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ON THE LOCAL HOLOMORPHIC 

EXTENSION OF CR FUNCTIONS 

NICHOLAS HANGESI AND FRANCOIS TREVES$$ 

0. Introduction. The history of the holomorphic continuation, across a 
hypersurface E, of functions defined and holomorphic on one side of E goes 
back to the discovery of strong pseudoconvexity — and to the proof in Levi 
[1] that, in a strongly pseudoconvex domain of C2 with smooth boundary E, 
there are holomorphic functions that have no holomorphic extension across 
the boundary, to the concave side. Later, in Lewy [1], it was shown that every 
holomorphic function on the concave side extends to the convex side. It is 
now customary to rephrase such results in the language of CR functions on E, 
and of their germs at a point: on a strongly pseudoconvex hypersurface in CN 
there are germs of CR functions that do not extend to the pseudoconcave side 
(Levi); every germ of CR function extends to the pseudoconvex side (Lewy). 

The question of the extension (always, for us, holomorphic extension) of 
germs is radically different from that of the extension of CR functions defined 
in the whole boundary E. Extension of the latter kind can be viewed as an 
aspect of the Hartogs phenomenon. Let us recall how. Let Q C CN(N > 2) be 
an open and bounded set, whose complement consists of a single, unbounded, 
connected component, and whose boundary E is fairly smooth, say of class 
C2. Let h be a function defined and C2 in the whole of E. Provided h satisfies 
the tangential Cauchy-Riemann equations, one can find a C2 extension h to Q 
such that dh, as well as its first partial derivatives, vanish on E. Let g = Bh 
in ft, g = 0 in CN\Q] we have g G and dg = 0. We can then solve 
du = g in C ^ , with u e C1 (CN) and u = 0 in CN\Q (since N > 2). Clearly, 
h - u is holomorphic in Q and is equal to ft on S. The extension of the 
globally defined CR function h depends on the topology of E; its geometry, 
e.g., whether E has convex or concave parts, is irrelevant. 
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The situation is quite different when one tries to extend the germs of CR 
functions. 

We wish to thank the referee for pointing out a serious error in the original 
version. 

1. The Hypersurface Case. 

First of all, we recall the definitions and fix the notation. We consider 
a real hypersurface E in Cn+1(n > 1), of class C2 (this will always be our 
smoothness hypothesis, unless specified otherwise). Call zi,...,zn and w the 
complex coordinates in Cn+1. We shall assume that 0 E E and that the 
tangent hyperplane to E at 0 is the hyperplane Qw = 0. In other words, we 
are going to assume that, in an open ball Q C Cn+1 centered at the origin, E 
is defined by an equation 

(1.1) = </>(z,toew), 

with <j> real-valued and of class C2 in the closure of fi, and 

(1.2) 0|o = O,d0|o = O. 

The pullbacks to E of the differentials dzi(l < i < n), dw span a vector 
subbundle, here denoted by T 1,0E, of the complexified tangent bundle CT*E; 
the rank of T 1,0E is equal to n + 1. Its orthogonal in CTE is the vector 
subbundle of rank n, T0,1E, spanned by the vector fields tangent to E that 
are linear combinations of d/dzi(l < i < n) and d/dw. By a CR function h 
on S we shall mean a continuous function in E such that Lh = 0 whatever the 
C1 section L of T0,1E. The equation Lh = 0 can, and must, be understood in 
the distribution sense. 

As our standpoint is strictly local, we may as well assume that E = E fl Q, 
and that the hypersurface E subdivides Q into two sides: in which $sw > 
(f)(z, $lew); Q~, where $sw < <j)(z, IRew). The boundary value of any continuous 
function in fi+UE (i.e., "continuous up to the boundary") that is holomorphic 
in Q+ is a CR function on E. The problem we wish to discuss is the localized 
converse: to seek properties of E which ensure that every (continuous) CR 
function h in a neighborhood of 0 in E is the boundary value bvh, say in the 
distribution sense, and possibly in a smaller neighborhood, of a holomorphic 
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function h in a set V fl fi+ with V some open neighborhood of 0 in Cn+1. If 
the latter is true, we say that the germ of h extends to fi+. We recall that the 
fact that h has a distribution boundary value, is equivalent to the property 
that, in V, h grows slowly at the edge V fl E, i.e., to each compact subset K 
of V there is an integer k > 0 and a constant C > 0 such that 

\h(z)\ < C dist(2,£)-fc, \/z e K n n + . 

(Here the variable is denoted by z rather than (z,w).) 

We now recall a number of basic facts, all fairly elementary, and most 
well known; and first of all, the property of "unique continuation" across a 
hypersurface: 

Proposition 1.1. If the germ of a CR function at 0, on E, extends to both 
sides fi+ and Q~, then it is the restriction to E of the germ of a holomorphic 
function in Cn+1. 

The next observation is a particular case of a more general statement (see 
e.g., Baouendi-Jacobowitz-Treves [1], Lemma 2.4). 

Proposition 1.2. Suppose a holomorphic function h i n V H with V an 
open neighborhood of 0 in Cn+1, has a boundary value h on V = VnT, in the 
distribution sense. If h is a continuous function in V, then h is continuous in 
V Ufi+. 

The next statement is a direct consequence of the Baire category theorem 
(cf. Lemma III.5.1 in Treves [1]): 

Proposition 1.3. Let U be an open neighborhood of 0 in E with the property 
that to each CR function h G C°(U) there is an open neighborhood V o f O in 
Cn+1 such that h extends holomorphically to V fl Then V can be chosen 
independently of h. 

Extension of (germs at 0 of) CR functions to one side, say S}+, is the same 
as extension to a full neighborhood of 0 in Cn+1 (to the germ (Cn+1,0)) of 
(germs at 0 of) holomorphic functions in This is a consequence of the 
classical decomposition of CR functions (see Andreotti and Hill [1]): 

Proposition 1.4. Ifh is a continuous CR function in an open neighborhood 
U of 0 in E, then there are an open neighborhood V c Q o f O i n Cn+1, and 
holomorphic functions h+ and h~ in V fl fi+ and V fl fi~ respectively, such 
that h = bvh+ - bv h~ in V fl E. 

Below we shall also make use of the following approximation results: 
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Proposition 1.5. To each open neighborhood V C Q of 0 in Cn+1 there 
is another open neighborhood Vo C V such that every continuous function 
in V fl (0+ U S) which is holomorphic in V fl Q+ is the uniform limit, in 
Vo fl (Q+ US) , of a sequence of holomorphic polynomials. 

Remark: By a simple translation argument the following variant of Proposi­
tion 1.5 is also true. To each open neighborhood V C of 0 in Cn+1 there 
is another open neighborhood VQ C V such that every function which is holo­
morphic in V fl fi+ is the uniform limit, on compact subsets of Vo fl of a 
sequence of holomorphic polynomials. 

Proposition 1.6. To each open neighborhood U of O in S there is another 
open neighborhood Uo C U of O such that every continuous CR function in 
U is the uniform limit, in UQ, of a sequence of holomorphic polynomials. 

Prop.1.5 is stated, and proved, as Th. V.7.2 in Treves [1]. Prop.1.6 is 
a direct consequence of the approximation formula in Baouendi-Treves [1] 
(also Th. II.2.1 in Treves [1]). [The authors would like to thank J. P. Rosay 
for pointing out an embarassing mistake in an earlier version of the article, 
specifically in an attempt to derive directly Prop.1.6 from Prop.1.5.] 

Propositions 1.3 and 1.6 have the following consequence: 

Proposition 1.7. The following properties are equivalent: 
(1.3) To each open neighborhood U of 0 in S there is an open neighbor­

hood V of 0 in Cn+1 such that every CR function h e C°(U) extends 
holomorphically to V fl fi+. 

(1.4) To each open neighborhood UofO in S there is an open neighborhood 
V o f O in Cn+1 such that any holomorphic polynomial that vanishes 
in V fl fi+ aiso vanishes in U. 

Proof. Let U and V be as in (1.3). If the polynomial P does not vanish in 
[/, 1/P extends holomorphically to V fl and therefore P cannot vanish 
there. 

Let now U and Uo be related as in Prop.1.6. There is an open (and 
bounded) neighborhood V of 0 in Cn+1 such that, given any holomorphic 
polynomial P and any (z,w) £ V fl then P(zo,Wo) — P(z ,w) for some 
(zo)Wo) G t/o- This entails that if a sequence of holomorphic polynomials 
Pv converges in C°(Uo) to a CR function h then Pv converges uniformly in 
V fl fi+, to a holomorphic function h whose boundary value on Uo is equal to 
h. • 

Prop. 1.5 has also the following consequence, which will be of use later. 
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Proposition 1.8. The following properties are equivalent: 
(1.5) Given any open neighborhood V of 0 in Cn+1 there is a compact set 

K C V fl fi+ such that the origin belongs to the polynomial hull of K, 

K = { z 0 e Cn+1; VP G C[z], \P(z0)\ < max|P |} . 
K 

(1.6) To each open neighborhood VofO in Cn+1 there is an open subneigh-
borhood Vi C V such that every holomorphic function in V fl ft+ 
extends as a holomorphic function in V\. 

The reader will notice that, in (1.6), the holomorphic functions in V fl fi+ 
are not required to grow slowly at the edge V fl E. 

Proof. (1.5) (1-6). Let V be an arbitrary open neighborhood of 0 in Cn+1. 
Let Vo be related to V as in Prop. 1.5, and assume that 0 G K, with K CC 
Vo fl Q+. Denote by $ the closed unit ball in Cn; if e > 0 is small enough 
K + e B is a compact subset of J)+ fl Vo- The polynomial hull of K + e B contains 
that of K + eu, i.e., the set K + eu, whatever u G B. This shows that the 
polynomial hull of K + eB contains K + eB. Since 0 G K, eB is contained in 
the polynomial hull of i f + eB. Let {Pu} be a sequence of polynomials that 
converge uniformly in K + eB to the function /i, defined and holomorphic in 
Ff l f t+ , the same will be true in eB, to a holomorphic function which must 
be equal to h in Q+ fl (eB). 

(1.6) =^ (1-5), by a standard argument. Suppose (1.5) does not hold, i.e., 
there is an open neighborhood V of 0 in Cn+1 such that 0 ^ K, whatever 
the compact set K C V fl f2+. Let { K v } be a sequence of compact subsets of 
fi+fiy such that Kv C Ku+1 and that Q+ fl V is the union of the sets i ^ . By 
hypothesis 0 ^ ^ for all z/. As a consequence, for each v there is a point zv G 
Q+\Kj,, \z„\ < 1/u, and a polynomial Pv such that m a x ^ ! < l,Pl/(zJ/) = 1. 

Raising to a suitable power allows us to assume max \PV\ < 2~u. It follows 
Kv 

+ oo 

that the infinite product J J [1 — Pu(z)]v converges uniformly on every compact 
subset of fl V, to a holomorphic function /i in Q+ fl V" which vanishes to 
infinite order at 0, and therefore cannot be extended holomorphically to a full 
neighborhood of the origin. • 

The characteristic set of the CR structure of E is, by definition, the in­
tersection of T 1,0E with the real cotangent bundle T*E; it is the set of 
common zeros, in T*E, of the symbols of all the sections of T0'1. At each 
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point of E it is spanned by the one-form 9 = ds + z(Bdz — Bdz), where 
B = [1 + i(j)s(z, s)]"1*^-^, 5 ) (we have used the notation 5 = $lew). Then, 
if L is any C1 section of T0,1E over E, we may regard the real function 
(2i)~1(0, [L,L]) as the Levi form Q of E evaluated at the section L. If 
Q(L) > 0 for every L G C1(S; T0,1E), E is said to be weakly pseudoconvex. 
If E is weakly pseudoconvex, then the domain fi+ is pseudoconvex. Keep in 
mind that Q is a ball. The test case is (/>(z, s) = |z|2; then 6 = ds+i(zdz — zdz), 
L can be taken to be d/dz — izd/ds, and [L,L] = 2id/ds. Of course, the pseu­
doconvex side is the convex side, ŝw > \z\2. 

Theorem 1.9. If E is weakly pseudoconvex, then not every germ at 0 of a 
CR function in E extends to fi~. 

Proof. Let B c f i denote an open ball in Cn+1 centered at 0. Given e > 0 very 
small denote by B€ the set of points (2, w) G ¿3 such that $sw > (f)(z, $lew)—€. If 
S is weakly pseudoconvex the domain Be is pseudoconvex, and therefore (this 
is where the depth of the result lies) it is a domain of holomorphy. There is a 
holomorphic function h in B€ which does not extend holomorphically across 
the boundary of Be at the point z — 0, w — —ie. The trace of h on Bfl S does 
not extend holomorphically to the intersection VC\B if the open neighborhood 
V of 0 in Cn+1 contains the point z = 0, w = -ie. The sought conclusion 
ensues by Prop. 1.3. • 

Remark 1.10. According to Nirenberg-Kohn [1] there exist weakly pseudocon­
vex hypersurfaces S 3 0 in C2 such that any holomorphic curve through 0 
must cross into both sides of E. But combining Prop. 1.7 and Th. 1.9 shows 
that there is an open neighborhood U of 0 in E such that, given any neighbor­
hood V of 0 in Cn+1, there are one-dimensional holomorphic varieties (and, 
by proximity, submanifolds) which intersect V fl Q~ but do not intersect U. 
Thus holomorphic curves in the pseudoconcave side Q~ may get arbitrarily 
close to 0 without crossing E. 

We now come to the most important result, obtained so far, in the question 
of the extension of CR functions on a hypersurface. It is Trepreau's theorem: 

Theorem 1.11. For at least some germ at 0 of a CR function on E not to 
extend to J7+ and at least some germ not to extend to Q~, it is necessary and 
sufficient that E contain the germ at 0 of a holomorphic variety of complex 
codimension one (the zero set of the germ at 0 of a holomorphic function). 

A Proof of Trepreau's Theorem 

The sufficiency of the condition is easy to show. Let h be a holomorphic 
function in some open ball B C £1 centered at 0, whose zero set contains 0 and 
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is contained in S fl B. Whatever the real number a ^ 0, if (z, w —10) £ B and 
if h(z, w — la) = 0, then $sw — 0(z, JJeit;) = a and therefore (z,w) £ Y, C\ B. If 
Si is a strictly smaller ball, also centered at 0, and if \a\ is sufficiently small, 
the function 1 /h(z, w — la) is holomorphic in a full neighborhood of S fl B\ in 

but does not extend to any neighborhood of 0 in Cn+1 that contains the 
point z — 0, w = la. The conclusion follows then from Prop. 1.3, by letting 
a go to zero. 

The original proof of the necessity, in Trepreau [1], exploited the hypothesis 
that no extension either to fi+ or to fi~ occurs, to build a holomorphic hy-
persurface as a union of analytic disks that lie entirely in S. Instead, we shall 
apply Prop. 1.8, to negate the existence of any analytic disk whose boundary 
lies inside fi+ or Q~ (and arbitrarily near 0) and whose interior contains the 
origin. (The proof in Tumanov [19] uses a different type of deformation of 
analytic disks.) 

Let S1 denote the unit circle, and i71(S1; E) the first Sobolev space of real-
valued functions in S1 such that JQ27r u(0)d6 = 0. We shall denote by ||u||o the 
norm of u in L2(S1), and by ||u||i = {\\u\\l + \\ue\\l}* the norm in ^ ( S 1 ; ^ ) . 

Let J denote the restriction of the Hilbert transform to i?1(S1;IR), i.e., the 
oo +oo 

linear isometry of which transforms $s^^cpeip6 into 3?e^^cpe2p^. We have 
P= l p=l 

J2 = —J. We recall rapidly the solution of the Bishop equation, Eq. (1.8) 
below. 

Lemma 1.12, Let t/>(0, 5) be a real-valued C2 function in S1 x R, such that 

(i-7) № . \ < \ , №..\ + \ M < \ . 

Then there is a unique function v £ i71(S1; M) such that, i f O < 0 < 27r, 

/.27T 
(1.8) v(0) = </>(#, Jv{6)) - / </>(u, Jv(u))du;/27r. 

Jo 

Proof. Call tC(3v){0) the right-hand side in (1.8). If / £ tf^S1; R), J f is 
a continuous function. Direct differentiation with respect to 0 shows that 
/C(J/) £ i?1(S1; R). And the mean value theorem entails that, under Hy­
pothesis (1.7), we have, for all / , g £ tf^S1; IR), 

l | / C ( J / ) - / C ( J ^ ) | | o < ^ | | / - 5 | | o , 
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||/C(J/) - K i W h < \\\f - gh + \ \ \f- 9\\o • llfflli-

We define 

v0 = /C(0); v„ = /C(J^_i) if v > 1. 

Induction on v > 1 and the above estimates entail 

(1.9) ||V„ - twllo < 2-"||AC(0)||0, | |«„ - ^ _ i | | i < ^2-11^(0)11!. 

From (1.9) we conclude that vv converges in i?1(S1; R) to v = K,(Jv). Unique­
ness of the solution follows directly from the inequality ||/C(J/) — /C(Jg)||o < 
Uf~9 \ \ o . • 

We return to our function </>(z, 5 ) . After extending <j> to the whole of R2n x R 
and multiplying it by a cutoff function, we may assume that <f> G C2(R2n x 
R; R) and that 0 = 0 outside a compact set. We apply Lemma 1.12 with 

W e , s ) = <t>((z + \ C z ' , s), 

where £ = pelB\ A G C, m G Z+ and z, z1 G Cn. The unique solution in 
Lemma 1.12 will be denoted by vm(z, z', £, A). We have 

(1.10) vm{z,z'9 C, A) = (/>(Cz + ACm2/, Jvm(z,z', C, A)) 

- ( 2 T T 2 ) - 1 <j> <j>(rz + Armz', Jvm(z,z',r,A)) dr / r . 
M = P 

The following property will be of pivotal importance: 

(1.11) 3ro , po > 0 > and for each integer m = 1 , 2 , a number 6m > 0, such 
that, for all z , z' G Cn, |z| + < r0, a// p < p0, all A G C, |A| < <5m, 

(1.12) f </>(tz + \ r m z \ Jvm(z, z', r, X))dr/r = 0. 
|T|=P 

Lemma 1.13. If Property (1-11) does not hold true then, either every germ 
at 0 of a CR function on E extends to fi+ or eJse every germ extends to 

Proof. Suppose there are sequences of points z, 2 / converging to 0 in Cn, and 
of numbers A G C, p > 0 converging to zero, such that, for some integer m > 0 
(possibly depending on z, 2 / , A, p), the integral at the left in (1.12) is, say, 
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strictly negative. Let Fm(C) = ^ ( C ; 2, z', A, p) be the holomorphic function 
in the disk Ap = { ( G C; |C| < p} equal to 

Jvm(z, z1, pel6, A) + tvm(z, z', pelS\ A) 

on the boundary |£| = p. It follows at once from (1.9) that, as 2, /), 
A 0, Fm(dAp) will be contained in arbitrarily small neighborhoods of 0; 
Fm(0) = 0, since Vm G jy1(S1; M). The origin belongs to the polynomial hull 
of the image of dAp under the map Ap 3 ( -> ( O + X ^ z ' , Fm(C)) 6 Cn x C). 
Thus Prop. 1.8 yields the result. • 

Lemma 1.13 allows us to hypothesize that (1.11) holds. By (1.12) we have 

(1.13) vm(z, z \ C, A) = 0(0* + ACm*', Jt/m(z, C, A)). 

It is important to note that, when A = 0, Vm is independent of z' as well as of 
m. Let us therefore write v(z,Q = vm(z^z\^0). As a matter of fact, v(z,Q 
is a function of the product £2 alone. Putting A = 0 in (1.13) yields 

(1.14) v(z,0 = HCz,3v(z,Q). 

Keep in mind that J acts with respect to £; define u(z,Q = 3v (z ,0 , f(z) = 
u(z,l) + iv(z,l). Then (z,f(z)) G £ provided z G Cn is sufficiently close 
to 0. Moreover, if we note that zero is the solution of (1.14) when z = 0, 
we conclude that / (0) = 0. In view of this, Trepreau's theorem will be an 
immediate consequence of the following 

Lemma 1.14. If Property (1.11) holds, there is an open neighborhood of the 
origin in Cn in which f is holomorphic. 

Proof. We get, by differentiating (1.13) with respect to A: 

(1.15) dxvm = Cmz' • <f>z((z + XCmz', Jvm) + cf>s((z + \(mz',3vm)Jdxvm. 

We extend the action of J to complex-valued functions by linearity and we 
set, for any (complex-valued) function / G C°(S1), 

T(f(ztQ = 4> . (Cz ,Mz ,0 ) (3 f№, 

recalling that ( = \C\et6. We derive from (1.15) where we put A = 0: 

(1.16) (dxvm)(z,z'X,0) = { I - T c ) - l [ C z ' • M ( z , Jv(z,Q)]. 
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By differentiating both sides of (1.14) with respect to Zj(j = 1, ...,n) one gets 

(1.17) z'-vz = (zf • </>z(Cz,Jv) + (t)s(Cz,Jv)z' • dzJv. 

The operator J acts in the variable £ and therefore commutes with d/dzj, 
whence 

Cz' • MCz, J « ( 2 , 0 ) = (/ - rc)(z' • vz(z,Q) . 

Substituting in (1.16) leads to 

(1.18) (dxvm)(z, z', C, 0) = (/ - Tc)"1 ( C - 1 (I - Tc)(z' -vz(z, C))) . 

By differentiating the integral at the left in (1.12) with respect to A [and 
taking (1.13) into account], putting A = 0 and thanks to (1.18), we get 

(1.19) j> (I - Tr)-1 ( r m " \ l - TT)[z' • vz(z, r)]) dr/r = 0. 

\r\=P 

As we are going to show, a consequence of (1.19) is that, for fixed z and 
z', z' • vz(z,Q is a holomorphic function of £ in some disk |£| < pi. If this is 
so then, perforce, J acts on z' • vz(zX) as multiplication by % and thus 

(1.20) C - 1 J(*' • w , (z ,0 ) = J ( C - 1 ^ • vz(z,Q) 

and, as a consequence of (1.18) & (1.20), 

(1.21) (dxvrn)(z,z',(,0) = (m-1z' -vz(z,0. 

Next we let the operator d\ act on both sides of Eq. (1.15) and put A = 0: 

(I-Tc)dxdxvm\x=0 = \C\2[{z'-dz){z'-dz)4>]{(z,3v)+ 

2Ue {Cm(z' • dz<f>a)((z,Jv)(Jdxvm\x=0)} + <MC*, J") 

Taking (1.20) and (1.21) into account yields 

(1.22) (7 - T()dxdxvm\x=0 = \C\2[(z' • dz)(z' • 8,)<l>](Cz,Jv)+ 

2fte { r ( z ' • < ^ ) « * , Jt>)Km_V • 3vz)} + <f>as(tz, Jt,) |Cm-V • Jv2\2, 

where J acts in the £ variable. From (1.17) we derive 

(1.23) ( / - Tc)(f' • dz)(z' • dzv) = \C\2(z' • dz)(z' • dz<f>)(Cz,3v)+ 

Jdxvm\x=0 . 
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2fte (£(z' • d2<t>s)((z,Jv)z' • dzJv) + <j>3S((z,Jv)\Jz' • vz\2. 

If we compare (1.22) & (1.23) we obtain: 

(1.24) dxdxvm\x=Q = (J - Tc)"1 ( | r _ 1 | 2 ( / " Tc){ t • Bz){z' • 0Mv)) , 

whence, by (1.12) and (1.13), 

(1.25) j [(z'-dz)(z'.dzv))(z,T)dr/T = 0. 

M = r 

We are assuming that z'-vz(z, Q is holomorphic with respect to £ ; then the 
same must be true of {z'-dz)(z'-dzv(z, Q). But by the same token, z'-dzv(z, Q 
is antiholomorphic with respect to £ (recall that v is real) and the same must 
be true of (z' • dz)(z' • <9z?;(z, £)). We conclude that (z' • #*)(£' • <9*?;(z, £)) must 
be constant with respect to £. Thanks to (1.25) we conclude that 

(1.26) (Z ' •&)(*' . 0 , « ( z ,O) = O 

if |£| = r and for all z, z' sufficietly close to 0. But as v is a function of £z 
alone, it is permitted to put £ = 1, provided z stays in an appropriately small 
neighborhood of 0. We reach the conclusion that i>(z, 1) is pluriharmonic, as 
we wanted. 

It remains to show that the validity of (1.19), for all integers m > 1, all 
sufficiently small p > 0 and all z, z' G Cn sufficiently close to 0, implies that 
z' • vz(z,Q is a holomorphic function of £, \Q < pi. Putting z' = z in (1.19) 
yields 

(1.27) j> (I - Tr)-1 ( T ™ " 1 ^ - TT)(Td/dr)v(z,T)) dr/r = 0 . 

In the remainder of the proof we may omit mention of z; we write g(Q = 

v(zX) and g(petd) = ^[cv{p)ew9 + cu(p)e~ll/e]. We must show that g is 
I/=I 

harmonic in a neighborhood of zero. If ( = petd, 2(g^(() = ^^[p i / ( />)e" '* + 
qv(p)e~lv6] with pu = pc'v + vcv, qv = pc'„ - vcv. We are going to prove that 
qu = 0, i.e., cu(p) = cu(Q)pu, for all v > 1, which indeed means that g is 
harmonic. 

We write T(f = T f = <p3((Jg)Jf and we note that 

(1.28) (I - T y ^ r - H l - T)(C9c)] = Cm9c + (I ~ r j - ^ T . r - 1 ] ^ ) -
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But [ T X ^ K C Q C ) = ^a(C, J )̂[J9 Cm_1](C^c)- We continue to write C = ?eld\ 
then 

2 l -mr- lJ[C (C)] = 
+ 00 

i/=l 

b,(p)el("+m-1)9 - ^(p)c-,("-m+1)fl], 

J(Cmdcg)(0 = 

m—1 

I/=l 
P,(p)et(l/+m-1)eH 

m—1 

i/=l 

b,(p)el("+m-1)9 - ^(p)c-,("-m 
+00 

v—m 
a„(o)e-<l/-m+1^. 

We reach the following conclusion 

[J,Cm-1](Cpc) = -vm_1 
m—1 

i/=l 

b,(p)el("+m-1)9 - ^(p)c-,("-m 

Suppose we have proved qv = 0 for all v < m — 1 (trivially true if m < 2). 
We derive 

(1.29) [J,(m-1i((gc) = -tPm-1qm-i(p). 

This in turn implies 

p r . r - ' K f r c ) = M C , Jy)[J,Cm_1](Cöc) = - v m _ V . ( C , J»)9m-i(p). 

Since, on the other hand, 

(2îTT)-1 

ICI=P 

Cmöc(CK/C = Pm-19m - i (p) , 

we conclude that, after division by 2nrprn 1 of the integral at the left in (1.27) 
we get 

(1.30) 1 -

ICI=P 

( j - T ) - V ( < , J s ( 0 K / 2 < ( 0 K / 2 < Zm-l(p) = 0. 

Since the L°° norm of <ps is < | [by (1.7)] the norm of the linear Operator 
T acting on the space L2(SJ) is also < \ (recall that J is an isometry). We 
conclude that 

ICI=P 

(j-T)-V(<,Js(0K/2<(0K/2 < 
4 
3 

.2TT 

0 
\f(ret6)\2de/2ir 

1 2 
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We apply this with / (£) = <ps((,Jg(()) and take once again advantage of 
(1.7). We reach the following conclusion: 

Kl=p 

( i - r ) - V . K , J s ( 0 K / 2 * C J s ( 0 K / 2 * C "1/ 3 

Taking this estimate into account in (1.30) yields gm-i = 0, which completes 
the proof of Trepreau's theorem. • 

Remark 1.15. According to the preceding proof, the property that £ contains 
the germ at 0 of a holomorphic variety of codimension one (which, a priori, 
might have singularities) is equivalent to (1.11). 

As shown, (1.11) ensures the existence of a holomorphic function / in an 
open neighborhood of 0 in Cn, such that $sf(z) = (f)(z, 3Je/(z)) and / (0) = 0. 
In other words, if (1.11) holds, the hypersurface S contains the germ at 0 of 
an n-dimensional holomorphic submanifold (without singularities) of Cn+1, 
namely the zero set oi w — f (z ) . • 

Beyond Trepreau's Theorem 

The key question left unanswered by Th.1.11 is that of the side to which 
extension occurs, when the hypersurface S does not contain the germ of any 
holomorphic hypersurface. In this connection only partial results are known. 

The first result is a consequence of Theorems 1.9 and 1.11 combined: 

Proposition 1.16. If S is weakly pseudoconvex and does not contain the 
germ at 0 of a holomorphic hypersurface, then every germ of a CR function 
on S extends to the pseudoconvex side. 

Prop. 1.16 was proved in Bedford and Fornaess [1] under the additional 
hypothesis that the hypersurface S be smooth and have finite type at the 
origin. This is the same as saying that, given any holomorphic map Cn 3 C ~~y 
(z(Q>w(Q) G Cn+1 with (*(0),w(0)) = 0, the Taylor expansion of the n x n 
matrix d(d([</>(z(Q, 3?ew(£))] does not vanish identically (assuming <f> G C°°). 
By Remark 1.15 this precludes that S contain a holomorphic hypersurface 
passing through the origin. 

Still under the hypothesis that E is of class C°° and of finite type at the 
origin, added precision is provided by the sector property of Baouendi and 
Treves [2], and by the more general rays condition of Fornaess and Rea [1]. 
These conditions are best described by looking at holomorphic curves (rather 
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than hypersurfaces). Let A denote the open unit disk in C. If £ is of finite 
type at 0, there is a holomorphic map 7 : A 3 ( (Z(C)>w(0) £ Cn+1, 
with z(0) = 0, w(0) = 0, such that the Taylor expansion of (f)(z((), 5fteiu(£)) at 
( = 0 contains a homogeneous term pm(C? C) (a real polynomial, homogeneous 
of degree m) that is not harmonic. Let m denote the smallest integer (perforce 
> 2) for which this occurs: 

dcdc[<t>(z(Q, Kew(Q) - Pm(c, C)] = o d C P " 1 ) . 

The idea is to look at the arcs of the unit circle S1 in which 
pm(cos 0,sin 9) > 0. If one such arc has length > ir/m (i.e., if the sec­
tor property holds) extension to fi+ does occur. Because pm is not harmonic, 
there always is an arc of length > Tv/m in which pm is either > 0 or < 0, 
and thus extension always occurs to one side at least, also a consequence of 
Trepreau's theorem, or to both sides, as when m is odd (Th. 1.2 in Baouendi 
and Treves [2]) or sometimes when m is even. Results similar to the last 
mentioned can be found in Boggess and Pitts [1]. 

The rays condition is a refinement of the sector property. Let T C S1 be the 
set that is left after every arc of length > 7r/m, in which pm(cos 0, sin 6) < 0, 
has been deleted. The rays property holds if pm(cos 0o?sin 60) > 0 for some 
#o in a connected component of T whose length is > ir/m. In that case, 
extension to Q+ takes place. There is a partial converse to this, provided by 
the grouped sectors property, when all the connected components of T have 
length < 7r/m. Under this hypothesis, there are germs at 0 of CR functions 
on S that do not extend to fi+ (Th. 1 in Fornaess and Rea [1]). 

When m = 2,4, the sector property is necessary and sufficient for extension 
of every germ of CR function to fi+. The situation in the case m = 4 can 
be fully described. For simplicity, suppose S C C2 is defined by the equation 

= p±(x,y). There is no loss of generality in assuming p±(cos 0,sin 6) = 
c(l — a cos 28) with c ^ 0. Extension of every germ of CR function on S to 
both sides occurs if \a\ > y/2, and only to one side (determined by the sign of 
c) if \a\ < y/2. Observe that weak pseudoconvexity or weak pseudoconcavity 
correspond to |a| < 4/3(< \/2)-

Obviously, the rays condition entails the sector property. For m > 6, there 
are examples when the rays property holds while the sector property does not: 
this is the case of the homogeneous polynomial p6(x,y) = —(y2 — ex2)2(y2 — 
ax2) with a = tan2(7r/9) and e > 0 sufficiently small (Fornaess and Rea, loc. 
ext., Example 2). 

In certain borderline cases, between the rays condition and the grouped 
sector condition, extendability might well be determined by higher order terms 
in the Taylor expansion of <f)(z((), $lew(()). 
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All this suggests that we do not have, presently, at our disposal the concep­
tual tools needed to characterize the extendability to a given side. The place 
where to test such tools would be a rigid hypersurface in C2, i.e., a three-
dimensional submanifold £ of C2 defined by an equation $sw = (f>(z)(z £ C). 

2. The Higher Codimension Case. 

Here we consider a generic submanifold M of CN(N > 2), of class C°°. 
"Generic" means that the pullbacks to M of the differentials dz1 , . . . , dz^ are 
linearly independent and therefore span a vector subbundle T 1,0M ofCT*M 
whose rank (over C) is equal to N. Its orthogonal in C T M , which we shall 
denote by T0'1 M , is spanned by the linear combinations of djdz\ , . . . , d/dzjsf 
that are tangent to M . Its complex rank is equal to n = dim^M — N ( > 0). 
The vector bundles T 1>°M and T0,1M define a CR structure on M whose 
characteristic set has rank d = codim^M. = N — n. 

The local extension of CR functions on a generic manifold M most com­
monly considered is the holomorphic extension to wedges (with edges o n X ) . 
There are various definitions of such a wedge. We are going to use a rather 
concrete one, well suited to the our discussion. We reason in an open neighbor­
hood O of the origin in C ^ . Let z i , . . . , zn, wi,. . . , Wd denote the coordinates 
in C^; we write 
z = ( ¿ 1 , . . . , zn), w = (tui,..., Wd)' We assume 0 £ M and that the tangent 
space to M. at 0 is the real vector subspace $sw = 0. Equations of M in O 
will be 

(2.1) Qwk = <j>k{z, Stew*), k = 1,... d, 

with </> = ( 0 ! , . . . ,(f)d) £ C2(0;Rd), 0*(O,O) = 0, #fc(0,0) = 0 for all k. 

Let U C O be an open neighborhood of 0 in Ai and T an open and convex 
cone in Md, with vertex at the origin. We define what for us will be a typical 
wedge with edge [7, 

(2.2) W6(U, T) = { { z , w + z t ) e C N ; (z, ^ ) £ [/, t £ T, \t\ < 6} 

(6 > 0). It is a routine matter to define the germ of a wedge in C^ , at 
the point 0 and in the direction v £ Sd_1 (by letting U range over all open 
neighborhoods of 0 in M , T over all open cones in Rd containing v and by 
letting 8 tend to zero). 

The distribution boundary value (on the edge U) of a holomorphic function 
h in Ws(U, T) is defined in the obvious manner: if u £ C%°(U), then 

(bv h,u) = lim (2i)~n f h(z,yo + i\v)u{z,w)dz Adz Adw, 
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where dz — dz\ A • • • A dzn, dz = dz\ A • • • A dzn, dw = dw1 A • • • A dw<i, v is an 
arbitrary (but fixed) unit vector in T and the integration is carried out over 
U. The distribution bv h on U is well defined (and independent of v G T) if 
the absolute value of h grows slowly at the edge, i.e., if \h(z,w + i\v)\ grows 
slower than some power of 1/A, as A —•> +0. 

We say that there is wedge extendability in A i a t O when, 

(2.3) to each open neighborhood U of 0 in Ai , there is an open subneigh-
borhood V, an open cone r c K d and a number 8 > 0 such that each 
CR distribution in U is the boundary value, in V, of a holomorphic 
function in the wedge Ws(V,T) whose absolute value grows slowly at 
the edge. 

One could as well look at CR hyperfunctions (in which case the extension 
would be an arbitrary holomorphic function in the wedge). 

Next we turn to another, less familiar, feature of a CR structure — its 
orbits. By definition, an orbit of the CR structure of Ai in Q, is an equivalence 
class of points in an arbitrary open subset Q of Ai , for the equivalence relation: 
p' « p" defined as follows: there is a finite sequence of points in fi, p ' = po, 
p i , . . . ,pr = p" such that, for each i, pi and Pi+i lie on one and the same 
integral curve of some vector field 3?eL = \ { L + L), L G C°°(Q;T°^M) (i.e., 
L a smooth section of T°^M. over Q). A general theorem in Sussman [1] states 
that every orbit is an immersed C°° submanifold of Ad. Let g(fi) denote the 
Lie algebra, for the commutation bracket, generated by all the real vector 
fields 3?eL, L G C°°(0; T0ylA4). The tangent space at an arbitrary point p to 
the orbit Cp in Q through p contains the freezing of g(fi) at p; and the orbits 
are minimal for this property. But the tangent space might not be equal to 

o w l , -

Example 2.1. Let Ai be a hypersurface, i.e., d = 1, and suppose there is 
a relatively compact subset Q' of Q in which the Levi form of Ai vanishes 
identically. Suppose the CR structure of Ai is of finite type in In 
Q, there is only one orbit, Q itself. In Qf the orbits are the holomorphic 
submanifolds (of complex codimension 1) that are the leaves of the natural 
foliation of Qf. • 

The significance of leaves is apparent in the following result (see Treves [1], 
Th. II.3.3): 

Theorem 2.2. The support of any CR distribution in an open subset Q of 
Ai is a union of orbits in Q of the CR structure of Ai . 
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In other words, if h is a CR distribution in Q and if an orbit in Q intersects 
supp /1, it is entirely contained in supp h. Or, to rephrase this property: the 
orbits of the CR structure propagate the zeros of the CR distributions. 

There is a local converse to Th. 2.2, proved in Baouendi and Rothschild 

[1]: 

Theorem 2.3. Let C be an orbit in Q of the CR structure of M , 0 a point 
of C. If the open neighborhood U o f O in M is sufficiently small, then there 
is a CR distribution u in U whose support is equal to C D U . 

Proof. There is an open neighborhood AT of 0 in £ diffeomorphic to an em­
bedded (but possibly not closed) submanifold of Q, also denoted by A/\ Since 
C is an orbit the restriction of T0,1A4 to J\f is contained in CTA/\ It follows 
that the pullbacks to J\f of d z \ , . . . , dzn, dw\ , . . . , dwd span a vector subbundle 
T'tf of CT*J\f. Among these differentials we may find a basis u>\,..., ur of Tĵ r 
over UnJ \ f — provided the open neighborhood U of 0 in M is suitably small. 
Consider then the linear functional u on C^°(U) defined by 

(u,v) = 
UCüV 

v UJ\ A • • • A ujr A dzi A • • • A dzn. 

(Notice that dim^N = rank T0ylM + rank Tj^ = n + r. The cases r = 0 
or r = n + d are not excluded.) It is evident that supp u C N CiU and it is 
checked at once, if U is sufficiently small, that u is not identically equal to 
zero. Finally, if Lj is the section of T0ilM over U such that LjZk = 6jk(l < J, 
k < n) then 

LjV UJ\ A • • • A ojr A dz\ A • • • A dzn 

= ±d(v uji A • • • A ur A dzi A • • • A ctej-i A ctey+i A • • • A dzn) 

and since supp is compact, Stokes' theorem entails 

(LjUjv) = ± 
TTnAf 

d(v UJI A ' " A w r A dzy A • • • 

• • • A A dzj+i A • • • A d^n) = 0. 

This proves that Lyu = 0, i.e., u is a CR distribution. • 

We say, following Tumanov [1], that M is not minimal at 0 if there is 
an open neighborhood Q of 0 in M in which the orbit C through 0 has 
dimension < dim M . Then supp u (with u as in Th. 2.3) is contained in a 
proper submanifold of 17. It is impossible for (2.3) to hold: any holomorphic 
function h in a wedge W*(V, r)(V C U) such that bv h = u in V would vanish 
in an open and dense subset of V and therefore in the whole wedge Ws(V, T). 
We may restate this result as follows (Baouendi and Rothschild [1]): 
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Theorem 2.4. For wedge extendability in the CR manifold M to hold at 0 
it is necessary that M be minimal at 0 . 

The converse is Tumanov's theorem: 

Theorem 2.5. For wedge extendability in the CR manifold M to hold at 0 
it is sufficient that M be minimal at 0. 

The proof, in Tumanov [1], is based on the construction of analytic disks 
with boundaries on the manifold M . See also Baouendi-Rothschild [2]. 
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