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A Geometric Interpretation 
of Lannes' Functor T. 

E. DROR FARJOUN AND J. SMITH 

1. Introduction. In this note we are concerned with a question raised by [Lannes 2.3]. 
In what follows R will denote a finite field of the form Z/pZ, homology and cohomology 
are always taken with coefficient in R and denoted by H*X etc. For a space X let {RsX}a 
denote the Bousfield-Kan localization tower. We denote by Br the classifying space of 
the underlying abelian group of R. Let P9X denote the s-Postnikov section of X, By a 
"space" we mean a Kan complex or a C.W. complex. 

1.1 Theorem: If H*X < oo for all t > 0, then TH*X S lim, H*{PsR,X)Br, where T is 
Lannes9 functor (see below). If, in addition, X is nilpotent then TH*X = lim 

H*(PsX)Br = UmH^iP.RooX)^ 
The proof of this theorem yields a new proof for Lannes theorem 1.5 below that 

essentially asserts 1.1 for dimension zero and was a the motivation for his question [Lannes 
2.3]. The proof of theorem is based on the following technical proposition: 

1.2 Proposition: Let G —• E —• B be a principal fibration where G is a (topological or 
simplicial) group. Assume that in each dimension the R-cohomology of the mapping spaces 
EB* and BB* is finite. Then if the relation TH*W ^ H*WB* is satisfied by W = E and 
W = B then it is also satisfied by W = G. 

Remark: The finiteness assumption, noted by the referee, is necessary in order to use 
cohomological Eilenberg-Moore spectral sequence. 

Corollary: If W is a nilpotent space of finite type with 7TiW = 0 for i >> 0 or a R-
localization thereof then 

TH*W ^ H*WBr. 

S.M.F. 
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Further, as a direct corollary of 1.1 and 9.3 of [Bousfield] one gets the following 
interesting special case due to Lannes [4]. 

1.3 Corollary. Let HXX < oo for all i > 0 for nilpotent space X of finite type. Assume 
that a given algebraic component TCH*X ofTH*X is finite in all dimensions and vanishes 
in dimension one. Then TCH*X S H*X*T S H^^R^X)** 

where X^r is the corresponding component. 
Another example where the main result (1.1) implies a result on H*map(Br,X) is 

when the latter has a finite homotopy group in each dimension. 

1.4 Corollary: Let X be nilpotent space of finite type with 7TiX finite. Assume that for 
a given f : Br —• X the groups 7r»map(Br, PnX)/„ are finite for all t,n > 0. Then 
H*map(BTiX) = TCH*X where Tc is algebraic component of T that corresponds to /. 

The referee also notes that theorem 1.1 gives a new proof of the following result 
[Lannes, 0.4]. 

1.5 Corollary: If Y is a nilpotent space with Hn(Y,R) finite for all n, then the natural 
map 

[Bt,Y] s [BtyRooY] -* HomK{H*Y,H*Bt) 

is an isomorphism of profinite sets. 
Proof: This follows directly from 1.1 above in light of the algebraic fact [Lannes 3.5] and 
the old result of [Dror] about the tower RSY. 

The authors would like to thank W. Dwyer for his suggestion to consider the tower 
RSX as a starting point for a geometric interpretation of T, and to H. Miller for several 
useful discussions. The authors would also like to thank the referee for his careful reading 
and for correcting a non-fatal error in an earlier version of this paper. The referee notes that 
if one considers the fibration CIX * X for X being the infinite wedge of RP°°/RP2n+2 
over the integers, the formula in 1.2 holds for W = QX but not for X itself. Therefore 
one cannot turn around 1.2 to conclude that either E or B satisfy the property TH*W = 
H*WBt, assuming the other two spaces do. 

2 First examples. 
Let U denote the category of unstable modules over the algebra A of Steenrod reduced 

powers relative to a prime p — char R. Let K denote the category of unstable >?-algebra. 
In [Lannes] a left adjoint T is defined to the functor — <g> H*Br, where the latter is taken 
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either as a functor from U to itself or from K to itself. If one regards an element A 6 K 
as an element of 1/, the value of T does not change. Thus the defining property of T is 
homc{TM,N) = homc{M, N <g> H*BT) where C is either U or K. 

2.1 Three basic properties [Lannes]: (i) T is exact, (ii) T commutes with tensor 
products, (iii) T commutes with direct limits. 

2.2 Motivation: It can be seen from 1.1, 1.2, 1.3 that the construction of T is motivated 
by attempts to describe the cohomology of XBr = map(i?r, X) in terms of H*X, when the 
latter is given as an object in K. Lannes proves the relation between the homotopy class 
[BT,X] and (TH*X)° and X as in 1.3, see [Lannes 7.1.1]. [Miller] proves it for dimX < oo. 

2.3 Example. It is easy to calculate directly from the adjointness relation that if V is a 
finite dimensional vector space over R then 

TH*K(V,n) ^ <g> H*K(V,i) ^ H*map{BT,K(y,n)). 
n>i>0 

Here map(X,Y) denotes the space of maps X —• Y otherwise denoted by 7X. Similar 
calculation holds for a finite products of K(Vi,rii) with dimnVi < oo. However it turns 
out that for homotopically large space one cannot, in general, interpret TH*X as the 
cohomology of map(Br9X), (see 2.5 below). 
2.4. Example. An important class of spaces on which T behaves nicely are finite Postnikov 
pieces of nilpotent spaces. The prime examples of such spaces are K(Z, n) spaces for n > 0. 
Proposition: For anyn > 0 there is an isomorphism TH*K(Z, n) = H*map(Bri K(Z, n)). 

Proof: For p = 2 we show by a direct computation that TH*K(Z, n) ^ H* n X(Z/2Z, 2t). 
For p > 2 the argument is similar. Now since H*K(Z,n) = P{S% \ I admissible with 
ei(I) > 2 and e (I) < n — 1) a map of the algebra H*K(Z, n) over A is given by the image 
of the generator in dimension n. Thus 

homK{K(Z,n),K) = ker/3 : Kn Kn+X 

where K is any object in K and 0 is The Bockstein operation. Now compute: 

89 



DROR-FARJOUN & SMITH 

hornK(TH*K(Z,n),K) S homK(H*K{Z,n),K® H*BT) 

~ ker/3 : K <g> H*Br)n — (if <g> IT*5r)n+i 
= fcer/? : 0 Jf. <g) #r 0 if. <g> if y£r 

*+y=n. i+y=n.+ l 
= © = 

3 even 
|n/2] ^homK{H* n K{Z{2Z,i)9K). *=i 

This together with the adjointness property of T completes the proof. Similarly let Zp 
denotes the p-adic numbers ZP = invlim Z/pKZ. Then [B - K VI 6.4] one has an R 
homology equivalence K(Z,n) —*• K(Zp,n) for all n > 0. There is a pro-isomorphism on 
iE-homology of K(Z,n) (K(Z/pKZ, n))n. Therefore 

H*K(Z,n) = H*K(Zp,n) = lirnkH*K(Z/pKZ,n) 

Moreover it follows by a spectral sequence argument that the tower {map(Br^ K(Z/pKZY k))}* 
is an J? completion tower for the function complex map(Br, K(ZY n)), since all function 
complexes involved here are i2-nilpotent. Again using comparison of spectral sequences 
converging to homology we see that there is an .R-homology (hence i2-cohomology) equiv­
alence map(Bry K(Z,n)) —> map^Br, K(ZP,n)). Therefore the P-cohomology of the last 
range is isomorphic to the limit of the P-cohomologies limhH*map(BT, K(Z/pKZ,n)). 
But since the functor T commutes with direct limits we get the desired example: 

TH*K{Zp,n) « H*map{Br,K(Zp,n)). 

The second example of K(ZPI n) is in reality equivalent to the first using the isomor­
phism of cohomologies H*(BT, Z) = H*(BT, ZP). Since the function complexes hom(BTy K(Z, n)) 
and hom(Br,K(Zpyn)) are built out of these cohomology groups, the map Z —• ZP in­
duces a homotopy equivalence between them. Now since TH*K(Zyn) = TH*K(ZP, n) 
one satisfies 2.4 if and only if the other does. 
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2.5 Example. It is not haxd to check that if V is an infinite dimensional vector space over 
R then 2.3 fails to hold. 

Similarly, let RBT be the free (simplicial) IE-module generated by 2?r, then R has non-
trivial homotopy groups in all dimensions and H°map(BriRBT) is larger then T°H*BT 

which is countable. 
3. Proof of 1.2. The main observation of this note is (1.2) from which (1.1) and (1.3) 
follow. We use the Eilenberg Moore spectral sequence (EMSS) to gain information on H*W 
as an object in Zi, i.e. as an unstable module over the Steenrod algebra A. D. Rector, L. 
Smith, A. Heller and others showed that there is a natural action on the Eilenberg-Moore 
spectral sequence Er(W —> E A B) by A making the differentials ^-linears and such that 
Eoo is a graded .̂ -module associated to a filtration: 

3.1. H*W D • • • 2 F~2 2 F'1 2 F° 2 0 2 0 2 • • • of H*W by X-submodules. We shall 
need the following result of [Dwyer] that gives a necessary and sufficient condition for a 
strong convergences of the spectral sequence: For every n the above filtration of HnW is 
finite iff TTIB operates nilpotently on Hx (fibre) for all t. 

3.2 Observe that if p : E —• B is a fibre map with B not necessarily connected and with 
TTI(J3, *) operates nilpotently on If* (p~ *•(*)), then EMSS of (* —* B <— E) will be identical 
to the one associated to the connected component of * G B and therefore will likewise 
converge strongly to ff*(p_1(*)). This is because the functor TorH+B appearing in E2 
'eliminates' all the components of H*E not hitting the component of * G B in H*B, due 
to the trivial action of off base point elements in H*B on H*(b) = R. 

Claim: If L is any space of then the Eilenberg-Moore spectral sequence for the fibre 
square 

map(L,W) —> map(L,E) 
(3.3) i i u 

map(L>*) —* map(L,B) 
induced by the fibration in (3.1) converges strongly. 

Since map(£, *) = * the above pull back square is, in fact, a fibre map u with a non-
connected space map(2/, 6) as the base and with map(L, G) as the fibre are the component 
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of the null homo topic maps in the base. 
3.4 Lemma: If G —• E —• B is a principal fibration of spaces where G is a group, then 
for any space L the map map(£,2£) —• mapfL,^;^), where the range is the space of maps 
L —• B liftable to E, is a principal fibration with the group being map(Z,, G) and the action 
is pointwise. 

Proof: One checks directly that the pointwise action is a transitive action of map(L, G) 
on the fibres of the above maps. 

It follows from the above that the EMSS of (3.3) converges strongly, and as argued 
above the J£*-terms are the same for the fibrations map(L, E; null homolopic on B) —> 
map(Z,, B\ null homotopic). 

Now we wish to compare the Eilenberg-Moore spectral sequence of (3.4) to the spectral 
sequence gotten by applying T to the Eilenberg-Moore sequence of the given fibration 
W -» E A B. Let Er(u) be the spectral sequence of the fibration u. 

For each r > 1 and s <0 the Z - graded objects E±* ̂ E^* are unstable modules over the 
Steenrod algebra since the first one is, being the cohomology of the space 

BxBx---xBxE (product taken s times). (Notice, however, that if we grade {E™} by 
the total degree p + q, we do not get an unstable module, but rather a stable one - e.g. Sqx 
can operate non-trivially on elements of bi-degree (—$,s), for any s > i > 0.). Therefore, 
we can form a spectral sequence {TEr; Tdr} by applying T to each E~a'*(u) as an object 
in U, to get another object in U namely TE~°'*. 

3.5. Claim. TEr{u) converges to TH*W in the sense that TE^(u) is associated graded 
^-module to the ^-filtration TFi with lim TF% = TH*W. 

To see why notice (2.1) that T is exact so it converts an exact couple to an exact 
couple, and since all the terms in spectral sequence E^*(u) are A- modules in U and all 
derivations .4-maps one can apply the functor T to get another spectral sequence. Since 
T is a left adjoint it commutes with direct limits so that H*W = lim Fx implies what we 
need. 

Let Er(u) be the spectral sequence of the fibre-square (3.4) for L = BT. One can 
construct a comparison map TEr(u) —• Er(u) using the adjointness properties of T: the 
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evaluation map BT X map(Br, X) —* X induces [Lannes] a map 

TH*X -+ H*map(BT, X). 

Therefore there is a natural map of ¿l-modules 

TEr(u) Er(ü). 

Claim: Under the assumption of lemma 1.2, this map is an isomorphism. 

Proof: First notice that if K £ K and M, N 6 U are Hf-modules then T(A ® JB) = 
TA ® TB. This is because A® B is the cokernel of a difference map A® K® B —• A®B 

of the two operation of K. Now T commutes with ® in U so TW, TAf are T^T-modules and 
again by commutation and (right) exactness of T (2.3) we get the tensor product. Next 
notice that since the unstable A-model Tora [M, N) is the s - homology group of a chain 
complex consisting in degree s of M&K&K&...& K & N and since T preserves tensor 
products one has for all s > 0. 

T{Tor'K{M,N)) = Tor*TK(TM,TN). 

By assumption on the space E and by (2.3) we get the desired result. Thus we have an 
isomorphism for r = 2 thus for all r. 

It follows that one has an isomorphism TJS?oo(u) = ôo(tZ). Now we get for each 
submodule in the filtration an isomorphism: 

TF^u) ^ F^ü) 

and taking direct limits, noting again that T commutes with direct limits, we get the 

desired result by comparison of spectral sequence, namely 

TH*W = H*map{Br,W). 

Thus using the bar construction of the EMSS we saw that E['* is an unstable module 

over A. This proves 1.2. 
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4. Proof of 1.1 and 1.3. If Hx X < oo for all i, then n^P^R^X < oo for all s,i > 0 where 
PB is the Postnikov section. This means that the space PnRsX satisfies the conditions 
of (1.2) and we have TH*PSRSX = H*map(Bri PSRSX). But since HiX -> {HiRaX} 
is a pro-isomorphism of towers [Dror] of finite groups, we have II*X = lim II*PtiRliX 
therefore (2.3)(iii) TH*X ^ lim TH*P9RaX = lim H*map(Bri II*P.R^X), This gives 
1.1. 

Now one uses the following lemma of [Bousfield 9.3]. Consider a tower of fibrations of 
pointed i2-nilpotent spaces {Xm} 

4.1. Lemma. If {Hi{Xm,R)} m are pro-trivial for i < 1 and pro-constant for all i, then 
lim Xm = XQO is simply connected and the map H^X^, R) —• {H^X ^ R)} is a pro-
isomorphism for all i. 

We use (4.1) with Xm = PmRmX. 
Notice that if {Hm} is an inverse tower of finite groups with A^ = lim Am a finite 

group then the map A^ —> {Am}m is a pro-isomorphism, because lim1 (—) vanishes on 
tower of finite groups and lim is left exact. Consider the tower Hi{Xfr)c = (Hx(Xfr)* 
where (—)* denotes the iE-dual. By 1.2 this is a tower of finite groups since one considers 
only a component (Xfr)c for which Tc is finite in all dimension. Therefore Ho(XfT)c = R 
the tower H\(Xfr)c is pro-trivial, being pro-isomorphic to (T}H*(X))*. Therefore by 
lemma 4.1 the tower {Hi(X^r)c}s>0 is pro-isomorphic to Hi[lim (XfT)c). 

Since for any tower Ym+i —• YM —* • • • YQ of fibrations taking inverse limit 
commutes with taking function complex map(L, —) the desired conclusion follow from 
lim (Xs)Dr ~ (lim X9)Dr = XBr, since X is assumed to be iE-nilpotent. 

4.2. Proof of 1.4. By [Lannes 7.1.1] we have again H°map{Br,X) ^ T°H*X so that 
as in 1.3. TCH*X is a well defined component corresponding to [/] 6 [JBr, X]. We have 
XfT = lim map(Br,PnX)fn where fn is the obvious composition Br f X —* PnX. 
Since all the relevant homotopy groups are finite, one gets vanishing lim1 - term and 
thus TTiXfr = lim 7Ti(map (BT, PnX)y fn). But, again this means that there is a 
pro-isomorphism nXfT = {7rt-(map(Br,PnX), fn)}n for each i, so that the constant tower 
XfT is pro-equivalent to the tower {PnX)f*}n. Thus, they have the same R - cohomology. 

But the R - cohomology of the latter is pro-isomorphic to TH*X as needed. 
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