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S C H U R Q U A D R I C S , C U B I C S U R F A C E S A N D R A N K 2 V E C T O R 

B U N D L E S O V E R THE P R O J E C T I V E P L A N E 

I.Dolgachev and M . K a p r a n o v * 

Let E C P3 be a smooth cubic surface. It is known that 5 contains 27 

lines. Out of these lines one can form 36 Schldfli double - sixes i.e., collections 

{ / i , Z e } , { / J , o f 12 lines such that each U meets only j ^ i and does not 

meet Zj, j ^ i, see n.0.1 below. In 1881 F. Schur proved [S] that any double - six 

gives rise to a certain quadric Q , called Schur quadric which is characterized as 

follows: for any i the lines /,• and l[ are orthogonal with respect to (the quadratic 

form defining) Q. 

The aim of the present paper is to relate Schur's construction to the theory 

of vector bundles on P2 and to generalize this construction along the lines of the 

said theory. 

Let us describe the vector bundle interpretation of the Schur quadric. Note 

that the first six lines {/I,.. . ,^} of a double - six on E define a blow-down n : 

E —• P2 which takes the lines /2 into some points p2 £ P2. These points are in 

general position i.e. no three of them lie on a line. Let P2 be the dual projective 

plane and Hi C P2 be the lines corresponding to pi. The union 7i of these 

lines is a divisor with normal crossing in P2. Let E(H) = Q}p (log Ti) be the 

corresponding vector bundle (locally free sheaf) of logarithmic 1-forms on P2. 

The twisted bundle E = E(H){-2) is a stable rank 2 bundle on P2 with Chern 

classes Ci — —l,c2 = 4 (see [DK]). For such bundles K.Hulek [Hul] has defined 

the notion of a jumping line of the second kind (shortly J L S K ) . This is a line 

/ C P2 such that the restriction of E to the first infinitesimal neigborhood № of 

/ is not isomorphic to O^i) © C9/(i)( —1). Hulek has shown that such lines form a 
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curve C(E) in the projective plane of lines in P2 i.e. in P2. Now the result is as 

follows. 

T h e o r e m 1. The space gPg3 containing the cubic surface gggE is naturally identified 

with the projectivization of gif1(ddP2, dE( dd—g ddg1))g*. Under this identification the Schur 

quadric Q becomes dual to the zero locus of thge quadratic form given by the 

cup-product 

2 

Hl{P2, E ( - l ) ) d ® H\P2, E{-d1)) H2(P2d, d/d\(E(-1))ddd)d =d Hd2(P2, C ? ( - 3 ) ) = C. 

The intersection E H Q is mapped, under the projection n : E —> P2, to the curve 

ofJLSKC(E). 

More generally, the whole theory of Hulek [Hul] of rank 2 vector bundles on 

P2 with odd C\ can be given a "geometric" interpretation involving some natural 

generalizations of cubic surfaces, double - sixes and Schur quadrics. This is done 

in §2 of the paper. This interpretation implies Theorem 1. 

The outline of the paper is as follows. In §0 we recall some known (and 

less known) facts about cubic surfaces and Schur quadrics. In §1 we give a 

short overview of Hulek's theory of monads corresponding to vector bundles with 

c\ = — 1. In §2 we give an interpretation of Hulek's theory mentioned above. 

In §3 we consider bundles of logarithmic 1-forms corresponding to arrangements 

of 2d lines in P2 in general position. The main result of this section is that all 

these bundles satisfy certain condition of E - genericity in the sense defined in 

§2, which makes working with bundles satisfying this condition easier. Finally, in 

§4 we consider various examples of the previous constructions corresponding to 

some special types of vector bundles. 
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SCHUR QUADRICS AND VECTOR BUNDLES OVER THE PLANE 

§0. Cubic surfaces. 

0 . 1 . Here we recall some standard known facts about cubic surfaces. All the 

proofs can be found either in [H], Ch.V, §4 or in [M] or can be easily reconstructed 

by the reader. Let pi , . . . ,P6 De s*x distinct points in the projective plane P2. 

Assume that no three of these points lie on a line. Denote by Z the union of 

the points pi and by Jz C Op^y) the sheaf of ideals of Z. The linear system 

P(H°(Jz(3))) of cubic curves through Z is of dimension 3 and defines a rational 

map 

/ : P2 -+ P(H°( Jz{3)*) = P3 

whose image is a cubic surface, denoted E. The rational map / comes from 

a regular map / ' : B1Z(P2) -> P3 where B1Z(P2) is the blow up of Z. Let 

7r : Blz(P2) —• P2 be the projection. If we further assume that the points pi do 

not lie on a conic then / ' is an isomorphism and E is nonsingular. If pi do lie on 

a conic then E is singular and / ' blows down this conic to a singular point of E. 

Suppose E is nonsingular. Then E has 27 lines on it. They can be grouped 

into three subsets: 

{ / i , . . . , M , {/;,..., { m 0 - , l < x < j < 6 } . (0.1) 

The lines /2 are the images under / ' of the exceptional lines 7r -1(pi) . The lines l[ 

are images under / ' of proper transforms of the conies C2 C P2 passing through 

Z — {pi}. Finally the lines rrijj are images of the proper transforms of the lines 

< Pi^Pj > joining the points p \ and pj. 

The first two groups of lines form a double - six which means that 

n lj = 0, /J f| I'j = 0, H I] ± 0 iff i ^ j. (0.2) 

Every set of 6 disjoint lines on S can be included in a unique double - six from 

which E can be reconstructed uniquely. There are 36 double - sixes of E. Every 

double - six defines two regular birational maps TTI : E —• P2 , 7r2 : E —• P2, each 

blowing down one of the two sixes (sixtuples of disjoint lines) of the double - six. 
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The birational map 7r2 O TT^1 : P2 P2 is given by the linear system of quintics 

with double points at p2. The two collections of 6 points in P2 given by {7Ti(/i)} 

and {7T2(/(•)} are associated to each other in the sense of Coble (cf . [DO],[DK]) . 

0.2. Here we shall discuss somewhat less known facts about the determinantal 

representation of a cubic surface [B]. A modern treatment of this can be found 

in [G],[Gi]. Consider the homogeneous ideal of the subscheme Z i.e. 

Iz = 

n>0 

\H°(P v n \ j z ( n ) ) (0.3) 

in the graded ring R = C [T0, T\, T2]. It is easy to see that the ring R/Iz is Cohen 

- Macau lay hence of homological dimension 1. Any four l inearly independent 

cubic forms vanishing on Z represent a minimal set of generators of Iz- According 

to the Hilbert-Burch theorem ( see [No],7.5) the ideal Iz is generated by the 

maximal minors of some 3 x 4 matr ix of homogeneous linear forms. In other 

words, we have a resolution 

0 -> J ? ( - 4 ) 3 -> R{-3)4 - » Iz -> 0. 

This resolution gives the resolution of the sheaf Jzi^Y 

0 -+ 0P(V){-lf -> 04p(V) - Jz(3) - 0. 

We can rewrite this resolution in the form 

0 - • O p s ( - l ) ® I* ^ Opi ® L* -* JZ(Z) 0 (0.4) 

where vector spaces / * and L* of respective dimensions 3 and 4 are defined 

intrinsically as follows: 

L*f f=ff Hf0(P\JZ(3)); (0.5) 

/ * - Ker{#°(P2 ,C0( l )@Z*) - H°(P'xqq\JZ(4QDQ))}. (0.6) 

Note that one can also obtain (0.4) from the Beilinson spectral sequence 

applied to the sheaf Jz{^)- It gives also an isomorphism 

/* rrffdf^ H1(P21Jz(l)). 
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It will be convenient for us to regard henceforth our projective plane P2 as 

P(V*) where V is a 3-dimensional vector space. Wi th this choice of notation, 

the map 7 in (0.4) is given by a. linear map 7* ® V* —> L*. We shall be more 

interested in the transpose of this map which we denote by 

g : L —>I®V = rlom(V\I). (0.7) 

Choosing bases in V, I we can regard g as a 3 by 3 matr ix of linear forms on L. 

Here is the classical result on the determinantal representation. 

0.3. Propos i t ion . The map g is an embedding. The locus 

E = {xG P(L) : rank g(x) < 2} (0.8) 

is a nonsingular cubic surface in P(L) = P3 isomorphic to B 1 ^ ( P ( V * ) . An 

explicit blow-down 7̂  : E -> P(V*) takes x G E into Ker ff(ar) G P(V*). It is 

isomorphism outside the set Z = {pi , . ,Pe} C P(V*) — P2 (see n. 0.1). The 

dual blow-down TT2 : E —> P ( / * ) t a i e s x G S into ( ^ ^ ( x ) ) - 1 G P ( J * ) . It is an 

isomorphism outside a six - element set Zas = { ^ 1 , Q Q } C P(I*) (this is the set 

associated to Z). 

Note that a given cubic surface E C P3 has many non-equivalent determi

nantal representations corresponding to different ways of blowing down E onto a 

P2 (i.e. to different choices of a double - s ix) . 

0.4. All the other at tr ibutes of the cubic surface E can be easily found from the 

map g. For example, the set Z can be recovered in terms of g as follows. Consider 

the part ial transposes of (0.7): 

gv : V* -+ I ® V = Hom(L, / ) . 

gj : /* -> V ® X* = Hom(L, V). 

Then 

Z = {z G P ( F * ) : rank ^ ( 2 ) < 2}. (0.9) 

The 12 lines of the double - six can be written in the form Az = P(AZ),A'Z = 

P(Afz), z G Z where A - and are 2-dimensional vector subspaces in L denned 

for z G Z as follows: 

Az = Kerdbgd(gv(z)xqY (0.10) 
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e (s2i®s2v).e (s2i®sq (0.11) 

where z1- C V is the 2-plane orthogonal to 2 G P ( V * ) . Thus if Z = {pi,-. . ,Pe}  

then the line Ap. is what was denoted in n.0.1 by U and the line A'p. is 

The classical theorem of F. Schur [S] can be stated as follows. 

0.5 . Theorem. There exists a unique, up to a scalar factor, symmetric bilinear  

form C(x, y) on L with the following property: C(x,y) = 0 whenever x £ Az,y £  

A'z for some z £ Z (i.e. the corresponding lines of the double - six are orthogonal  

with respect to C). This form is non-degenerate. 

Proof a ) Non-degeneracy: Suppose such a form C exists and is degenerate.  

Let K be the kernel of C. Suppose dim K — 1. Then for any 2-dimensional  

subspace A C L not meeting A" its orthogonal (with respect to C) is a 2-subspace  

containing A". Since P(AZ), P(AZ) form a double - six, K can lie on no more  

than one among the Az and no more than one among the A!z. Hence there is a  

4-element subset ZQ C Z such that for z £ ZQ both Az and A'z do not contain A".  

For such z the space A'z should coincide with and hence contain K. Hence  

for z 1 ^ Z2 £ ZQ we have A'z D A'Z2 ^ {0} which is a contradiction. The cases  

dim K = 2,3 are similar and left to the reader. 

b) Uniqueness: If there are two non-proportional forms C i , C 2 with the re 

quired property then for any A, ¡1 the linear combination \C\ + /1C2 also satisfies  

this property. However, there will be a lways such A, ¡1 that the linear combination  

is non-zero but degenerate. This contradicts a ) . 

0.6 . It remains to prove the existence part of Theorem 0.5. To do this, let  

us take the second symmetric power of the map g in (0.7) and use the natural  

decomposition 

S2(I®V) = 

, 2 2 
e (s2i®s2v). (0.12) 

By projecting S2g to the first summand, we get a linear map 

S2L —• sf s sS2(I ®ssf V) —• 

/ 2 2 

(0.13) 

Note that dim S2L = 10, and dim(/\2 I ® /\2 V) = 9. Hence the map (0.13) has  

non-trivial kernel. (We shall see later that this kernel is in fact 1-dimensional). 

1 1 6 



SCHUR QUADRICS AND VECTOR BUNDLES OVER THE PLANE 

0.7 . Propos i t ion . If B is a non-zero form from the kernel of (0.13) then B : 

L* —• L is invertible and C = B~x : L —• L* is a bilinear form on L satisfying 

the conditions of Theorem 0.5. 

We shall concentrate on the proof of this proposition. 

0.8 . A form B G S2L lying in the kernel of (0.13) is classically called "apolar 

to all the quadrat ic forms given by 2 x 2 minors of cf. [B]. In general, if E 

is a vector space then quadratic forms G G S2E, HE S2E* are called apolar 

if (G,H)2 = 0 where ( v ) 2 is the natural pairing S2E® S2E* -> C. Note the 

part icular case when G has rank 2 i.e. G = e • / is the symmetric product of two 

vectors e, / € E. In this case the apolarity of G and H means that H(e, / ) = 0. 

We shall need a different description of the map dual to (0.13). Let us denote 

this map by 

8 : 

2 2 
• S 2 L \ h h h k (0.14) 

Let us chose volume forms on V and / . Then we can write A V* = V, A t* = L 

It is immediate to see that there are identifications 

2 

v**v = sf ff°(p(f),Offp( (o-i5) 

2 
I* SF= I QF SSFH°(P(V*) ,J i (dd5) ) ; (0.16) 

S2L* =SF H°(P(LlO(2)) * H°(SP(V),J$(DV6)) (0.17) 

Indeed, (0.15) follows by definition of 0(1)] the identification (0.16) expresses 

the fact that the Cremona transformation 7r2 O TT^1 : P ( V * ) —> P ( J * ) is given by 

the linear system of quintics with singular points p^, see n. 0.1. Finally, to see 

(0.17) we note that the embedding of the cubic surface S into P(L) — P3 is given 

by the linear system of cubics in P ( V * ) through p2, so L* is the space of cubic 

polynomials on V* vanishing at pi. The second symmetric power of this space 

maps therefore to the space of polynomials of degree 6 vanishing at pi together 

with their first derivatives i.e, to the RHS of (0.17); this map is easily seen to be 

an isomorphism. 
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0.9. Lemma. Under identifications (0.15) - (0.17) the map 8 corresponds to the 
multiplication map

H°(P(V),O(l))®H0(P(V),Ji(5))->ff°(P(V),j2(6)).

In other words, quadrics in P(L) are identified with sextics in P(V*) with 
double points at pi £ Z and quadrics from the image of 6 correspond to sextics 
containing a line.

Proof of the lemma: We have the commutative diagram

L S2L
Si i  (0-18)

Hom(F*,J) -A+ Hom(A2^*,A2 /)

where the map Sq takes x x2, the map A takes (j> /\2 (j> and the map on 
the right is the same as in (0.13). We keep the volume forms in I and V and 
identify correspondingly the spaces /\2 I and /\2 V with V* and /*. For any 
(j) 6 Horn(V™,/) of rank 2 the second exterior power /\2 (j) E I* ® V* is a tensor 
of rank 1. Hence it can be written in the form z* 0 v* for some i* € /*, v* £ V*. 
This shows that the restriction of the map A o g to the cubic surface S C P(L) 
coincides with the composition

S "125* P(/*) x P(V) S-^ e P(r  ® V*) (0.19)

where ttj are the blow-downs from n. 0.3.
The map Xog : P(L) —> P(I*(&V*) is given by the linear system Q of quadrics 

which is the projectivization of the image of the linear map 6 from (0.14). The 
system Q is spanned by the 2 x 2  minors of the matrix of linear forms on L 
defining the determinantal representation of S. In other words, the preimage of 
the linear system of hyperplane sections of P(/* (g) V*) under A o g is the linear 
system of quadric sections on S which is (the projectivization of) the image of 
the canonical pairing

HQ(P(I*),O(l))®H0(P(V*)1O(l)) — ► tf°(5,C>(2)).

By Theorem 0.3, we can make an identification of the projective spaces P(I*) 
and
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P ( H ° ( P ( V * ) d , D DD . 71 (5 ) )* ) . Under the rational map P(V*) -> P(I*) given by the 

linear system of sections of t7§(5), zeroes of these sections are preimages of the 

lines in P ( P ) and the resulting map 

H0{P(V*),O(lxdC<QF))®H°(PX>D(V*), J l ( 5 ) ) - > D D ff°(E,0(2)) = H°{P(V), J l ( 6 ) ) 

coincides with the natural multiplication map from the assertion of the lemma. 

So the lemma is proven. 

0 . 1 0 . We continue to prove Theorem 0.5 and shall now use Lemma 0.9. Let us 

consider some part icular sextics with double points at Z = {pi , --- ,P6}- Let C, 

be the unique conic through Z — {pi}. We can take a sextic curve which is the 

union of two lines < Pi,Pj >, < PkiPa > and two conies Ck,C3. By means of 

(0.17) this sextic corresponds to some quadric Qij^s- Moreover, since the quintic 

< PkiPs > U Cjt U Cs belongs to the linear system of quintics singular at points 

of Z, the quadric Qij,ks lies in the image of the map 6 from (0.14). Now let us 

take j = s. Then our sextic can be represented as the union of two cubic curves 

through Z namely 

< Pi,Pj > u Cj and < pk,Pj > U Cfc. 

Since such cubics correspond to hyperplanes in P ( L ) , we conclude that the quadric 

Qij,kj is in fact the union of two planes, say Hij and Hkj- Moreover, Hij cuts 

out the cubic surface S along 3 lines rriij (see n. 0.1). The plane Hjk cuts 

out the lines Ij^l^irikj on E. Since the (quadratic form denning the) quadric 

Qij:kj = Hij U Hkj is apolar to our chosen B £ 52L, we conclude that the 

equations of Hij and Hjk (belonging to L*) are B - orthogonal. 

0 . 1 1 . Let us now prove Proposition 0.7 and hence Theorem 0.5. The form B is a 

linear map L* —> L. For any linear subspace U C L we define its polar subspace 

(with respect to B) to be 

e (s2i®<x<2v). 

where U1- denotes the orthogonal subspace of U in L*. If B is non-degenerate 

then Uß is the orthogonal complement of U in L with respect to the inverse form 

B~l G 52L*. If B is degenerate and K C L* is its kernel then Uß is contained 

in K1- for any U. 
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We shall apply the previous notation for projective subspaces in P(L). In 

particular, if H C P{L) is a hyperplane whose equation does not lie in K — Ker B 

then is a point called the pole of H. 

Let us prove that B is non-degenerate. Let the double - six be {/l5...,/6}, 

{ / j , / g } . Assume first that B is of rank at least 3. Then at most one hyperplane 

Hij belongs to the kernel of B. Without loss of generali ty we may assume that 

all planes Hij are not in the kernel except maybe H^Q. Consider the plane H12 

spanned by lines /1 and V2 (which intersect). Its equation (in V*) is orthogonal 

with respect to B to equations of similar planes #215 i?235 i?3i (see n. 0.10). 

Hence (Hi2)g = H21 H if23 H #31 and this intersection is easily seen to be the 

point l[ n /2. In this way we show that each l[ D lj is the pole of some plane Hji, 

where ( i , j ) ^ ( 5 , 6 ) . Since these points obviously span P(L), the form B must 

be non-degenerate. Now assume that B is of rank at most 2. Since the planes 

#12, Hi3, H24, H25 are linearly independent, at least one of them is not in the 

kernel of B. Let it be H12. Similarly we find that #34 and H$Q are not in the 

kernel. Their three poles l[ fl /2, /3 H /4, /5 D /6 are not on a line. This contradicts 

the assumption that B is of rank at most 2. 

It remains to show that lj- = /(•. We have already seen that the point l[ fl l2 

is the pole of the plane H12 spanned by li and /2. Similarly, l[ fl /3 is the pole of 

#13 = Span ( / i , /3). Hence l[ = Span(/J fl /2, l[ fl /3) is the orthogonal complement 

of H\2 H #23 = h- Similarly we prove that l[ = if- for other i. 

Theorem 0.5 is completely proven. The reader should compare this rather 

cumbersome proof with a more straightforward one based on the theory of vector 

bundles (Theorem 2.17 below). 

0 .12 . De f in i t i on . T h e Q D Q quadric Q C P(L) defined by C(x,x) = 0 where C is 

the quadratic form given by Theorem 0.5, is called the Schur quadric (associated 

with the double - six {AZ,A'Z}). 

0 . 1 3 . E x a m p l e . Let us consider the following 4-dimensiona.l space L: 

L = (xu...,x5) € C5 : X ^ ' = 0wcwvw<wvw 

and define the cubic surface S C P(L) by the equation XL — ® ( ^ i e Cleb-

sch diagonal surface). The symmetric group S5 acts on C5 by permutations of 

1 2 0 
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coordinates and preserves L and S . The line 

<<x 
x G P(L) : x1 + 

1 + 
2>X 

> 
-x2 + x3 = x2 4 

1 + VE 
<x2 

—x3 + x4 = 0 

lies on S and so do all the lines obtained from / by the action of 55. It is known 

[Bu] that the 5s - orbit of / consists of 12 lines which form a double - six. Their 

equations can be found in [B], p. 168. The two sextuples of lines constituting this 

double - six are orbits of the alternating group A5 C 55. So one sextuple is the 

A5 - orbit of I and the other is the A5 - orbit of the line 

e (s2rf x : xi + x2 + 
1-VE 

2 
X4 = 

1-VE 

2 
xi + x3 + x4 = 0 

So /' is line of the second sextuple corresponding to / (because / fl /' = 0) . The 

lines Z and /' are orthogonal with respect to the bilinear form C(a<xr5 y ) = ]T^=1 XiVi 

on L. By symmetry, all the other corresponding pairs of lines of our double - six 

are also orthogonal with respect to C. Thus the Schur quadric Q associated to 

this double - six is given by the equation Yl^=i XL =< 0-

§1. A n overv iew of Hulek's theory. 

1 . 1 . Let E be a stable rank 2 vector bundle on P2 = P(V) with CL(E) = 

— 1, c2(E) — n. According to Le Potier [L] and Hulek [Hulc<], the bundle E can 

be realized as the middle cohomology of a monad 

H ® Op(V)(-1) >xw>XxxC M ® ftp(l0(l) H' ® OP{V). (1.1) 

where 

H = H1 (E(-2))^ CN-\ M = H1 XX£(—!))= C", H' = H\E)^CN~L 

(1.2) 

and the maps a and /3 are defined as follows. Let fix(l) be identified with ©(—2) 

where G is the tangent bundle of P(V). Let t : V ® C9P(l<x/)(-l<x) -><1-VE1-VE be the 

Euler homomorphism twisted by C9( — 1) (see [OSS]). It allows one to identify 

Hom(# ® 0P(V)(<c<c-i), M ® fi^l)<c) qf ̂  qf wcHomc(Är ® V*, M). (1.3) 

1 2 1 
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The map a is induced by the cup - product 

a : H1 (E(-2))®V* = H1 (E(-<c<2))®H<d°<c{0<<(V](1))-^ H1 (E(-l)). (1.4) 

Similarly, we have a map t* : <c —• <cV* ® Op(v) which allows us to identify 

Hom(M®fi1(l),i7'<cc<8)Op(y)) £ Homo(Af® F*,i<c<c<J')- (1-5) 

After this identification the map /J is induced by the cup - product 

b : H1 (E(-1))®XXV = H'iE<c<i-l^H^xbxOp^<l)<c<)<x<c^ <c<Hwx><c<c\E). (1.6) 

The cup - product pairing 

B : M ® M = H1 (E(-l))®H<L (E{-1))—>SFGSGH2((/\ E)(-2) 

= H\Op{v){-2)) = C (1.7) 

is a symmetric non - degenerate bilinear form on M. We regard it as an isomor

phism 

B : M -> M*. (1.8) 

The spaces i f and ' are dual to each other by means of the Serre dual i ty and 

the isomorphism 
2 

E = E* ® f\E ^ E*(-l). 

With respect to the constructed pairings the monad (1.1) is self - dual in the 

sense that /3 = a*( — l). Equivalently, if A £ V* and a(X) : H —> M is the linear 

map defined by the pairing a and similarly 6(A) : M —> £T is the map defined by 

6 then 

6(A) = o ( A ) ' o B . 

This shows that the monad (1.1) is completely determined by the pairing (1.4) and 

the symmetric bilinear form B. The pairing must satisfy the following properties 

(cf. [Hul]): 

(oil) The map a(X) is injective for generic A £ V*. 

(a2) For any h € H the map au(h) : Vr* —• M defined by the pairing a is of rank 

> 2. 

( a 3 ) For any A, A' £ V* we have 6(A') o a{ A) = 6(A) o a(A') where 6(A) = a(A)* o B 

and similarly for 6(A'). 

Note that by a theorem of Grauert-Miilich, the last two properties imply the 

first one. 
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1.2. T h e o r e m . Let V,H,M be linear spaces of respective dimensions 3, n — 1 

and n and n > 2. Let us fix a non-degenerate symmetric bilinear form B on M. 

By assigning to each a G Hom(i? ® F*, M ) satisfying (al) - (a3) the map 

a = (Id ® *)o(a ® Id) : ® 0 P ( y ) ( - l ) • M ® ft^l), 

we get a bijective correspondence between equivalence classes of self - dual monads 

(1.1) modulo action of the group 0(M,B) X GL(H) and isomorphism classes of 

stable rank 2 vector bundles E on P(V) with C\(E) = — 1 and c2(E) = n. 

1 . 3 . Let / be a line in P2 and E be a stable bundle as in Theorem 1.2. Let 

A G V* be a linear form defining /. We have a canonical exact sequence 

0 — • E(-l) E —• E\i — • 0, 

which together with the fact H°(E) = 0 which follows from the stabil i ty of E, 

gives an isomorphism 

H°(E\i)= KeT{H\E(-l)) -> H1(E)}= Ker{a(A) : M ^ H). (1.9) 

Since E\i = 0(p) ® O(q) with p + q = - 1 , we obtain that 

E\i^O@0(-l) <=> ranka(A) = n - 1. 

A line / is called a jumping line if 7̂  O 0 C?( — 1). It follows from the Grauert 

- Mulich theorem [OSS] that the set of jumping lines is a proper Zariski closed 

subset of the dual plane P(V*). This set is known to be 0 -dimensional for a 

generic E. 

1.4 . In [Hul] the notion of a jumping line of the second kind (shortly JLSK) 

was introduced. Let № be the first infinitesimal neighborhood of / in P(V). We 

use the exact sequence 

0 -> Op(v)(-2) ^ 0P(V) - 0/(1) - 0 (1.10) 

to obtain 

H°(E\,W) = Kev{s(X) : Hl{E{-2)) -> Hl(E)}. (1.11) 
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Here the map s(X) corresponds to the canonical pairing 

S2(V*) ® H1 (E(-<x<2)) — • H1(E)) 

evaluated at A2. In the notation of the previous subsections, s(X) is the compo

sition 

a(\)*oxsgdgBoa(\): H -> M -> M* ^ H*. 

We say that / is a JLSK if s(X) is not bijective. Since the source and target 

of s(X) have the same dimension, / is a JLSK if and only if H°1-VE1-VE1-VE1-VE 0. 

Let us introduce a rational quadratic map 

7 : p(V*) -> P ( S 2 i T ) , A H-> s(X) 

By property ( a l ) , for a generic line / £ P ( V * ) the value 7(A) is well defined and 

is an non-degenerate quadric in P(H). We denote by C(E) the set of all JLSK 

of E. Thus outside a finite set of points in P{V*) the set C(E) is equal to the 

preimage, under 7, of the locus of degenerate quadrics in P(H). So we get that 

C(E)' is a closed subscheme in P ( V * ) defined by the equation det7(7) = 0. We 

shall consider C(E) as a closed subscheme of P ( V * ) defined by this equation. So 

C(E) is a (possibly reducible) curve of degree 2n —2 containing the set of jumping 

lines of E in the usual sense. 

1 .5 . One can give another interpretation of the curve C(E). Consider the rational 

map 

a : P(V*) P ( M * ) , A h-> I m ^ A ) ) ^ C M*. 

It is defined on the complement of the set of jumping lines of E. A non-jumping 

line / is a JLSK of and only if the hyperplane <j(/) C P(M) is tangent to the 

quadric defined by J5(m, m) = 0. Let us denote by Q the dual quadric in P ( M * ) 

(which parametrizes the hyperplane tangent to { P ( m , m ) = 0}; so it is given by 

the inverse quadrat ic form C = B~l). Then 

/ is a JLSK if and only if a(l) £ Q. 
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§2. General ized Schur quadrics and cubic surfaces. 

2 . 1 . Let E be a stable rank 2 vector bundle on P2 = P(V) with cx = — 1 , c2 = n. 

As we mentioned in the previous section, its monad (1.1) defines (and is uniquely 

denned by ) the following linear algebra data: a linear map (tensor) 

a : H® V* -> M (2.1) 

and a quadrat ic form (the cup - product) 

B : M ® M -> C. (2.2) 

Our aim in this section is the study of the geometry of some algebraic varieties 

natural ly associated to a and B (and hence to E). 

2.2. We denote by Q C P ( M * ) the quadric defined by the equation C(ra , m ) = 0 

where C is the quadratic form on M* inverse to P , see n.1.5. We shall call Q 

the Schur quadric of E. We shall see later in this section how the classical Schur 

quadric of a double - six is a particular case of this construction. 

2.3. By taking various part ial transposes of the tensor a, we construct the fol

lowing linear operators: 

aM : M* -> H* ® V = Hom(#, V ) ; (2.3) 

av : V* -> J T ® M = Hom(tf, M ) ; (2.4) 

aH : H -> M ® V = Hom(M*, V ) . (2.5) 

These operators define determinantal varieties in P ( M * ) , P ( V * ) , P(H) consisting 

of points whose images (under the corresponding a) are operators not of maximal 

rank. Before going into details, let us recall some well known facts about varieties 

of matrices of given rank. 

Let L i , L 2 be vector spaces of respective dimensions n i , n2 - We denote by 

Hom(Li , £ 2 ) r C Hom(L1, L2) the variety of linear maps of rank < r. We assume 

that r < min(72i ,n2). Then the following is true [ACGH],[R]. 
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2.4. Propos i t ion . 

a) The codimension of H o m ( i 1 , L2)r in Hom(JL1, L2) is equal to (nx — r)(n2 — r). 

b) Hom(Ll7 L2)r is irreducible and Cohen - Macaulay; 

c) The degree of (the projectivization of) Hom(Ll7 L2)r is equal to 

ni — r—1 

2 = 0 

(n2 + i)l il 
(r + i)l (n2 — r — i)l 

d) Let <F> G Hom(Zq, L2)r be a linear map of rank k < r. Then the multiplicity 

of H o m ( L \ , L 2 ) r at <J> is given by 

mul t0 (Hom(Li ,L2) r ) = 
n\ — r — 1 

2 = 0 

(n2 — k — i)l il 

(r — k — l)l(n2 — r — i)l 

2.5 . Let us return to the situation of n. 2.3. We define the variety S C P(M*) 

as follows 

S = {fi £ P ( M * ) : rank aM( / i ) < 2} . (2.6) 

This is an analog of a cubic surface in P3, cf. Proposition 0.3. 

Note that dim M = n, dim H = n — 1, dim V — 3. Therefore, by Propo

sition 2.4, the variety Hom(JT, V)2 has codimension n — 3 in Hom(iJ , V ) and so 

dim E > 2. Generically, one would expect that dim E = 2. 

We shall call the tensor a (and the bundle E) E - generic if for any /i (E E 

the rank of aM(n) is exactly 2. We shall see in section 3 that if n is a square then 

E - generic bundles exist. Since being E - generic is an open condition, this will 

imply that such bundles form an open dense subset in the moduli space. We shall 

also see that for (some other) open dense subset in the moduli space the variety 

E is indeed a surface. However, there are important part icular cases when E is 

reducible and contains components of higher dimension, see n. 3.5 below. 

2.6 . Consider now the part ial transpose fiy of the tensor a given in (2 .4) . We 

define the determinantal variety Z C P(V*) by 

Z = {A G P(V*) : rank av(X) < n - 2 ) . (2.7) 

It will be important for us to consider Z as a scheme with the scheme structure 

given natura l ly by (2.7) . This means that we choose bases in H and M and 
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regard ay as a (77. — 1) x n -matrix whose entries are linear forms in A. The n 

maximal minors of this matr ix are taken to be the equations of the subscheme Z. 

Since Hom(iJ , Mfqq)n_2 has codimension 2 in Hom(iJ , M ) , generically one ex

pects Z to be O-dimensional and reduced. If this is indeed the case, we shall 

call the tensor a (and the bundle E) Z - generic. It follows from [Hul] that 

Z -generic bundles exist for any values of n. Namely, the so-called Hulsbergen 

bundles will be Z -generic (see also §4 for discussion of these bundles). Thus Z 

-generic bundles form an open dense subset in the moduli space. 

If a is Z-generic then, by Proposition 2.4. c) , the degree of the 0- dimensional 

scheme Z equals deg Hom(if, M)n_2 <qfff= ( " ) . Moreover, the multiplicity of any 

point A G Z in Z is at least ( n ~ £ ^ ) where r(A) = rank ay(X) 

The meaning of Z is as follows. 

2.7 . L e m m a . The support of the scheme Z is precisely the set of jumping lines 

ofE. 

Proof: This immediately follows from considerations of n.1.3. 

2.8. Let Jz C Op(\r*) be the sheaf of ideals of the subscheme Z. By construction 

of Z (see n. 2.6), maximal minors of the (n-l)Dxn D- matr ix aQDy are global sections 

of Jz(n — ! ) • In invariant terms, we consider the linear map 

CLy'.H® M*sdDQ —> V (2.9) 

and, by taking its (n — 1) -st symmetric power, we get a linear map 

n-l 
H 

n-l 
M* Sn-\H®M*) —•DQD S"-1!1-VE/ = H°(P(V*),0(n - 1)) (2.10) 

whose image is contained in H° ( P ( V * ) , Jz{n — 1 ) ) . It will be convenient for us 

to rewrite (2.10) as 

A : M 
/71 — 1 

H 

71 

M* —» H1-VE°(P(V),Jz(n-l)). (2.11) 

The 1-dimensional vector space /\n 1 H®/\n M* can be chased away by choosing 

bases in H and M. 
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2.9. Propos i t ion . If dim Z — 0 then the operator A in (2.11) is an isomorphism. 

In other words, the linear system of curves of degree n — 1 through Z is generated 

by maximal minors of ay. 

Proof: We associate to a y , in a standard way, a morphism a of sheaves on P(V*) 

and denote its cokernel by T\ 

0 -> H ® e > p ( l / . ) ( - l ) M ® OP(V+} -> T -> 0 ( 2 . 1 2 ) 

( the fact that a is infective, follows from dim Z = 0 ) . We claim the following: 

2 . 1 0 . Lemma. T is isomorphic to 3z{n — 1 ) - Under this isomorphism the 

natural map M —• H° (Jz(n — 1 ) ) corresponds, up to a scalar multiple, to the 

map A from (2.11). 

Clearly, Lemma 2 . 1 0 implies our proposition in virtue of the exact cohomo-

logical sequence of ( 2 . 1 2 ) . 

Proof of the lemma: The assertion follows from the well-known resolution of 

Eagon-Northcott of the ideal of a determinant variety defined by maximal minors 

(see [No] , Appendix C . l ) . However we prefer to give an elementary proof here. 

We choose a bases hi,/in_i € H and m1, ...,mn £ M. This makes it possible 

to speak about the determinant d e t [ z ; l 7 v n ] of a system of n vectors in M (this 

is just \bjj\ where V{ = Yl^ijmj)' ^ e define a morphism of sheaves ifr : T —• 

Jz{n — 1 ) i.e. a morphism ^ : M ® ^ p ( y * ) —+ Jz(n — 1 ) vanishing on Im(a ) , 

as follows. Let m = m ( A ) be a local section of M ® Op^y*) ie- an M - valued 

function in A homogeneous of degree 0 . We put \P(m) to be the homogeneous (of 

degree n — 1) function 

A h-+ d e t [ m ( A ) , a y ( A ) ( / i i ) , . . . , a y ( A ) ( / i n _ i ) ] . 

This defines -0. It is clear that if) is injective. The fact that ip is surjective follows 

by comparing Chern classes of T and Jz(n— 1 ) . The rest of the lemma is obvious. 

2 . 1 1 . We continue to assume that dim Z = 0 . Let S be the blow up of P ( V * ) 

along Z and ns : S —• P(Vr*) be the canonical projection. In virtue of Proposition 

2 . 9 the linear system of curves of degree n — 1 through Z defines a regular map 

p: S - * P ( M * ) . A generic point 3 = T T ' ^ A ) G 5 , A e P ( V * ) goes under p into 
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the hyperplane in P ( M ) consisting of m such that A(m) G H° ( P ( V * ) , Jz(n — 1)) 

vanishes at A as well. Here A is as in (2.11). The interpretation of A in Lemma 

2.10 shows that p(S) is contained in the determinantal variety E C P ( M * ) as 

an irreducible component. We shall denote variety p(S) ( typical ly a surface) by 

E' C E. 

2 . 1 2 . Suppose that our bundle E is E - generic. Then we have a regular map 

TTe : E -> P(V*) 

which takes \i G E C P ( M * ) to the linear subspace Im(aM(/^)) C V ( this subspace 

has dimension 2 by the assumption of E -genericity). The map 7TE is the analog 

of the blow-down of a cubic surface onto a plane. 

If the bundle E is not E -generic, the map will be defined on the open 

part E0 C E consisting of fi such that « M ( ^ ) nas rank exact ly 2. 

For A G P(V*) the fiber T T ^ A ) is the projective space P (Ker av (A)* ) . The 

dimension of this fiber is equal to n — rank ay(\) — l. Hence TT^ is an isomorphism 

over the complement of Supp(Z) . On the other hand, if the rank of ay(\) is small 

the fiber ^ ^ ( A ) will have dimension > 2 and the variety E will be reducible. We 

shall see in §3 that such situations do occur for stable bundles. 

2.13. Proposition. Assume that E is Z - generic and no n — 1 points of Z lie 

on a line. Then: 

(a) The map p : S —+ E is an isomorphism (so, in particular, E' = E j ; 

(b) E is a projectively Cohen - Macaulay surface in P ( M * ) of degree (n—l)2 — ( " ) . 

Proof: Introducing the Hilbert function H(Z,t) = hQ(<c0P{y*)(t)) - h°(Jz(t)), 

and applying exact sequence (2.12), we have 

H(Z,n- 1) = ( l / 2 ) n ( n + 1) - n = (l/<c<2)n(n - 1) = 

H(Z,n-2) > x < < c H ( Z , n - 3 ) <c= (l/<c<2)(n- l ) ( n - 2 ) . 

This gives 

n - 1 = min{* : H(Z,t) = < c < H ( Z , t - 1)}. 

By [DG], this implies that the linear system of curves of degree n — 1 through Z 

maps S = B1Z(P2) isomorphically into P(H°(Jz(Xc<cn))*) = P ( M * ) . By [Gi] the 
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image of this map i.e., the variety E', is projectively Cohen - Macaulay. Recall 

that this means that the projective coordinate ring of E' is Cohen - Macaulay. In 

part icular , we get that E' is projectively normal i.e., for any k > 0 the restriction 

map 

H0(P(M*),O(k))—• H0(Z',O(k)) 

is surjective. Since the rational map P ( V * ) —> E is given by the linear system 

of curves of degree n — 1 through Z, we obtain the assertion about the degree 

of E'. Since E is Z - generic, the fiber of the map : E —• P ( V * ) over each 

point z G Z is isomorphic to P 1 . Since E' and E coincide outside the union of 

fV.R fiKprs TTZ1( Y\ Y a 7, t h i s i m r J i ^ Q f W Y' = Y. O P,D 

2.14. Let z e Z C P(V*). We denote the fiber 

7 r s 1 ( 2 ) = P ( K e r ( a v W ) c P ( A f * ) by A2 

The corresponding linear subspace Ker(av(z)*) C M* of which Az is the projec-

tivization, will be denoted by Az. 

Consider the space 

Hz = Ker av(z) C H. 

We also consider the linear subspace 

K = 
h6Hz 

Ker aH(h) C M* 

and denote its projectivization by C P ( M * ) . 

The collection of projective subspaces AZ,A'Z, z £ Z, forms the analog of a 

Schlâfli double - six on a cubic surface in P3 . 

In our case A'z lies on E but Az does not, in general, do so. Indeed, the 

typical situation (see Proposition 2 . 1 3 ) is that E is a surface, that for any z G Z 

we have rk[a(z)) = n — 2 and so dim Az — 1 , dim Az — n — 3 . So tor n > 5 

A!z cannot lie on S . The relation of A'z with the component E' = p(S) C E is as 

follows. 

2.15. Propos i t ion . Assume that E is Z - generic. Then A'z is a subspace of 

codimension 2 in P(M* ) which intersects the surface E' along a curve. The image 
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of this curve under the projection 7rs : L —» P(V ) is the unique curve 01 degree 

n — 2 which passes through the points z' E Z \ {z}. 

For the case n = 4 we get the standard description of the second sextuple 

of lines of the double - six on the cubic surface as the inverse image of quadrics 

containing some 5 of the 6 points of Z. For n > 5 instead of the property that 

A!z lies on E' we have that A'z fl E' is a curve (instead of a set of isolated points, 

as one would expect by dimension count). 

Proof: Since the rank of ay(z) equals n — 2, we have dim(Hz) = 1. Thus A'z is 

the kernel of the map ay(h) : M* —> V where h is any non-zero vector from Hz. 

Note that the rank of this map equals 2. In fact, otherwise Z would contain a 

line as an irreducible component. This shows that dim(Az) = 77 — 2. Now let 

us observe that A'z = P(A'Z) intersects each Az> for z' ^ z. Indeed, the sum oi 

linear subspaces A'z + Az> is contained in the hyperplane of zeroes of the linear 

form a(h, z') € M = ( M * ) * , where a is as in (2.1) . 

Let {H(X)}\epi be the pencil of hyperplanes in P ( M * ) which contain the 

subspace A!z. It cuts out a pencil V of curves on E with the base locus A'z fl E. 

For each z' ^ z one of the hyperplanes H(\) contains the line Az>. Thus each 

Az' contains one of the base points of the pencil V. Under the rational map 

P ( V * ) —• P ( M * ) (given by curves of degree n — 1 through Z) the preimage of 

the pencil {H(X)} is some pencil of curves of degree n — 1 passing through Z. 

Let C be its moving part and F be its fixed curve. Let d be the degree of F (zero 

if F = 0). Curves of the pencil C have degree n — 1 — d. Suppose that they pass 

through some m points say, z \ , z m of Z. Then, since Z{ remain basic for C after 

the blow - up, curves from C have the same tangent direction at each Zj ^ z. The 

curve F passes through the remaining (l/2)n(n — 1) — m points of Z. Consider 

a typical curve C £ C. Let C be its proper transform in S = B1#(P(V*)). Since 

C moves, its self - intersection index is non - negative so we get 

0 < C2 < (n - d - l )2 - 2(m - 1) - 1 = (n - d)(n - d - 1) - 2m - (n - d - 2) . 

If n — d — 2 > 0, we obtain that (n — d)(n — d — 1) — 2m > 0 thus there exists 

a plane curve of degree n — d — 2 passing through 2 1 , z m . Together with the 

curve P , it defines a curve of degree n — 2 passing through all the points of Z. 

But Lemma 2.10 and the exact sequence (2.12) show that this is impossible. So 

1 3 1 



/. DOLGACHEV, M. KAPRANOV 

we must have d = n — 2 and hence m = 1, so t' is a curve ot degree n — 2 which 

passes through all the points of Z except z. If there is another curve, say, F', 

with this property then we would have a pencil of curves of degree n — 2 through 

Z — {z}. This pencil must then contain a curve passing also through z. This, as 

we have just seen, is impossible. 

2 . 1 7 . Up until now we worked exclusively with the tensor a from (2.1) . Now we 

take into account the non-degenerate quadratic form B G S2M* from (2.2) . Let 

C = B~x be the inverse quadrat ic form on M*. The following result justifies the 

name "Schur quadric" for the quadric defined by C. 

2 . 1 7 . Theorem. Let z G Supp(Z) . Then Az is contained in the orthogonal 

complement (A^)^ of A'z with respect to C . II] moreover, rk a\r(z) = n — 2 then 

we have equality A'z = ( A z ) ^ . 

Proof: For any \ e V* let 

6(A) = a(Axxfsf)* o B : M —> H* 

where a(A) is the map induced by the a from (2.1) . Then 

B-\A'Z) = {me M : (6(A)(m), h) = 0, VA E V* ,h € Hz = Ker (av(z))}. 

For any m G = ay(z)(H) we write m = a(z)(h') for some h' G H and obtain 

(b(X)(av(z)(h')\ h) = (b(\)(av(z)(h), ti) = (0, h') = 0. 

Here we use the property ( a 3 ) from n.1.1. Thus we obtain 

If rank (a(z)) — n — 2 then dim Az = 2, dim Hz = 1 and dim = 77 — 2. Thus 

the dimensions of the spaces and B~1(A'Z) are the same so these spaces are 

equal. Theorem is proven. 

2 . 1 8 . R e m a r k . Let Z be any set of ( " ) points in P2 such that no curve of 

degree n — 2 contains Z and no lines pass through n — 1 points of Z. The linear 

system of curves of degree n — 1 through Z defines a rational map of P2 into Pn_1 
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whose image is a nonsingular surface A' classically known as a White surface [R] 

If n = 4, this is a cubic surface. The surface A is given by vanishing of maxima 

minors of a 3 X (n — 1) matr ix of linear forms. A modern proof of these result* 

can be found in [DG] and [Gi]. 

Every Whi te surface comes equipped with a set of (™) lines EZ, z G Z corre

sponding to exceptional curves of the blow - up B 1 ^ ( P 2 ) and a set of (2) curves 

CZ of degree (n — 2)(n — 4 ) / 2 + 1. The curve CZ is the image of the (unique) plan* 

curve of degree n — 2 passing through Z — {z}. Each curve CZ spans a subspace 

E'Z of codimension 2 in P n - 1 . We have EZ Pi E'Z = 0 but EZ fl E'Z, ^ 0 for z' ^ z 

This situation is analogous to a configuration of a double - six on a cubic surface 

Propositions 2.13 and 2.15 imply that for a E - generic stable bundle E the 

variety E is a Whi te surface. However, by counting constants it follows that nol 

every Whi te surface comes in this way, as soon as n > 5. Although one car 

reconstruct a linear map 

a: H ® V * ^ C n _ 1 ® C 3 — • M = Cn 

from a determinantal representation of A , there does not exist, in general, s 

quadrat ic form B on M such that a satisfies the property (cv3) from n.1.1. B j 

Theorem 1.2 the existence of such a B is necessary and sufficient in order thai 

A = E for some Z - generic bundle E. It seems likely that these conditions are 

equivalent to the existence of a "Schur quadric" for the "double - six" {EZ,E'Z} 

i.e., a quadric Q in P n _ 1 such that EZ and E'Z are orthogonal with respect to the 

(quadrat ic form defining) Q. 

2 .20 . The role of the Schur quadric Q (see n.2.2) in the description of jumping 

lines of the second kind is given by the following remark. 

2 . 2 1 . Propos i t ion . Let E 0 C S be the open set of \i such that the rank of ay(fi) 

equals 2 (so Eo = E if the bundle is E - generic). Let TT^ : So —• P(V*) be the 

projection defined in n. 2.12. Then the curve C(E) of jumping lines of second 

kind coincides with the closure of 7r^(Q D Eq). 

In particular, when the bundle E is E - generic, we have C(E) = TT^(Q D E) 

Proof: This is a reformulation of what has been done in n.1.5. 
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As an application of our formalism of Schur quadrics let us prove a statement 

about the singular tangent lines of the curves of JLSK which strengthens, under 

assumptions of genericity, a theorem of Hulek. More precisely, Hulek [Hul] has 

proven the following fact. 

2 .22 . Theorem. Let I 6 C(E) be a JLSK of E. Suppose that E\i = 0 ( - l -

k) © O(k) with k > 1. Then I is a singular point of the curve C(E) of multiplicity 

2k and for any line T in the tangent cone of C(E) at I the intersection index of 

C(E) and T at I is at least 2k + 2. 

Assume that E is Z - generic. Then every singular point / of C(E) is a double 

point ( a node or, possibly, a cusp of type y2 = xr). Theorem 2.22 gives that in 

this case there exist at least one line T through the point / with intersection index 

> 4. 

We claim that the case of the cusp does not occur for Z-generic E. Call an 

ordinary double point p of a plane curve C a biflexnode if each of the two branches 

has a flex at this point i.e. each of the two tangents has the intersection index 

> 4 with C at p . 

2 .23 . Theorem. Assume that the bundle E is Z - generic. Then every singular 

point of C(E) corresponding to a jumping line is a biflexnode. 

Proof: Let z G Z be a singular point of C(E) corresponding to a jumping line. 

Then z G Z. The branches of C(E) at z correspond to the points of intersection 

of the line Az and the Schur quadric Q. Note that Q cannot be tangent to Az 

since otherwise we would have Az fl A'z / 0 which contradicts Proposition 2.15. 

This proves that the point z is an ordinary node. 

Although Theorem 2.22 allows us to finish the proof, we prefer to give an 

independent proof based on the properties of the Schur quadric. 

Now let x be one of the two points of Q fl Az and let II be a hyperplane 

in P ( M * ) which is spanned by the point x and the codimension 2 subspace A'z. 

Let Q(z) denote the quadric in A'z cut out by Q. For any point y G Q(z) the 

line < x,y > is contained in Q. This implies that II is tangent to Q at x. Let 

C(E) = S fl Q be the proper inverse transform of the curve C(E) in S , under 

the blow-down 7T£ : S —• P(V*). Let r be the tangent line to C(E) at z at the 

branch corresponding to x and let f be its proper inverse transform on S . 
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Under the correspondence between hyperplanes in P ( M * ) and curves of de

gree 77 — 1 in P ( V * ) through Z, the hyperplane IT corresponds to the reducible 

curve t + CZ where Cz is the plane curve of degree 77 — 2 passing through Z — {z}. 

This implies that f C II and so 

Tx(f) = n n T,(E) = TX(Q) n TS(S) = 3 U C ( £ ) ) . 

This shows that f is tangent to C(£7) at the point x. Obviously this implies that 

t is a flex tangent at the branch of C(E) at z corresponding to x. Theorem is 

proven. 

§3. Logarithmic bundles . 

3 . 1 . Consider a projective plane P2 = P(V), dim V = 3. Let 7i = ( # i , . . . , i ?m) 

be an arrangement of m lines in P ( V ) in general position (i.e., no three of these 

lines have a common point) . Let E(H) = fip^(log'W) be the sheaf of 1-forms on 

P( V ) with logarithmic poles along Hi. Since W is a divisor with normal crossings, 

E(7i) is locally free i.e. we can and will regard it as a rank 2 vector bundle. It 

was proven in [DK] that this bundle is stable. 

We further suppose that the number of lines is even: 777 = 2d. In this case 

ClE(H) = 2d - 3. The normalized bundle Enorm(7i) = E(H)(-d+ 1) is a stable 

bundle with c\ = — l ,c2 = (d — l )2 . In this section we apply considerations of 

§§1,2 to bundles JSn0rm(W). 

3.2 . It was shown in [DK] that the bundle E(7i) has a resolution of the form 

0 -> / ® e > p m ( - i ) ^ w ® oP(v) E(H) 0 . (3.1) 0 - > / ® O P m ( - l ) 

In (3.1) the space W is defined as 

W = ( a i , . . . , « * / ) G C 2 D = E f l - = 0} (3.2) 

The space / is defined as follows. Let / , 6 V* be a linear equation of the line Hj. 

Then / is the space of relations among ( f\,/2^) i.e., 

I = («, , . . . .«•>,,) G C 2 < / : = O J (3.3) 
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The map r is induced by the canonical map 

t : I ® V -> W, (al,bc...,a2d)®v ( a i / i (u<c<c),a2df2d(v)) (3.4) 

called the fundamental tensor of 7i. 

3.3. By twisting the resolution (3.1) with 0(—d + 1) we get a resolution for 

^norm(W) = E{7i){—d+\). From this it is immediate to find the da t a denning the 

Hulek's monad for Enovui{H) (see §1). To formulate the answer neatly, let again 

fj G V* be the equation of Hj. For any m > 1 denote by d/dfj : SmV -» Sm~lV 

the derivation corresponding to fj regarded as a constant vector field on V*. We 

define the following map 

t(m) : SmV®I-+ S^Vwvvw® W, (3.5) 

p ® ( a i , . . . , a 2 d ) >-> I 
9p 

wv 9 / i 
wv 

dp 

wwv 
(3.6) 

where we regard Srn~1Vws®W as the space of collections ( ^ 1 ? q 2 d ) of polynomials 

qj G Srn~lV summing up to 0. 

Now the vector spaces in the monad for Enorm(T-L) have the form 

H = ^1(£?norm(W)(-2)) = Hl(Ewv{H){-dwvw-l))= Ker (i(<£_x)); (3.7) 

M = ÍT1 ( £ ? ( « ) ( - r f ) ) = Kewvwr (i(wvw<f_2)); (3.8) 

H' = H 1 ( E ( H ) ( - d w v + 1)) = Ker (<(d_3)), (3.9) 

as it follows immediately from the resolution (3.1). For example, the map ¿ (¿-1) : 

S^V ® I -> Sd~2V ® W in (3.7) appears as the map 

H2 (P(V), 0(-d -2)®Iwvsfwv)->H2 (P{V), 0{-d - 1 ) 0 W) 

in the long exact sequence of cohomology of the resolution (3.1) tensored with 

O ( - d - l ) . 

As regards maps in the monad (1.1), we shall only need the explicit form of 

the operator 

bM : sfM —>wvVwc®R (3.10) 

defined by the map b in (1.1). Namely, b^.j is induced by 

i¡> & Id/ : S('-2V ® I -» V wxvw& Sd~3V & I (3.11) 

where ^ : Sd~2V -sf> V®Sd~3V is the canonical GL(V) - equivariant embedding. 

The map a in (1.1) is dual to b by means of the form B. 

The following is the main result of this section. 
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3.4 . Theorem. Any bundle J5n0rm(W) is S -generic (see n. 2.5). 

Proof: In the notation of S2 we have to prove that 

aM(M*) n Hom(V",,ff-)1SFGSFFF {0}. (3.12) 

We have a commutative diagram 

M* <ff Hom(V*,#*) 

M sfqfq Kom(VWC*,H'O) 

where the left vertical arrow is induced by the form B and the right vertical arrow 

— by the isomorphism H* — H' (see n. 1.2). It is enough therefore to prove that 

bM(M) H Hom(Vr*, fT')i S= {SFS0}. (3.13) 

Let m = Y,Pi ® Xi be an element of M C Sd~2V ® J , so p2 G 5d~2 V, a;,- £ J . The 

element m is mapped by 6 ^ hito an element of Hom(V*, H')i if and only if there 

is v G V such that each pi equals for some qi G Sd-3 V and also ^ qi®Xi G 

Each G J is in fact a vector X{ = (xx\2d^) such that Y^jtzi fj — 0. 

Since m belongs to M = Ker( / (^_1)) , we have, by (3.5) and (3.6): 

i 

* -0") d(ue/,) 

C<F 
= 0, i = l,.FS..,2d. (3.14) 

By applying Leibnitz' rule for d/dfj and taking into account the fact that ^ g2® 

Xi £ H' = Ker(/(^_3)), we get the equalities 

/>(*) 

2 

1-VE1-VE i = S1, .,2c/. (3.15 

We claim that these equalities imply that t/, = 0 for all i. Indeed, let A : Sd 3V —• 

C be any linear functional. Consider the vector 

>J = 

FS 
\{qt)xt GG / • 

If we write y in terms of its components: y = ( t / 1 ) , y ^ 2 d ^ ) then (3.15) implies 

that 

fi(v)yU) = 0, j< = l,...,2rf. 
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Let J = {j : fj(v) = 0}. Since the lines {fj = 0} are in general position, \J\ < 2. 

For j ^ J we have therefore = 0. Since y G / , we have 

0 = 
2rf 

FQF 
1-VE1-VE 

<QD 

1-VE 

which means that we have a nontrivial linear relation among | J\ < 2 elements of 

{ / i , / 2 d } - This contradicts the general position of {/, = 0} so the vector 

y G I is zero. In other words, for any linear functional A : Sd~3V —+ C we have 

^2 \(qi)xi = 0 in I. This means that ]P ® ; = 0 in Sd~3V ® / and Theorem 

3.4 is proven. 

3 .5 . Let Z be the subscheme of jumping lines of Enorm(WFS7i). As was shown in 

[DK] (Proposition 7.4), the lines Hj belong to Z. Moreover, 

Korm(W)k- = 0Hi(l -d)@ 0Hi{d-2). (3.16) 

Denote, as usual, by /,• £ V* the equation of H{. The equali ty (3.16) means that 

the matr ix ay(fi) (see formula (2.4)) has rank n — d—1. By Proposition 2.4 d) this 

implies that the multiplicity of each Hi as a point of Z is at least (d— 1 ) ( J —2)/2 . 

The total degree of Z, however, equals to (™) where n = C2(Enorm(?{)) = (d— l ) 2 . 

Thus one expects that for d > 4 there will be many other jumping lines apart 

from Hi,H2d-

Let us also note that the fibers of the map 7T£ : S —> P(V*) introduced in 

n. 2.12 over points Hi £ P(Vr*) are projective spaces of dimension d — 2. This 

means that for d > 4 the determinantal variety S ("cubic surface") will be a lways 

reducible. 
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§4. Examples . 

4 .1 . In this section we shall i l lustrate geometric constructions of §2 on some 

part icular classes of bundles. The example with cubic surfaces and Schur quadrics 

(which motivated the present paper) will be considered in n.4.4. 

In each of the examples below we shall indicate the value of n = C2 (we 

assume C\ = —1) and describe the following geometric objects (all introduced in 

§ 2 ) : 

a) The subscheme Z C P(V*) of jumping lines. If dim Z = 0 then deg Z — (™). 

b) The de t e rminan t s variety E C P(M*) (the analog of the cubic surface). It 

comes with a natural map p : BlzP(V*) —• E whose image is a component 

of E. The map p is given by the linear system of curves of degree n — 1 in 

P(V*) through Z. 

c) The Schur quadric Q C P ( M * ) . 

d) The curve C(E) C P(V*) of JLSK. Its degree is 2n - 2. It can be described 

as 7rs(So fl Q) where 7T£ : So —• P(V*) is the projection of the generic part 

of E introduced in n. 2.12. 

e) The projective subspaces Az,A'z,z G Z (the analog of the double - s ix) . 

By M ( — 1, n) we shall denote the moduli space of stable rank 2 vector bundles 

on P2 with c\ = — 1, c<2 = n. It is an irreducible variety of dimension 4/7. — 4, see 

[Hul],[OSS]. 

4.2. The case n = 2. This case was considered in [Hul]. The features are as 

follows: 

a ) Z consists of just one point z0 € P(V*). This point corresponds to the 

1-dimensional kernel of 

av : V* -> Hom(iT,Af) = C2. 

b) The de t e rminan t s variety E C P{M*) = P1 coincides with P ( M * ) . The 

regular map p : B1^P(V*) —> E is the natural projection BL0P2 —> P 1 . 

c) The Schur quadric Q C P ( M * ) = P1 consists of two distinct points. 

1 3 9 



/. DOLGACHEV, M. KAPRANOV 

d) The curve C(E) is n(p-l(Q)) where TT : BlzP(V*) -+ P(V*) is the pro

jection. In other words, C(E) is the union of two distinct lines through ZQ. 

e) The "double - six" is as follows: AZo = P ( M * ) , A'ZQ = 0. 

4 .3 . The case n = 3. There may be several possibilities for Z which were 

also listed by Hulek [Hul]. We shall consider only the most generic case when 

Z consists of three distinct non-collinear points. In this case the features are as 

follows: 

b)The variety S C P(M*) again coincides with P ( M * ) = P2. The regular 

map BlzP(V*) —> P ( M * ) = £ resolves the standard Cremona transformation 

c : P(V) = P2 -> P2 = P(Af*) defined by quadrics through Z (three points). 

If we choose homogeneous coordinates Xj in P ( V * ) in which Z consists of points 

(1 ,0 , 0 ) , ( 0 , 1 , 0 ) , (0, 0 ,1) then c is given by the formula t0 = ^i#25 ¿1 = ^o^25¿2 = 

^o^i where t2 are appropriate coordinates in P ( M * ) . 

c) The Schur quadric Q G P(M*) is the conic *2 + 2̂ + t\ = 0. 

d) The curve C(E) is the inverse image of this conic under the Cremona 

transformation defined in b ) . In other words, the equation of C(E) is XQX2 + 

XQX<2 X-^XQ — 0. 

e) The subspaces Az are coordinate lines {tj = 0} in P ( M * ) , the subspaces 

A!z are the opposite points of the coordinate triangle i.e., points {ti = tj = 0}. 

4.4 . The case n = 4. The moduli space M(—1,4 ) has dimension 12. As shown 

in [DK], an open dense subset in M( — 1,4) is provided by normalized logarithmic 

bundles 

£norm(W) = J2j,(V)(log7<) ® C ? ( - 2 ) 

where W = (Hi,H$) is an arrangement of 6 lines in P(V) = P2 in general po

sition. We consider only such bundles E. Let pi G P ( V * ) be points corresponding 

to lines Hi C P(V). We first assume that pi do not lie on a conic (i .e. , Hi are 

not all tangent to a conic). In this case: 

a ) Z = {px,.. . ,p6}. 

b) The variety S C P(M*) = P3 is the cubic surface obtained by blowing 

up Z. 

c) The quadric Q is the classical Schur quadric associated with the double -

six {/,• = Apn l'i = A' } (see §0). This follows from Theorem 2.17. 
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d) The curve C(E) is the image under 7T£ : S —• P ( V * ) of the intersection  

S n Q. The intersection is non singular of degree 6 and genus 4; the projection  

will have nodes at pi since each the six lines /2 C S blown down to pi by 7T£ meets  

Q twice. 

e) The subspaces Api, Af form the standard double - six associated to the 

blow-down 7T£. 

If all pi do lie on a conic T C P ( V * ) , the situation changes. In this case E(H)  

is the Schwarzenberger bundle associated to T (see [Schl ,Sch2] , [DK]) and the  

features are as follows: 

a ) Z equals the conic T (so dim Z = 1). 

b) The variety S is the union of a smooth quadric surface Q and a plane  

II. The projection 7T£ : E —• P ( V * ) maps II bijectively to P(V*) and projects  

Q = P1 x P1 to one of its P1 - factors which is then being embedded into P( V*)  

as the conic I\ 

c) The "Schur quadric" is the surface Q from n. b ) . 

d) The curve C(E) coincides with T (taken three t imes) . 

e ) For any z £ Z — T the lines Az and A'z both coincide with the generator  

of Q = P1 x P1 mapped into z by 7T£, see n.b). 

4 .5 . Bring's c u r v e as C(E). Consider the situation of Example 0.13: the cubic  

surface S is given by equation x\ + ... + x% = 0 where Xi are linear functions on 

M* constrained by Xi = 0. The Schur quadric corresponding to double - six 

described in n. 0.13 is given by x\ = 0. The intersection C = S fi Q i.e. the 

curve given in P by equations 

^ 
Xi = 

^2 x32 = 0 

is known as Bring's curve [K] [Hu2]. The blow-down of the first six lines of the  

double - six described in n. 0.13 gives 6 points pi , . . . ,p6 in P2 forming an orbit  

of the alternating group A$ [Hu2]. These points will be the nodes of the sextic  

curve 7Tv;(C') C P2 i.e., of the projection of C to P2, which is also called Bring's  

curve. The equation of n^(C) can be found in [Hu2], p. 82. 

Thus Bring's curve can be represented as the curve of JLSK of a certain  

bundle on P2: the (normalized) logarithmic bundle of the configuration of lines 
1 1 X 
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4 .6 . Hulsbergen bundles . Let q1,.. . ,qn be n points in general position in 

P(V). There exists an n — 1 -dimensional family of stable rank 2 bundles E on 

P(V) with C\ = — 1, C2 = n such that { ( f t , q n } is the set of zeros of a section of 

E(l) (see [Hul]). They are called Hulsbergen bundles. For such E the subscheme 

Z of jumping lines of E is reduced and consists of ( " ) lines < qj >. We denote 

by fj l inear functions on corresponding to qi £ P(V). The linear system of 

curves of degree n — 1 through Z has a basis formed by the curves 

1-VE 
FSFS 

fi = o. 

This system maps the surface S = Blz(P(V*)) to the surface S C P ( M * ) = P71'1 

given, in natura l homogeneous coordinates (¿1, ...,£n), by equations 

n 
ti 

n 

'1=1 

dji 

ti 
= 0 , i = l , . . . , n - 3 

where ( a j i , a j n ) , j = — 3 is a basis of the space of linear relations 

among the vectors / , . In the coordinates ti the "Schur quadric" Q is given by 

the equation ] Citf = 0 so the curve of JLSK in P(V*) has the equation 

n 

¿=1 

CiFf =QDF 0. 

(cf. [Hul] n. 10.5). Note that p : S —* S blows down the proper transforms of 

the lines to singular points of X) which have the coordinates (1 ,0 , . . . , 0 ) , 

(0, . . . , 1 ) . These points belong to a ^ ( H o m (V1-*, 1-VEDSo Hulsbergen bundles 

are not S - generic in the sense of n. 2.5, although they are Z - generic. 
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