0[i]$ où le produit tensoriel est pris dans la catégorie des (φ, N) -modules filtrés.
- 2.2. Lemme. Si V est une représentation p-adique, V est semi-stable si et seulement si V(i) est semi-stable. Si D est un (φ, N) -module filtré, D est admissible si et seulement si D[i] est admissible. On a de plus

$$\underline{\mathcal{D}}_{st}^*(V(i)) = \underline{\mathcal{D}}_{st}^*(V)[i] \quad et \quad \underline{V}_{st}^*(D[i]) = \underline{V}_{st}^*(D)(i) \ .$$

Démonstration. Les deux premières affirmations sont claires : on a

$$x \in \underline{V}_{cris}^*(D[i]) \iff x \in \operatorname{Hom}(D[i], B_{cris})^0 \quad \text{et} \quad \varphi x = x$$

et on écrit $x=t^{-i}y$ avec $y\in \text{Hom}(D,B_{cris})^0$ et $\varphi y=p^iy$. On montre de même l'autre égalité.

2.3. — Regardons d'abord le cas particulier facile et bien connu où D a un seul nombre de Hodge non nul (voir Exp. III, 5.4.1). La propriété $N\varphi = p\varphi N$ implique que N est nul.

Lemme. — Soit D un φ -module filtré tel que $(D_K)^i = D_K$ et $(D_K)^{i+1} = 0$. Alors D est faiblement admissible si et seulement s'il existe un réseau de D sur lequel $p^{-i}\varphi$ agit comme un automorphisme. Il est alors admissible et l'inertie I_K agit sur $V_{cris}^*(D)$ par χ^i . Réciproquement, si V est une représentation p-adique sur laquelle I_K agit comme χ^i , alors $\dim_{K_0} \underline{D}_{cris}^*(V) = \dim_{\mathbb{Q}_p} V$ et $\underline{D}_{cris}^*(V)_K^i = \underline{D}_{cris}^*(V)_K, \underline{D}_{cris}^*(V)_K^{i+1} = 0$.

Démonstration. On se ramène par twist au cas où i=0. Dire que D est faiblement admissible est équivalent à dire que D a un seul nombre de Newton non nul $h_N(D,0)$. Il existe donc une base d_1,\ldots,d_r de D et des éléments a_1,\ldots,a_d de $W(\overline{k})$ tels que

$$\varphi(a_j \otimes d_j) = a_j \otimes d_j \quad (j = 1, \dots, d).$$

On en déduit facilement que φ est un isomorphisme du sous-W(k)-module de D engendré par d_1, \ldots, d_r .

Calculons $\underline{V}_{cris}^*(D)$; on a

$$x \in \underline{V}_{cris}^*(D) \iff x \in \operatorname{Hom}_{K_0}(D, B_{cris})^0 \quad \text{et } \varphi x = x.$$

Il existe une base $\{d_1,\ldots,d_r\}$ de D telle que

$$(\varphi - 1)(d_k) = \sum_{j=1}^r a_{kj} d_j$$

où la matrice $A = ((a_{kj}))$ appartient à $Gl_r(W(k))$. Les équations

$$(\varphi x)(d_k) = x(d_k)$$

se traduisent alors par

$$\sum_{j=1}^{r} a_{kj}^{\sigma} \varphi(x(d_j)) = x(d_k),$$

c'est-à-dire si $X={}^t(x(d_1),\ldots,x(d_r))$ par $A^{\sigma}X^{\sigma}=X$. On regarde alors l'équation $B^{-1}A^{\sigma}B^{\sigma}=1$ pour $B\in M_r(Fil^0B_{cris})$. Elle admet une solution dans $Gl_r(P_0)$ grâce à la nullité de $H^1(P_0/K_0,Gl_r(P_0))$ ([S68]) puisque la restriction de φ à P_0 est l'homomorphisme de Frobenius; deux solutions diffèrent d'une élément de $Gl_r(\mathbb{Q}_p)$. On en déduit que l'espace des solutions de $B^{-1}A^{\sigma}B^{\sigma}=1$ est un \mathbb{Q}_p -espace vectoriel de dimension r et que si $x\in \underline{V}^*_{cris}(D)$, les valeurs de x appartiennent à P_0 . Il est alors clair que, si $\tau\in I_K$, $\tau(x)=x$, ce qu'il fallait démontrer.

2.4. Lemme (Exp. III, 4.4.4). — Soit une suite exacte de (φ, N) -modules filtrés

$$0 \longrightarrow D_1 \longrightarrow D \longrightarrow D_2 \longrightarrow 0$$

dont deux d'entre eux sont faiblement admissibles, alors le troisième l'est aussi.

2.5. Lemme. — Soit D un (φ, N) -module filtré ordinaire et soit r le plus grand entier tel que $D_K^r = D_K$. Alors $D^{[r]}$ est un sous-objet de D dans la catégorie des (φ, N) -modules filtrés. Il est ordinaire. Le quotient de D par $D^{[r]}$ est un (φ, N) -module filtré ordinaire.

Démonstration. Par hypothèse, les polygones de Hodge et de Newton de D sont égaux. En particulier, les nombres de Newton de D sont des entiers et on a

$$\dim_{K_0} D^{[r]} = \dim_K (D_K)^r - \dim_K (D_K)^{r+1}$$
.

L'endomorphisme φ de D laisse stable le K_0 -espace vectoriel $D^{[r]}$, l'endomorphisme N est nécessairement nul sur $D^{[r]}$. En effet la propriété $p\varphi N = N\varphi$ implique que l'image de $D^{[r]}$ par N est contenue dans $D^{[r-1]}$ et $D^{[r-1]}$ est nul. Montrons que

$$D_K = D_K^{r+1} \oplus (D^{[r]})_K.$$

Supposons que cela n'est pas vrai; $D^{[r]}$ est un sous- K_0 -espace vectoriel de D stable par φ et par N; lorsqu'on munit $(D^{[r]})_K$ de la filtration induite par

celle de D, on a

$$h_N(D^{[r]}, r) = \dim_{K_0} D^{[r]}, \quad h_N(D^{[r]}, r+j) = 0 \quad \text{pour tout } j > 0,$$

$$h_H(D^{[r]}, r+j) > 0 \quad \text{pour un } j > 0.$$

On en déduit que

$$t_H(D^{[r]}) = r \dim_{K_0} D^{[r]} + \sum_{i>r} (i-r)h_H(D^{[r]}, i) > t_N(D^{[r]}) = r \dim_{K_0} D^{[r]},$$

ce qui contredit l'hypothèse de faible admissibilité de D.

La filtration de $(D^{[r]})_K$ induite par celle de D_K en fait un (φ, N) module filtré faiblement admissible et le quotient est un (φ, N) -module filtré
faiblement admissible. Il est clair alors que les nombres de Hodge et de Newton
de $D^{[r]}$ (resp. de $D/D^{[r]}$) sont égaux, c'est-à-dire que $D^{[r]}$ et $D/D^{[r]}$ sont
ordinaires.

2.6. — Montrons que le (φ, N) -module filtré D est ordinaire si et seulement si les nombres de Newton de D sont des entiers et si l'on a

(1)
$$D_K = (D_K)^i \bigoplus \left(\bigoplus_{j < i} (D^{[j]})_K\right)$$

pour tout entier i. Soit D un (φ, N) -module filtré ordinaire. Les nombres de Newton de D sont des entiers et on montre facilement par récurrence à l'aide de 2.5 que l'on a (1) pour tout entier i. Réciproquement, l'égalité (1) implique que les nombres de Hodge et de Newton de D sont égaux. En particulier, on a $t_N(D) = t_H(D)$. Si D' est un sous-espace vectoriel de D stable par φ et N, on a une injection de $(D'^{[j]})_K$ dans D_K^j/D_K^{j+1} . La filtration de D'_K étant la filtration induite par celle de D', on en déduit facilement que les nombres de Newton de D' sont inférieurs ou égaux aux nombres de Hodge de D' et donc que $t_N(D') \le t_H(D')$, ce qui montre que D est faiblement admissible.

2.7. — Notons $\operatorname{Ext}^1_{MF_{st}}(D, B_{st})$ le K_0 -espace vectoriel des classes d'isomorphismes d'extensions de (φ, N) -modules filtrés de D par B_{st} .

LEMME. —

- i) On a $\operatorname{Ext}^1_{MF_{st}}(K_0[i], B_{st}) = 0$ pour tout i.
- ii) Si D est un (φ, N) -module filtré faiblement admissible ayant un seul nombre de Hodge non nul, toute extension de (φ, N) -modules filtrés de D par B_{st} est scindée, i.e.

$$\operatorname{Ext}^1_{MF_{st}}(D, B_{st}) = 0.$$

Démonstration. Remarquons d'abord que (ii) se déduit facilement de (i) (nullité de $H^1(P_0/K_0, GL_d(W(\overline{k})))$). Pour (i), on se ramène par twist au cas où i = 0. On a besoin des propriétés suivantes de B_{st} et B_{cris} :

- a) l'application $\varphi 1 : B_{st} \to B_{st}$ est surjective;
- b) l'application $N: (B_{st})^{\varphi=1} \to (B_{st})^{\varphi=p^{-1}}$ est surjective;
- c) l'application $\varphi 1 : Fil^0 B_{cris} \to B_{cris}$ est surjective.

Pour (b), on écrit $\alpha \in (B_{st})^{\varphi=p^{-1}}$ sous la forme $\alpha = \sum_{n\geq 0} \alpha_n u^n$; les α_n vérifient $p^{n+1}\varphi\alpha_n = \alpha_n$. Alors, $\beta = \sum_{n\geq 0} \alpha_n u^{n+1}/(n+1)$ appartient à $(B_{st})^{\varphi=1}$ et vérifie $N\beta = \alpha$. L'assertion (c) est démontrée dans Exp. II, théorème 5.3.7. Pour (a), on remarque que (c) implique que pour tout entier n, l'application

$$(\varphi - 1) \left(\sum_{n \ge 0} \alpha_n u^n \right) = \sum_{n \ge 0} (p^n \varphi - 1) \alpha_n u^n.$$

 $(p^n\varphi-1):B_{cris}\to B_{cris}$ est surjective. On en déduit (a) en remarquant que

Soit X une extension de (φ, N) -modules filtrés de K_0 par B_{st} . Montrons qu'elle est scindée. Soit $\widehat{1}$ un relèvement dans X de $1 \in K_0$. D'après (a), il existe $\alpha \in B_{st}$ tel que

$$(\varphi - 1)\alpha = (\varphi - 1)\widehat{1} \in B_{st}$$
.

Posons $\widehat{1}_{\varphi} = \widehat{1} - \alpha$. C'est un relèvement de 1 dans X tel que $\varphi(\widehat{1}_{\varphi}) = \widehat{1}_{\varphi}$ et X est scindée en tant que $K_0[\varphi]$ -module. Soit $\beta = N(\widehat{1}_{\varphi})$. C'est un élément de B_{st} vérifiant $p\varphi\beta = \beta$. D'après (b), il existe $\gamma \in B_{st}$ tel que $\varphi\gamma = \gamma$,

 $N\gamma=\beta$. Donc, $\widehat{1}_{\varphi,N}=\widehat{1}_{\varphi}-\gamma$ est un relèvement de 1 vérifiant $\varphi(\widehat{1}_{\varphi,N})=\widehat{1}_{\varphi,N}$, $N(\widehat{1}_{\varphi,N})=0$, c'est-à-dire que X est scindée en tant que $K_0[\varphi,N]$ -modules. La filtration de X_K est alors donnée par un élément δ de $K\otimes_{K_0}B_{st}$ tel que $\widehat{1}_{\varphi,N}+\delta$ appartienne à $(X_K)^0$. Comme $K\otimes_{K_0}B_{st}\subset Fil^0(K\otimes_{K_0}B_{st})+B_{cris}$, on peut supposer que $\delta\in B_{cris}$. Pour montrer que X est scindé en tant que (φ,N) -module filtré, il suffit de démontrer qu'il existe $\varepsilon\in Fil^0B_{cris}$ tel que $\varphi(\delta+\varepsilon)=\delta+\varepsilon$, ou encore tel que $(\varphi-1)\varepsilon=(\varphi-1)\delta$, ce qui se déduit de (ε) .

2.8. — Soit D un (φ, N) -module filtré. Notons

$$\beta_D: B_{st} \otimes_{\mathbb{Q}_p} \underline{V}_{st}(D) \longrightarrow B_{st} \otimes_{K_0} D$$

l'application canonique (Exp. III, 5.3), où $\underline{V}_{st}(D) = \operatorname{Hom}_{G_K}(\underline{V}_{st}^*(D), \mathbb{Q}_p)$.

Lemme. — Le (φ, N) -module filtré D est admissible si et seulement si β_D est injective et si $\dim_{K_0} D = \dim_{\mathbb{Q}_p} \underline{V}_{st}(D) = \dim_{\mathbb{Q}_p} \underline{V}_{st}^*(D)$.

Démonstration. Le (φ, N) -module filtré D est admissible si et seulement si β_D est un isomorphisme (Exp. III, 5.3.6), ce qui est encore équivalent à ce que l'application β'_D déduite de β_D par passage au corps des fractions de B_{st} est un isomorphisme. Cela se démontre comme 3.5.2 dans [F79] (on peut se ramener d'abord au cas de dimension 1 car une puissance extérieure de (φ, N) -module filtré faiblement admissible est faiblement admissible; D est alors admissible et si d est un générateur de D, il existe un élément α de P_0 et un entier i tel que $\alpha t^i \otimes d$ soit un générateur de $V_{st}^*(D)$; comme αt^i est inversible dans B_{st} , cela termine la démonstration). On en déduit que le (φ, N) -module filtré D est admissible si et seulement si β_D est injective et si $\dim_{\mathbb{Q}_p} B_{st} \otimes_{\mathbb{Q}_p} V_{st}(D) = \dim_{K_0} D$.

2.9. Lemme. — Si D est un (φ, N) -module filtré ordinaire, β_D est injective.

Remarque : on peut démontrer que l'application β_D est injective pour tout (φ, N) -module filtré faiblement admissible D.

Démonstration. Si $0 \to D_1 \to D_2 \to D_3 \to 0$ est une extension de (φ, N) -modules filtrés faiblement admissibles tels que les applications canoniques β_{D_i} sont injectives pour i=1 et 3, alors, β_{D_2} est injective. Par récurrence sur la dimension du (φ, N) -module filtré D ordinaire, on en déduit le lemme.

2.10. Lemme. — Soit $0 \to D_1 \to D_2 \to D_3 \to 0$ une extension de (φ, N) modules filtrés faiblement admissibles. On suppose que D_1 est admissible et
que D_3 n'a qu'un seul nombre de Hodge non nul. Alors, D_2 est admissible.

Remarquons que le lemme est encore vrai si on échange les rôles de D_1 et D_3 en prenant la suite exacte duale.

Démonstration. Appliquons le foncteur \underline{V}_{st}^* à la suite exacte. On obtient la suite exacte de représentations p-adiques

$$0 \longrightarrow \underline{V}_{st}^*(D_3) \longrightarrow \underline{V}_{st}^*(D_2) \longrightarrow \underline{V}_{st}^*(D_1) \longrightarrow \operatorname{Ext}^1_{MF_{st}}(D_3, B_{st}).$$

Grâce au lemme 2.7, $\operatorname{Ext}^1_{MF_{st}}(D_3,B_{st})$ est nul. L'admissibilité de D_3 et de D_1 implique les égalités

$$\dim_{\mathbb{Q}_p} \underline{V}_{st}^*(D_i) = \dim_{K_0} D_i$$
 pour $i = 1$ et 3

et on a donc la même égalité pour i=2 grâce à l'exactitude de la suite précédente. D'où l'admissibilité de D_2 .

2.11. — Soit maintenant D un (φ, N) -module filtré ordinaire. Par récurrence sur le cardinal des pentes de Hodge non nulles de D et en utilisant les lemmes précédents, on démontre facilement que $\underline{V}_{st}^*(D)$ est une représentation p-adique ordinaire semi-stable. On obtient une filtration Fil^iV de $V = \underline{V}_{st}^*(D)$ stable par G_K par

$$Fil^{i}V = V_{st}^{\star} \Big(D \Big/ \bigoplus_{j < i} D^{[j]} \Big)$$

et le quotient $Fil^{i}V/Fil^{i=1}V$ est isomorphe à $\underline{V}_{st}^{*}(D^{[i]})$.

- 3. Extensions galoisiennes de V_1 par $V_2(i)$
- **3.1.** Dans tout ce qui suit, V_1 et V_2 sont deux représentations p-adiques non ramifiées de G_K et V une représentation p-adique de G_K , extension de $V_2(j)$ par $V_1(i)$.

Soient $D_1 = \underline{D}_{st}^*(V_1)$ et $D_2 = \underline{D}_{st}^*(V_2)$ les (φ, N) -modules filtrés admissibles associés. Lorsque i < j, on a $\operatorname{Ext}^1_{M_{F_{st}}}(D_1[i], D_2[j]) = 0$: en effet, tout

 (φ, N) -module filtré extension de $D_1[i]$ par $D_2[j]$ est une extension triviale. Un tel objet D est scindé en tant que $K_0[\varphi]$ -module. On a d'une part $D_1[i]_K^j = 0$, donc $D_K^j = D_2[j]_K$ et $D_K^j \cap D_1[i]_K = \{0\}$, d'autre part $D_K^i = D_K$, donc $D_K^i \cap D_1[i]_K = D_1[i]_K$. Enfin, N est nécessairement nul sur $D_1[i]$ (à cause de la relation $N\varphi = p\varphi N$). Donc, $D_1[i]$ muni de la filtration induite est un sous- (φ, N) -module filtré de D et D est scindé en tant que (φ, N) -module filtré. Il n'y a donc pas de représentation cristalline, extension non triviale de $V_2(j)$ par $V_1(i)$.

Lorsque $i \geq j+1$, toute extension de (φ, N) -modules filtrés D de $D_1[i]$ par $D_2[j]$ est admissible et $V = \underline{D}_{st}^*(D)$ est une représentation p-adique ordinaire semi-stable extension de $V_2(j)$ par $V_1(i)$ (par exemple, lemme 2.10). On en déduit une application linéaire injective de \mathbb{Q}_p -espaces vectoriels

$$\Phi_{i,j}: \operatorname{Ext}^1_{MF_{st}}(D_1[i], D_2[j]) \longrightarrow \operatorname{Ext}^1_{G_K}(V_2(j), V_1(i))$$

Proposition. — Supposons que k est fini¹. Soient V_1 et V_2 deux représentations p-adiques non ramifiées. Soit V une représentation p-adique de G_K , extension de $V_2(j)$ par $V_1(i)$. Si $i \geq j+2$, la représentation p-adique V est cristalline. Si i = j+1, la représentation p adique V est semi-stable.

La proposition signifie donc que si $i \geq j+1$, $\Phi_{i,j}$ est un isomorphisme et que si de plus $i \geq j+2$, $\operatorname{Ext}^1_{MF_{st}}(D_1[i],D_2[j])$ et $\operatorname{Ext}^1_{MF}(D_1[i],D_2[j])$ sont égaux. En tordant la représentation V par χ^j , on se ramène au cas où j=0, ce que nous supposons maintenant. On notera alors

$$\Phi_i : \operatorname{Ext}^1_{MF_{st}}(D_1[i], D_2) \longrightarrow \operatorname{Ext}^1_{G_K}(V_2, V_1(i)).$$

La démonstration consiste à calculer les dimensions de ces deux \mathbb{Q}_p -espaces vectoriels (3.2, 3.3, 3.4). Le cas i = j + 1 se déduit de 3.5.

3.2. On note d_1 (resp. d_2) la dimension de la représentation V_1 (resp. V_2).

Depuis, il est montré dans [P] que la proposition est encore vraie si K est l'extension de K_0 obtenue en rajoutant les racines p^n rèmes de l'unite-sans hypothèse de finitude sur K_0 .

Lemme. — Supposons i > 0. Les classes d'isomorphismes des extensions de φ -modules filtrés faiblement admissibles de $D_1[i]$ par D_2 forment un espace vectoriel sur K de dimension d_1d_2 .

Démonstration. Tout $K_0[\varphi]$ -module D extension de $D_1[i]$ par D_2 est scindé. Il existe donc une base de D sur W

$$\{e_i(1), e_j(2) \text{ pour } i = 1, \dots, d_1, \ j = 1, \dots, d_2\}$$

telle que l'action de φ sur cette base soit donnée par

$$\varphi(e_k(1)) = p^i \sum_{j=1}^{d_1} b_{kj}(1)e_j(1)$$

$$\varphi(e_k(2)) = \sum_{j=1}^{d_2} b_{kj}(2)e_j(2)$$

où les matrices $((b_{ij}(\ell)))$ pour $\ell=1$ et 2 appartiennent à $Gl_{d_{\ell}}(W)$. Un φ module filtré faiblement admissible est alors caractérisé par la donnée d'un K-sous-espace vectoriel $(D_K)^i$ de D_K de dimension d_1 dont l'image dans $(D_1[i])_K$ par la projection est $(D_1[i])_K$. Un tel sous-espace est entièrement
caractérisé par la donnée d'une base du type

$$e_j(1) + \sum_{k=1}^{d_2} a_{jk} e_k(2)$$

pour $j = 1, ..., d_1$. On en déduit que $\operatorname{Ext}^1_{MF}(D_1[i], D_2)$ est un K-espace vectoriel de dimension d_1d_2 .

3.3. Lemme. — i) On a un isomorphisme canonique de \mathbb{Q}_p -espaces vectoriels

$$\operatorname{Ext}^1_{G_K}(V_2, V_1(i)) \simeq H^1(G_K, \operatorname{Hom}_{\mathbf{Q}_n}(V_2, V_1(i))).$$

ii) Si $i \neq 0$, 1, $H^1(G_K, \operatorname{Hom}_{\mathbb{Q}_p}(V_2, V_1(i)))$ est un \mathbb{Q}_p -espace vectoriel de dimension $[K:\mathbb{Q}_p]d_1d_2$.

Démonstration. Choisissons L_1 (resp. L_2) un réseau de V_1 (resp. V_2) stable par G_K . On a

$$\operatorname{Ext}^1_{G_K}(L_2/p^nL_2,\; (L_1/p^nL_1)(i)) = H^1(G_K, \operatorname{Hom}_{\mathbb{Z}_p}(L_2/p^nL_2, (L_1/p^nL_1)(i)) \,.$$

En passant à la limite projective sur n, on en déduit (i).

Posons $C = \operatorname{Hom}_{\mathbb{Z}_p}(L_2, L_1(i))$ et $C_n = \operatorname{Hom}_{\mathbb{Z}_p}(L_2/p^nL_2, (L_1/p^nL_1)(i))$. En tant que représentation galoisienne, C est isomorphe à $L_3(i)$ où L_3 est une représentation non ramifiée. On commence par calculer la caractéristique d'Euler-Poincaré de C_n [Mi86]

$$\sum_{j=0}^{2} (-1)^{j} \operatorname{ord}_{p}(H^{j}(G_{K}, C_{n})) = -[K : \mathbb{Q}_{p}] d_{1} d_{2} n.$$

On calcule d'autre part $H^j(G_K, C_n)$ pour j = 0 et 2: lorsque $i \neq 0$, $H^0(G_K, C_n)$ est d'ordre borné par rapport à n; si $K_n = K(\mu_{p^n})$ où μ_{p^n} est le groupe des racines p^n -ièmes de l'unité, la flèche de restriction

$$H^2(G_K, C_n) \longrightarrow H^2(G_{K_n}, C_n)^{\operatorname{Gal}(K_n/K)}$$

est à noyau et conoyau bornés par rapport à n. On a ensuite

$$H^{2}(G_{K_{n}}, C_{n})^{\operatorname{Gal}(K_{n}/K)} = H^{2}(G_{K_{n}}, C_{n}(1-i))(i-1)^{\operatorname{Gal}(K_{n}/K)} = L_{3,n}(i-1)^{\operatorname{Gal}(K_{n}/K)}$$

(théorie du groupe de Brauer, on peut aussi utiliser les théorèmes de dualité locale). Pour $i \neq 1$, $H^2(G_K, C_n)$ est donc d'ordre borné par rapport à n. On en déduit que pour $i \neq 0$ et $i \neq 1$ et pour n assez grand,

$$\#(H^1(G_K,C_n))=p^{[K:\mathbb{Q}_p]d_1d_2n+c}$$

où c est une constante et que $H^2(G_K,C)$ est nul. On a la suite exacte de \mathbb{Z}_p -modules

$$0 \longrightarrow H^1(G_K, C)/p^nH^1(G_K, C) \longrightarrow H^1(G_K, C_n) \longrightarrow H^2(G_K, C) = 0.$$

Comme $H^1(G_K, C)$ est un \mathbb{Z}_p -module de type fini, on en déduit que $\mathbb{Q}_p \otimes_{\mathbb{Z}_p} H^1(G_K, C)$ est un \mathbb{Q}_p -espace vectoriel de dimension $[K:\mathbb{Q}_p]d_1d_2$.

3.4. — Lorsque K est une extension finie de \mathbb{Q}_p et $i \geq 1$, les deux \mathbb{Q}_p —espaces vectoriels $\operatorname{Ext}^1_{MF}(D_1[i], D_2)$ et $\operatorname{Ext}^1_{DK}(V_2, V_1(i))$ sont de dimension $d_1d_2[K:\mathbb{Q}_p]$. L'homomorphisme injectif de \mathbb{Q}_p —espaces vectoriels Φ_i de $\operatorname{Ext}^1_{MF}(D_1[i], D_2)$ dans $\operatorname{Ext}^1_{G_K}(V_2, V_1(i))$ est donc un isomorphisme.

Nous allons maintenant décrire explicitement l'application

$$\Phi_i : \operatorname{Ext}^1_{MF}(K_0[i], K_0) \longrightarrow \operatorname{Ext}^1_{G_K}(\mathbb{Q}_p, \mathbb{Q}_p(i))$$

sans hypothèse de finitude sur k.

Soit D_{λ} le φ -module filtré muni d'une base $\{e_0, e_i\}$ telle que

$$\varphi e_0 = e_0, \quad \varphi e_i = p^i e_i$$

et telle que la droite $(D_{\lambda})_{K}^{i}$ soit engendrée par $e_{i} - \lambda e_{0}$ avec $\lambda \in K$. Calculons $\underline{V}_{cris}^{*}(D_{\lambda})$. Il s'agit donc de trouver tous les K_{0} -homomorphismes f de D_{λ} dans B_{cris} tels que

$$\varphi(f(e_0)) = f(e_0), \ \varphi(f(e_i)) = p^i f(e_i)$$
$$f(e_i - \lambda e_0) \in Fil^i B_{dR}, \ f(e_0) \in Fil^0 B_{dR}.$$

Une première solution est donnée par

$$f_1(e_0) = 0, \ f_1(e_i) = t^i.$$

Une deuxième solution est donnée par

$$f_2(e_0) = 1$$
, $f_2(e_i) = \Lambda + \lambda$

où Λ vérifie

$$\Lambda \in Fil^i B_{dR}$$
, $\Lambda + \lambda \in B_{cris}$ et $\varphi(\Lambda + \lambda) = p^i (\Lambda + \lambda)$,

(l'existence d'un tel Λ se déduit de 2.7, c). Le \mathbb{Q}_p -espace vectoriel engendré par f_1 et f_2 est muni d'une action de G_K donnée par

$$g(f_1) = \chi^i(g)f_1$$

$$g(f_2) = f_2 + t^{-i}(g\Lambda - \Lambda)f_1$$

(il est facile de vérifier que $t^{-i}(g\Lambda-\Lambda)$ appartient à \mathbb{Q}_p : on a en effet

$$g\Lambda - \Lambda = g(\Lambda + \lambda) - (\Lambda + \lambda) \in Fil^i B_{cris}$$

$$\varphi(g\Lambda - \Lambda) = p^i (g\Lambda - \Lambda),$$

ce qui implique que $g\Lambda - \Lambda$ appartient à $\mathbb{Q}_p t^i$). La représentation p-adique obtenue est une extension de \mathbb{Q}_p par $\mathbb{Q}_p(i)$ dont l'image par Φ_i dans $H^1(G_K, \mathbb{Q}_p(i))$ est la classe du cocycle $g \longmapsto t^{-i}(g\Lambda - \Lambda)$.

Remarque : la connaissance de Λ implique celle de λ ; par exemple, si λ est dans K_0 , on a $\varphi^n \Lambda = p^{in}(\Lambda + \lambda) - \sigma^n \lambda$, donc si σ^a laisse fixe K_0 , on a

$$\lambda = -\lim_{n \to \infty} \varphi^{an} \Lambda.$$

3.5. — Le cas i = 1 se traite sans hypothèse sur k, ce qui permet de supposer que $V_1 = V_2 = \mathbb{Q}_p$. Nous allons comme en 3.4 construire explicitement l'application

$$\Phi_1 : \operatorname{Ext}^1_{MF_{st}}(K_0[1], K_0) \longrightarrow \operatorname{Ext}^1_{G_K}(\mathbb{Q}_p, \mathbb{Q}_p(1)).$$

Par la théorie de Kummer, $H^1(G_K, \mathbb{Z}_p(1))$ est canoniquement isomorphe à $\lim_{K \to \infty} K^{\times p^n}$. On en déduit que l'on a un isomorphisme

$$R_K: H^1(G_K, \mathbb{Q}_p(1)) \longrightarrow K \times \mathbb{Q}_p$$

$$x \longmapsto (\log_p x, v(x)).$$

(rappelons que l'on a choisi une valuation v de K à valeurs dans \mathbb{Q} et un prolongement \log_p du logarithme p-adique à K). Cet isomorphisme dépend du choix du logarithme et de la valuation choisis.

Décrivons maintenant un (φ, N) -module filtré D extension de $K_0[1]$ par K_0 . On fixe une base e_0 , e_1 de D vérifiant

$$\varphi e_0 = e_0 , \ \varphi e_1 = p e_1 .$$

La relation $N\varphi = p\varphi N$ implique que $Ne_1 = \alpha e_0$, $Ne_0 = 0$ avec $\alpha \in \mathbb{Q}_p$. La filtration est déterminée par une droite $K(e_1 - \lambda e_0)$ avec $\lambda \in K$. On en déduit facilement que l'on a un isomorphisme

$$L_K : \operatorname{Ext}^1_{MF_{st}}(K_0[1], K_0) \simeq K \times \mathbb{Q}_p$$

$$D \longmapsto (\lambda, \alpha).$$

On note $D_{(\lambda,\alpha)}$ l'image réciproque de (λ,α) .

Proposition. — L'application

$$\Phi_1: \operatorname{Ext}^1_{MF_{\bullet,\bullet}}(K_0[1], K_0) \longrightarrow H^1(G_K, \mathbb{Q}_p(1))$$

est un isomorphisme et on a le diagramme commutatif suivant

$$\begin{split} \operatorname{Ext}^1_{MF_{st}}(K_0[1],K_0) & \longrightarrow & H^1(G_K,\mathbb{Q}_p(1)) \\ L_K & \downarrow \simeq & & R_K & \downarrow \simeq \\ K \times \mathbb{Q}_p & = & K \times \mathbb{Q}_p \,. \end{split}$$

En particulier, l'image de $\operatorname{Ext}^1_{MF_{st}}(K_0[1], K_0)$ est égal à $\mathbb{Q}_p \otimes_{\mathbb{Z}_p} U_K$ si U_K est le groupe des unités de K congrues à 1 modulo l'idéal maximal.

Démonstration. Nous allons ici construire explicitement l'application réciproque de Φ_1 . Soit x un élément de K^{\times} et soit $x^{(n)}$ une suite d'éléments de $O_{\overline{K}}$ vérifiant $x^{(n)p} = x^{(n-1)}$, $x^{(0)} = x$. Alors $(x^{(n)})_n$ est un élément de R (Exp. II, 1.2.2 et 1.3.1) et donc par l'application de Teichmüller définit un élément $[(x^{(n)})_n]$ de W(R). Si x est une unité de K, le logarithme de $[(x^{(n)})]$ existe dans $A_{cris} = W^{DP}(R)$; en particulier, si x = 1 et $x^{(n)} = \zeta_n$,

on a $t = \log([(\zeta_n)])$; dans le cas général, on définit le logarithme de $[(x^{(n)})]$ dans $K \otimes_{K_0} B_{st}$ plongé dans B_{dR} par $\lambda_{dR}([(x^{(n)})]) = \log([(x^{(n)})]/x) + \log(x)$ (Exp. III, 4.2.2). Notons abusivement $LOG(x) = \lambda_{dR}([(x^{(n)})])$ qui n'est bien défini qu'à un élément de $\mathbb{Z}_p t$ près. Les propriétés suivantes (dans $K \otimes_{K_0} B_{st}$) sont faciles à vérifier :

$$\varphi(LOG(x)) = pLOG(x)$$
, $N(LOG(x)) = v(x)$ (Exp. II, 3.2.2)
 $LOG(x) - \log(x) \in Fil^1B_{dR}$.

De plus, comme gx = x pour $g \in G_K$, on a

$$g(\text{LOG}(x)) - \text{LOG}(x) = \log(g[(x^{(n)})]/[(x^{(n)})]) = \log[g(x^{(n)})/x^{(n)}] = a_g \in \mathbb{Z}_p(1)$$

où a_g est un cocycle à valeurs dans $\mathbb{Z}_p(1)$ dont la classe dans $H^1(G_K, \mathbb{Q}_p(1))$ est x. Montrons que $\underline{V}^*(D_{(\log(x), \operatorname{ord}_p(x))})$ est isomorphe à V en tant qu'extension de \mathbb{Q}_p par $\mathbb{Q}_p(1)$. Un élément f de $\underline{V}^*(D_{(\log(x), \operatorname{ord}_p(x))})$ est un K_0 -homomorphisme de $D_{(\log(x), \operatorname{ord}_p(x))}$ dans B_{st} vérifiant

$$\varphi(f(e_0)) = f(e_0), \ \varphi(f(e_1)) = pf(e_1),$$

$$N(f(e_0)) = 0, \ N(f(e_1)) = v(x)f(e_0), \ f(e_1) - \log(x)f(e_0) \in Fil^1B_{dR}.$$

Une première solution est $f_1(e_1) = t$, $f_1(e_0) = 0$; une deuxième solution indépendante est donnée par

$$f_2(e_0) = 1$$
, $f_2(e_1) = LOG(x)$.

Le \mathbb{Q}_p -espace vectoriel W engendré par f_1 et f_2 est muni d'une action de Galois et est naturellement une extension de \mathbb{Q}_p par $\mathbb{Q}_p(1)$. Le cocycle associé dans $H^1(G_K, \mathbb{Q}_p(1))$ est alors $g \longmapsto g(\mathrm{LOG}(x)) - \mathrm{LOG}(x) = a_g$. Les classes de W et de V dans $H^1(G_K, \mathbb{Q}_p(1))$ sont donc égales.

Nous avons pris $x \in K$; le cas général s'en déduit facilement par continuité et tensorisation par \mathbb{Q}_p . Ce qui termine la démonstration des propositions 3.1 et 3.5.

4. — Fin de la démonstration

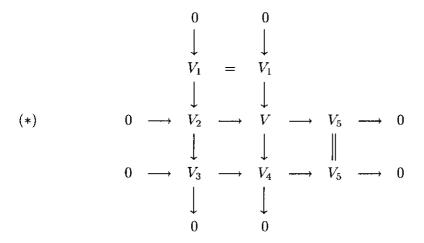
4.1. — On utilise maintenant la proposition 3.1 pour montrer que toute représentation p-adique ordinaire est semi-stable. On raisonne par récurrence sur le nombre r(V) des quotients $Fil^iV/Fil^{i+1}V$ qui sont non triviaux. Supposons qu'il y en a au moins 3. On a donc une suite exacte de G_K -modules

$$0 \longrightarrow V_2 \longrightarrow V \longrightarrow V_5 \longrightarrow 0$$

où $V_5(-j)$ est une représentation p-adique non ramifiée pour un entier j tel que les pentes de Hodge de V_2 soient strictement supérieures à j: on a donc $r(V_2) = r(V) - 1$. Comme $r(V_2)$ est encore supérieur ou égal à 2, on peut de nouveau écrire une suite exacte de G_K -modules

$$0 \longrightarrow V_1 \longrightarrow V_2 \longrightarrow V_3 \longrightarrow 0$$

où $V_3(-i)$ est une représentation p-adique non ramifiée pour un entier i tel que les pentes de Hodge de V_1 soient strictement supérieures à i. Avec $V_4 = V/V_1$, on a donc un diagramme commutatif et exact de G_K -modules



De plus, les V_i sont des représentations ordinaires telles que $r(V_i) < r(V)$; par hypothèse de récurrence, elles sont donc semi-stables.

Nous allons maintenant montrer qu'il existe une représentation p-adique V' semi-stable rendant le diagramme (*) commutatif et exact (avec V' à la place de V). Pour cela, on passe aux (φ, N) -modules filtrés en appliquant le foncteur \underline{D}_{st} (avec $\underline{D}_{st}(V) = \operatorname{Hom}_{MF_{st}}(\underline{D}_{st}^*(V), K_0)$) aux suites exactes de représentations semi-stables

A cause de la semi-stabilité, les suites restent exactes. En posant $D_i = \underline{D}_{st}(V_i)$, on a donc les suites exactes de (φ, N) -modules filtrés admissibles

4.2. Lemme. — Il existe un (φ, N) -module filtré admissible rendant commutatif et exact le diagramme suivant

Démonstration. Remarquons qu'il suffit de construire un (φ, N) -module filtré D rendant commutatif et exact le diagramme précédent. En effet, D sera alors faiblement admissible car D_2 et D_5 le sont (lemme 2.4) et même admissible car D_2 et D_5 le sont et D_5 a une seule pente de Hodge non nulle (lemme 2.10).

Les pentes de Hodge de D_5 étant différentes de celles de D_3 , on peut scinder la suite exacte de $K_0[\varphi]$ -modules

$$0 \longrightarrow D_3 \longrightarrow D_4 \longrightarrow D_5 \longrightarrow 0$$
.

On considère donc un tel scindage $D_4 = D_3 \oplus D_5$ avec $\varphi D_3 \subset D_3$ et $\varphi D_5 \subset D_5$. La filtration de D_{4K} est alors déterminée à partir de celles de D_{3K} et de D_{5K} par un homomorphisme de K-espaces vectoriels f de D_{5K} dans D_{3K} :

$$(D_{4K})^i = (D_{3K})^i \oplus \{(f(d), d) \text{ pour } d \in (D_{5K})^i\}.$$

Soit u un homomorphisme de D_3 dans D_2 qui est un scindage de la suite exacte

$$0 \longrightarrow D_1 \longrightarrow D_2 \longrightarrow D_3 \longrightarrow 0$$
.

Posons $\overline{f} = f \circ u$. Alors le K_0 -espace vectoriel $D = D_2 \oplus D_5$ est muni d'un endomorphisme σ -linéaire induisant ceux de D_2 et de D_5 et si l'on munit D_K de la filtration

$$(D_K)^i = (D_{2K})^i \oplus \{(\overline{f}(d), d) \text{ pour } d \in (D_{5K})^i\},$$

le diagramme (**) est commutatif et formé de suites exactes de φ -modules filtrés. Il reste à construire N. La restriction de N à D_5 s'écrit $N_3 \oplus N_5$ où N_i est un endomorphisme de D_5 dans D_i . On a alors pour $x \in D_5$

$$p\varphi N(x) = p\varphi N_3(x) + p\varphi N_5(x)$$
$$= N\varphi(x) = N_3(\varphi x) + N_5(\varphi x)$$

car $\varphi D_5 \subset D_5$. Comme φ préserve aussi D_3 , on en déduit que pour $x \in D_5$

$$p\varphi N_3(x) = N_3(\varphi x)$$

$$p\varphi N_5(x) = N_5(\varphi x)$$
.

On considère alors l'endomorphisme de D défini sur D_2 par l'opérateur N de D_2 et sur D_5 par $u \circ N_3 \oplus N_5$. Vérifions que $p\varphi N = N\varphi$. Cela est vrai sur D_2 . Sur D_5 , on a

$$p\varphi(u \circ N_3 \oplus N_5)(x) = p\varphi u N_3(x) + p\varphi N_5(x) = pu\varphi N_3(x) + p\varphi N_5(x)$$
$$= u N_3 \varphi(x) + N_5 \varphi(x) = pN \varphi(x)$$

car u commute avec φ .

4.3. — De la suite exacte

$$0 \longrightarrow V_1 \longrightarrow V_2 \longrightarrow V_3 \longrightarrow 0$$

on déduit la suite exacte

$$\operatorname{Ext}^1_{G_K}(V_5, V_1) \longrightarrow \operatorname{Ext}^1_{G_K}(V_5, V_2) \longrightarrow \operatorname{Ext}^1_{G_K}(V_5, V_3)$$
.

Soit c(V) (resp. c(V')) la classe de l'extension V (resp. V') de V_5 par V_2 dans $\operatorname{Ext}^1_{G_K}(V_5,V_2)$. Par hypothèse, c(V) et c(V') ont la même image dans $\operatorname{Ext}^1_{G_K}(V_5,V_3)$. On en déduit que c(V)-c(V') est l'image d'une extension V_6 de V_5 par V_1 . Par définition de la somme de deux extensions, on a donc une suite exacte

$$0 \longrightarrow V_1 \longrightarrow V' \oplus V_5 \longrightarrow V \longrightarrow 0$$
.

Posons $W = V' \oplus V_5$. Pour montrer que V est semi-stable, il suffit de montrer que

$$\dim_{\mathbb{Q}_p} V = \dim_{K_0} \underline{D}_{st}^*(V)$$

(on a toujours l'inégalité $\dim_{\mathbb{Q}_p} V \ge \dim_{K_0} \underline{D}_{st}^*(V)$). En appliquant le foncteur \underline{D}_{st}^* , on obtient la suite exacte

$$0 \longrightarrow \underline{D}_{st}^*(V) \longrightarrow \underline{D}_{st}^*(W) \longrightarrow \underline{D}_{st}^*(V_1)$$

d'où l'inégalité

$$\dim_{K_0} \underline{D}_{st}^*(V) \ge \dim_{K_0} \underline{D}_{st}^*(W) - \dim_{K_0} \underline{D}_{st}^*(V_1)$$
$$= \dim_{\mathbb{Q}_p} W - \dim_{\mathbb{Q}_p} V_1 = \dim_{\mathbb{Q}_p} V.$$

Donc, V est aussi semi-stable, ce qui termine la démonstration du théorème.

Depuis l'exposé et la rédaction de ce texte, d'autres articles ont été écrits sur le sujet : citons principalement [Ne93].

BIBLIOGRAPHIE

- [F79] J.-M. FONTAINE. Modules galoisiens, modules filtrés et anneaux de Barsotti-Tate dans Journées de Géométrie Algébrique de Rennes (III), Astérisque 65 (1979), 3-80.
- [Exp.II] J.-M. FONTAINE. Le corps des périodes p-adiques, ce volume.
- [Exp.III] J.-M. Fontaine. Représentations p-adiques semi-stables, ce volume.
 - [G89] R. GREENBERG. Iwasawa theory for p-adic representations, vol. dédié à K. Iwasawa, Adv. Stud. Pure Math. 17 (1989).
 - [M86] J.-S. MILNE. Arithmetic duality theorems, Perspectives in Mathematics, vol. 1, Academic Press (1986).
 - [Ne93] J. Nekovar. On p-adic height pairings, dans Séminaire de Théorie des Nombres de Paris 1990/91, édit. S. David, Birkhaüser Boston 1993, 127-202.
 - [S68] J.-P. SERRE. Abelian ℓ-adic representations and elliptic curves, W.A. Benjamin, Inc. New York 1968.
 - [P] B. Perrin-Riou. Théorie d'Iwasawa des représentations p-adiques sur un corps local, Invent. Math. 115 (1994), 81-149.

Bernadette Perrin-Riou UFR 21, Mathématiques Université de Paris VI 4, place Jussieu 75005 PARIS FRANCE