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A Representation Theorem for Solutions of Schrödinger 

Type Equations on Non-compact Riemannian Manifolds 

SHMUEL AGMON 

1. Introduction 

In this paper we describe a representation theorem for solutions of the 

differential equation 

(1.1) Au + \q(x)u = 0 

on certain non-compact real analytic Riemaimiaii manifolds. Here A is the 

Laplace-Beltrami operator, À a complex number and q(x) is a positive real-

analytic function. The theorem is a generalization of a representation theorem 

for solutions of the Helmholtz equation on hyperbolic space proved by Hel-

gason [3; 4] and Minernura [5]. By way of introduction we recall this special 

representation theorem. 

We take for the hyperbolic //.-space the Poincaré model of the unit ball 

B n = {x e R" : |.r| < 1 } with the Riemaimiaii metric 

(1.2; rf*2 = ( 
rf*2 = ( 

2 
rf*2 = ( 

B n is a complete non-compact Riemaimiaii manifold with an ideal boundary 

dBn identified with the sphere S " _ l C R n . The Laplace-Beltrami operator 

on B n , denoted by A / 7 , is given in Euclidean global coordinates by 

(1.3) Ah = 
1 - Ixl2 

2 
) 2 A + ( n - 2 ) 

1 - |x | 2 

2 

n 

i=l 

x ì dì 
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S. AGMON 

where A is the Laplacian on M n , <92 = d/dxj. 
Consider the equation 

(1.4) Ahu + Xu = 0mW\ 

The Helmholtz equation (1.4) has a distinguished class of solutions known as 
the generalized eigenfunctions of — A/ z. Given any s G C and UJ G dW1 there is 
a unique (normalized) generalized eigenfunction denoted by E(x,cu; s), x G 
B n . In Euclidean coordinates it has the explicit form 

(1.5) E(x,u-s) = { l - f ^ y 
\X — uJ\ 

for \x\ < 1, OJ G 5 n _ 1 . The function u(x) = E(x,u;s) is a solution of 
equation (1.4) with A = s(n — 1 — s). The problem arises whether any solution 
u of equation (1.4) can be represented by an integral formula of the form 

u(x) — 
S n - 1 

$((jj)E{x,u\ s)du), 

for s satisfying s(n — 1 — 5 ) = A, where <3> is some generalized function on 
Sn~1. This problem was solved in the affirmative by Helgason [3;4] and by 
Minemura [5]. Their main result can be stated as follows, 

THEOREM 1.1. Let u(x) be a solution of the Helmholtz equation 

(1.6) Ahu + s{n - 1 - s)u = 0 in B n 

where s is some complex number such that s ^ (n — 1 — j)/2 for j = 1, 2 , . . . 
Then there exists a unique hyperfunction on Sn~l such that 

(1.7) u{x) = (QR £(*,.;*)) 

for x G B n . Moreover, the map: u —> (I>u is a Injection of the space of solutions 
of (1.6) on the space of hyp erf unctions on Sn~{. 

In this paper we generalize Theorem 1.1 and show that a similar rep
resentation theorem holds for solutions of equations (1.1) on a general class 
of non-compact Riemannian manifolds of which hyperbolic space is a special 

14 
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case. We use a P.D.E. oriented approach. When restricted to the special situ
ation of Theorem 1.1 our approach yields a new proof of the theorem which is 
not using the special structure of B n as a symmetric space (see also [1]). The 
general set up of our study is as follows. Let A" be a real-analytic compact 
Riemannian manifold with a boundary OX. Let g denote the Riemannian 
metric on X and let Ag denote the corresponding Laplace-Beltrami operator. 
Set 

A = X \ dX. 

Introduce on X a new Riemannian metric /z, conformal with g, defined by 

(1 .8 ) h = p~2g 

where p(x) is a real-analytic function on X such that 

(1.9) p(x) > 0 on A, 

p[x) = 0 and dp ^ 0 on dX. 

Denote by the Laplace-Beltrami operator on Ar in the metric h. It is given 

by 

(1 .10 ) Ah = p2Ag - (n - 2)(>{Vgp) 

where throughout the paper n denotes the dimension of X and where V^p 
denotes the gradient vector field in the metric g. As usual Vgp is identified 
with a first order differential operator given in local coordinates by 

(1.11) W v p = 
i, 7 

(J" 
On 0 
dx.; O.v.j ' 

We denote by |X7

gp(x)\, the norm of the vector Vfy/>(.*:) induced by g. In local 
coordinates 

( 1 . 1 2 ) |V f l p(x) | 2 

i, j 
<l'Ji-r) 

Op dp 
dxi Oxj ' 

We consider solutions of the differential equation 

(1.13) Ahu + \q{x)u = 0 in A' 
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where q(x) is a positive real-analytic function on A" and A is a complex number. 
We shall derive a representation theorem similar to Theorem 1.1 for solutions 
of (1.13). It will involve the generalized eigenfunctions of the operator q~1Atl 

which will be defined in section 2. 

REMARK: We note that the main result of this paper (the representation 
theorem) holds under weaker smoothness assumptions than those imposed 
above. The result holds if one assumes for instance that X , p and q are of class 
C2 and that in addition X , p and q are real analytic in some neighborhood 
of dX. 

In this paper we are going to impose on the function q a boundary con
dition. We shall assume that 

(1.14) q(x) = \Vgp{x)\2 on dX. 

We note that this condition is not necessary for the validity of the main repre
sentation theorem. However assumption (1.14) simplifies considerably many 
details in the proof of the theorem. Observe that equation (1.6) on hyperbolic 
n-space belongs to the class of equations introduced above. We conclude this 
introduction by noting that the representation theorem described in this pa
per for solutions of (1.13) can be shown to hold for solutions of a much wider 
class of equations of the form 

p2 Agu + pBu + Cu = 0 in X 

where B is a real-analytic vector field on A' satisfying some conditions on dX 
and C is a real-analytic function on A". 

The main part of this paper is divided into two sections. In section 2 we 
discuss the Green's function associated with equation (1.13). The asymptotic 
and related real-analyticity properties of the Green's function play a crucial 
role in our study. These are described in Theorem 2.1. Using the theorem 
we define the generalized eigenfunctions which form a distinguished class of 
solutions of equation (1.13) and which are the building blocks in the represen
tation theorem for any solution of that equation. The representation theorem 
is stated and proved in section 3. We note that the proof of the theorem 
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A REPRESENTATION THEOREM 

is composed of the following two main ingredients, (i) Asymptotic and real-
analyticity properties of the Green's function described in Theorem 2.1 . (ii) 
A theorem of Baouendi and Goulaouic [2] on the solvability of the Cauchy 
problem on a characteristic initial hypersurface for certain P.D.E. of Fuchsian 
type. 

2 . ASYMPTOTIC PROPERTIES OF GREEN'S FUNCTIONS AND RELATED RESULTS 

When studying solutions of ( 1 . 1 3 ) it will be convenient to introduce the 
differential operator P on X defined by 

( 2 . 1 ) P = - g - 1 A f t . 

We associate with P the measure dm on X defined by 

( 2 . 2 ) dm := qdph = qp~ndpfJ 

o 

where dph (resp. dpg) is the measure induced by the metric h (resp. g) on X. 
o o 

Considering P as a symmetric operator in Lr(X\dm) with domain CQ°(X) 

it is not difficult to show that P (the closure of P) is a self-adjoint operator 
in L2(X; dm). Furthermore, it can be shown that the spectrum of P has the 
following properties. 

n — 1 
(i) Vess{P) = [ ( — — )2>°°)> n = dimX. 

(ii) Cp(P) consists of a finite number of eigenvalues contained in the interval 

[ o , ( ^ ) 2 ) . 

Next, it will be convenient to replace the parameter A in ( 1 . 1 3 ) by a 
parameter s related by 

( 2 . 3 ) s{n - 1 - s) = A. 

Thus we rewrite equation ( 1 . 1 3 ) in the form 

(2 .4 ) Pu - s(n - 1 - s)u = 0. 
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5. AGMON 

Note that the map: s —» A defined by (2.3) takes the half-plane Res > (n —1)/2 

onto the domain C \ cr e s 5 (P) . We shall denote by £ the set of points {st-} in 

the half-plane ites > (n — l ) /2 such that Si(n — 1 — 6 2 ) is an eigenvalue of 

P. From (ii) above it follows that £ is a finite set of points contained in the 

interval ( 2 i jp ,n - 1]. 

From now on we shall assume that s is some fixed number in the half-

plane Res > (n — l ) /2 such that s £ £. We shall denote by G(x,y;s) the 

Green's function associated with equation (2.4) in X. It is the kernel (with 

respect to the measure dm) of the resolvent operator 

(2.6) G(s) = (P - s{n - 1 - s))-1. 

From the ellipticity of P in X and the real-analyticity of the manifold (X, g) 

and the functions p and g, it follows that G(x, y; s) is real-analytic in y G X 

for x ^ y. This property can be extended in some generalized sense to the 

(ideal) boundary of X. In this connection we introduce the following notation. 

For any two sets X{ C X , ¿ = 1,2, we define 

(X1 x X2)
f = {(xi,x2) : xi e Xi,x2 G X2,xi ^ x2}. 

The following "extension theorem" has a basic role in this paper. 

THEOREM 2.1. Let F(x, y; s) be the real-analytic function on (XxXy defined 

by 

(2.7) F(x, y; s) = p(x)-sp{y)-'G(x, y; s). 

Then F(x, y; s) admits a real-analytic extension from (X x X)' to (X x X)'. 

The proof of Theorem 2.1 is quite long and technical. For reasons of 

brevity we shall not give the proof in this paper. We plan to give the proof 

in another publication. Note that in the special case of equation (1.6) on the 

hyperbolic space B n the Green's function is known explicitly and Theorem 

2.1 can be verified by inspection. 

Now define a family of solutions of equation (2.4) as follows. For any 

UJ G dX and x G X set 

(2.8) E(x,u;s) = lim/>(;</psG'(.r, y-s). 

yex 
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In view of Theorem 2.1 it is clear that E(x, u\ s) is a well defined real-analytic 
function of (x,u>) on XxdX. Furthermore, for a fixed to the function E(x, OJ; S) 

is a solution of equation (2.4) in X. We shall refer to the family E(x, u\ s) (pa
rameterized by LJ G dX) as the generalized eigenfunctions of P with eigenvalue 
s(n — 1 — s). These functions are the building blocks of the general represen
tation theorem (Theorem 3.1). Note that in the special case of equation (1.6) 
on hyperbolic n-space the generalized eigenfunctions defined by (2.8) are (up 
to a multiplicative constant) those defined previously by (1.5). 

We conclude this section by introducing some classes of real-analytic 
functions on dX. Let A be the Laplace-Beltrami operator on dX in the 
Riemannian metric induced by g. For any number d > 0 we denote by Ad(dX) 
the class of C°° functions <p(uj) on dX satisfying the inequalities 

(2.9) | A V M I < C(2j)\d2j for j = 0 , 1 , . . . , 

and all u G dX where C is some constant depending on (p. Ad(dX) is a 
Banach space under the norm 

\\ip\\d = smallest constant C for which (2.9) holds. 

We denote by A(dX) the class of real-analytic functions on dX. It is 
well known that 

Ad(dX) C A{dX) for all d > 0 

and that 

(2.10) A(dX) = lim Ad(dX). 

We consider A(dX) as a topological linear space with the inductive limit 
topology induced by (2.10) and the given topologies on the Banach spaces 
Ad{dX). 

Let A'(dX) be the dual of A{dX). Any member of A'{dX) is called a 
hyperfunction on dX. Thus a hyperfunction on dX is a linear functional $ on 
A(dX) such that for any d > 0 and any <p G Ad{dX) the following inequality 
holds 

(2.11) №,<p)\<cd\\<p\\d 

where Cd is a constant depending only on $ and d. 
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3. The representation theorem. 
We come now to the main result of this paper. 

THEOREM 3 . 1 . Let u{x) be any solution of equation (2.4) on X. Then there 
exists a unique hyp erf unction on dX such that the following representation 
holds 

( 3 . 1 ) u(x) = ($u,E{x,-;s)) 

for x £ X. Moreover the map: u —* §u is a bijection of the space of solutions 
of (2.4) on A'{dX). 

REMARK 1: It can be shown that (3.1) holds with <bu a Schwartz distribution 
on dX if and only if 

( 3 . 2 ) \u{x)\ < Const.p(x) A on X 

for some N > 0. Moreover, this variant of the representation theorem can be 
shown to hold under weaker smoothness assumptions. Namely, it is enough 
to assume that X is a C°° Riemannian manifold and that p and q are C°° 
functions on X. 

REMARK 2: Using Theorem 2.1 and some related estimates one can show that 
E(x,u; s) is a meromorphic function of s in the half-plane Res > (n — l ) /2 
with simple poles contained in £. Furthermore, it can be shown that E(x, u; s) 
admits a meromorphic continuation in s into the whole complex plane. The 
last (deep) result can be used to extend Theorem 3.1 to all complex values of 
the parameter s which are not poles of E(x, u\ s). Thus in general solutions of 
equation (2.4) admit two representations of the form (3.1). One representation 
involves the family of solutions E(x, u\ s) and the other representation involves 
the family E(x, CJ; n — 1 — s). 

The proof of Theorem 3.1 will be based on Theorem 2.1 and on Theorem 
3.2 below which deals with the analytic Cauchy problem for a differential 
equation related to (2.4) with initial data given on the characteristic manifold 
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dX. Before stating the result we introduce the following notation. For any 
e > 0 we denote by Q£ a neighborhood of dX in X defined by 

n£ = {x £ X : 0 < p(x) < e). 

We also set 
X£ = X\n£ = {xeX : p(x) > e}. 

We now state 

THEOREM 3.2. Given (p £ Ad(dX), d > 0, there exists a unique function 
v^(x), defined and real-analytic in Qs for some 8 = 6(d) > 0, (8 depending on 
d but not on if) such that the following holds: 

(i) is a solution in Qs of the differential equation 

(3.3) p~sP(psv) - s(n - 1 - s)v = 0. 

(ii) satisfies the initial condition 

(3.4) v^ — ̂ pon dX. 

Moreover, the map: if —+ is a continuous map from Ad(dX) to Ch(Qs) 
fork = 0 ,1 , . . . 

Theorem 3.2 follows as an easy corollary from a general theorem dealing 
with the initial value problem for Fuchsian type partial differential equations 
proved by Baouendi and Goulaouic ([2]; see Theorem 3 with m = 2, k = 1 and 
h = 0). In this connection note that the two indicial exponents associated 
with equation (2.4) at the boundary are s and n — 1 — s. This implies that 
equation (3.3) can be written in the form 

(3.5) pA9v + Bv + Cv = 0 in Q6 

where B is a real-analytic field on X and C is a real-analytic function on X. 
It is this form of equation (3.3) which allows one to deduce Theorem 3.2 from 
the results of [2]. 

We turn to the 
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PROOF OF THEOREM 3.1: Observe that since E(x,u\s) is a real-analytic 
function in (x, u) on X x dX it is clear that the function u(x) = (Ф, E(x, •; s)) 
is a well defined solution of (2.4) in X for any Ф £ Af(dX). To establish the 

converse we introduce some notation. 

For any (p £ A(dX) we set 

(3.6) w^(x) — psv^(x) 

where v^(x) is the solution of the initial value problem described in Theorem 

3.2. With no loss of generality we shall assume in the following that <p £ 

Ad(dX) for some d > 0 and that v^(x) is defined in Qs(d) f ° r some 6(d) > 0. 

We shall also assume that 6(d) < <5o where ¿ 0 > 0 is chosen sufficiently small 

so that (dp)(x) ф 0 for x £ f^0. It follows form (3.6) and (3.3) that w^x) is 
a well defined solution of (2.4) in int(Q$(</)). 

о 

Let now u(x) be a given solution of equation (2.4) in X. For any (p £ 
Ad(dX) and 0 < e < 6 ( d ) , we set 

(3.7) J*(v?) : = J (w^Duu-uDyw^)dii£

h(x) 

where Dv denotes a derivation in the direction of the outward unit normal 
vector (in the metric h) at the boundary dX£. Here d^Le

h denotes the measure 
on dX£ induced by d ^ ^ . We claim that 1^((р) is independent of s; i.e. 

(3.8) 1?(<р) = I?{<p) for 0 < ex < e2 < 6(d). 

Indeed, we have 

(3.9) w^AkU - uAhWp = 0 in int(fis(d)). 

Integrating (3.9) on the domain X£l \X£2, applying Green's formula, one 
obtains (3.8). 

Next we define a hyperfunction on dX as follows: For any ip £ A(dX) 
we set 

(3.10) (*„,¥>):= Jim Ie

u(ip). 

дх€ 
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That <&u is a well defined linear functional on A(dX) is clear in view of (3.8) 
and the linearity of in (p. That $ w is also continuous on A(dX) one sees 
by noting that for a given d > 0 there exists a 6 = 6(d) > 0 such that for any 
e G (0 ,6 ) 1^ is a well defined continuous linear functional on Ad{dX). This 
observation follows easily from the definition of 1^ and Theorem 3.2. 

Finally we shall show that the hyperfunction $ u defined by (3.10) yields 
the representation (3.1). To this end fix a point y G l and set 

(3.11) il>(u>) = E{y,u;s). 

From (2.8), Theorem 2.1 and Theorem 3.2 it follows that the unique solution 
of equation (3.3) with the initial data ip((j) on dX is given by 

v^(x) = p(x)~sG(x,y,s), 

so that 

(3.12) w^(x) = G(x, y; s) for x G int(Qs) 

(we can take 6 = p(y)). Combining (3.7) to (3.12), taking e sufficiently small, 
we get 

(3.13) < * u , ^ > = TOO 

= J (G(x, y; s)Dyu(x) - u(x)DuG(x, y; s))dp£

h(x) 

dx£ 

= u(y), 
where the last equality follows by application of Green's formula to u and the 
Green's function. This yields formula (3.1) and proves the existence part of 
Theorem 3.1. 

It remains to show that the representation (3.1) is unique. This is an 
easy consequence of the following 

o 

LEMMA 3 . 3 . Given <p e A(dX) there exists a function f £ C$°(X) such that 

(3 .14 ) <p(u>) = J f(x)E(x, u; s)dm(x). 

x 
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Deferring the proof of the lemma we establish the uniqueness of the rep
resentation ( 3 . 1 ) by showing that if $ G A'{dX) satisfies 

( 3 . 1 5 ) ( $ , E(x; •; s)) = 0 for all x G X 

then 

( 3 . 1 5 ' ) ( $ , (p) = 0 for all <p e A(dX), 

o 

Indeed, it follows from ( 3 . 1 5 ) that for any function / G CQ°(X) we have 

(3 .16 ) 0 = J f(x)($,E(xr;s))dm(x) 

X 

= (Ф,У f(x)E(x,-,s)dm(x)), 

x 

where the change of order of "integrations" in ( 3 . 16 ) is easily justified. Com
bining ( 3 . 1 6 ) with Lemma 3.3 we obtain ( 3 . 1 5 ' ) . This establishes uniqueness 
and completes the proof of Theorem 3.1. 

We conclude with the 

PROOF OF LEMMA 3 .3 : As before we shall associate with the given function 
G A(dX) the solution v^(x) of the initial value problem described in The

orem 3.2 . Thus in particular is a real-analytic function defined in some 
Qs, 6 > 0. Next we pick a function ( (x) G C°°(A) such that 

( 3 . 1 7 ) C(*) = 1 f(>r x G C(*) = 0 for x G A \ Q6/2 

and define a function w G C°°(A) by 

( 3 . 1 8 ) w(x) = C(x)p(x)sv^(x) for x G Q6/2 \ dX, 

w(x) = 0 for x G A \ Qs/2-

Set 

( 3 . 1 9 ) f(x) : = ( P - s(n - 1 - s))w(x). 
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Since v<p is a solution of (3.3) in fls it follows from (3.19), (3.18) and (3.17) that 
o 

/ ( x ) = 0 in Q6/3 a n ( i thus / E CQ°(X). We also observe that w E L2(X\ dm) 
(since Res > (n — l ) /2 ) . These remarks and (3.19) imply that 

(3.20) w = G(s)f 

where G(s) denotes the resolvent operator (2.6). Rewriting (3.20) in terms 
of the Green's function (the kernel of G(s)), using (3.17), (3.18) and the 
symmetry of the Green's function, we find that for any y £ Qs/3/dX the 
following formula holds 

(3.21) vM - J f(x)G(x,y;s)p(y)-sdm(x). 

x 

Now fix a point UJ E OX and let y —• u in (3.21). Using (3.4), (2.8) and 
Theorem 2.1 we find that 

(p(u) = lim v^(y) = lim / f(x)G(x,y;s)p(y)-sdm(x) 

X 

= j f(x)E(x,uj',s)dm(x). 

X 

This proves the lemma. 
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