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COEXISTENCE, GEOMETRICAL AND

ASYMPTOTICAL PROPERTIES OF

HYPERBOLIC CODIMENSIONAL ONE

ATTRACTORS, APPLICATION TO

DIFFEOMORPHISMS WITH INFINITELY

MANY ZERO-DIMENTIONAL ATTRACTORS .
R.V. Plykin

Dynamical systems with hyperbolic limit sets which admit
an order in the sense of Smale-Newhouse are likely to have
properties of interest concerned with mutual position and
topology of limit sets.

Let M be compact differentiable manifold and £ : M— M
be a diffeomorphism., Let L ( £) L LY ]
be a closure of the set o -limit ['_w -limit] points of
diffeomorphism f,

Diffeomorphisms £ : M—> M will be referred to as A=diffeo-
morphism if the hyperbolic set L ({) =L ({)V LY (¢):
In this case L (€)= L (£) = |7 (%) is known
to be a closure of the set of periodic points and the truly
spectral decomposition L (£) = A, UNL U . .. UAw

into mutually disjunct, invariant, topologic transitive

basic sets 4 A« )3 K= n for which the ratio =
holds good.

On the condition that A; 2 N} is adequate to
the existence of the chain A; = A, - A; | .. . A =
= A J the elements of which are valid
| W S AL

{clos W /\L‘—Xn\/\/ /\°.<+| + ¢ (see [1] . [2] ).
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The maximal (minimal) in the sense of > basic set
is an attractor of the source (sink) kind and has the
property w? (NY =N LW""A =N ] .

Codimensional one basic set is certain to be an attractor

represented in the form of a finite union of connected

subsets which are basic for some iteration f. Zero-dimen-

sional attractors are attractive or repelling periodic

orbits.

Definition. Let us say that X, is a boundary periodic

hyperbolic point of diffeomorphism £ : M-—>M if dim W (xoy=4

[aim wi(xo) =1}

and one of the components of the conrectivity of the set
WS () ~ %0 LWS(’XOI)\’)Lol has no

homoclinic points.

The proof of the following theorem makes use of Smale-
Newhouse's order and is analogous to the proof of theorem
1.7 (6] .

THEOREM 1, Let £ : M — M be a diffeomorphism having a basic
set /\ for which dim \ = dim W¥(x) = dim M - 1,

xeA [ dimA = dim W3(x) = &m M - 1. The set M A

has a finite number of connectivity components, each of
which is region G having the attractor of diffeomorphism f
or some of its iteration.

Every components of the linear connectivity of the
boundary of region G having at its intersection with some
Wi(x), e [Wx) xeN )] a boundary point of
Cantor's discontinuum A N W % (%) La boundary
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point AN W?® (x) if aimA = dim W3(x) = dim M - 1]
is represented in the form of manifold WS (2. )
[;vv°°(1o)j which corresponds to the boundary periodic
point Xqe

If M= 52 the number of connectivity components of SENA
is not less than four., For A-diffeomorphism of S? the
hypothesis according to which the rank of the group n - 1
dimensional éech cogomology of the attractor of codimensional
one is not less than 2% ~ 2. 3,

In the case of M = 52 the set S ~/\ contains not less
than four zero-dimensional attractors of some iteration f.

The mechanism of appearance of zero-dimensional attractors
in the presence of one-dimensional attractor is caused by the
existence of the contracted loop which is not selfinter-
secting and is made up of the section of a stable and a
section of an unstable manifolds of some point of one-dimen-
sional attractor.
Definitiony One-dimensional attractor /\ of A-diffeomor-
phism of the surface is referred to as "loosely arranged" if
there is no contracted loop without selfintersecting, formed
by a section of stable and a section of unstable manifolds
of some point X € A .

The property of "loose arrangement" as one can see, is
not an internal property of the attractors, but the considera-
tion of the inverse images of "loosely arranged" attractors

on the universal covering ascertains the regular behaviour
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on the infinity of the inverse images of stable and unstable
manifolds of the attractor points.

The theorems given below develop and generalize the
statements of L4] ’ [6] ’ [7} and can serve as basis for
further considerations,

Let M be closed surface, It is to be remembered that it
can be obtained from the universal covering ﬁ through
factorization on the group of automorphisms of universal
covering isomorphic 7, (M),

In case M is different from the sphere the straight line
of the metric of the constant curvature on u invariant
with respect to some automorphism of universal covering or
resptrictively deviated from the invariant straight line is
called a rational one; the line which is not rational is
called an irrational one,

Let p: ﬁ ->M be a mapping of the universal covering.
THEOREM2, Given A-diffeomorphism £ : M—>M of the closed
surface having a one-~dimensional attractor . The property
of the "loose arrangement" is equal to the following: for
any x, y € pT' /A the intersection of lines M/ > () 5

v/\\;““ (%) covering W2(px) and W2 (py) accordingly
consists of not more than one point.
THEOREM 3. Let /\ is a "loosely arranged" attractor of A-
diffeomorphism of the closed surface. Then the line ‘1;115 (x)
[’\;n(x)] lying on the universal covering " which is covering
the manifold WS (Px) [w™“ (P2)]  having no
boundary periodic point is restrictively deviated from some
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irrational straight line, If W*° (px) [ W “(pa)]
has a boundary periodic point and the inclusion W °(PXx) c A
[(w*(px) c A] is valid, the line \/T/S(vc) [VT/L‘(:x)J
is included into the asymptotic polygon
formed by the lines W) = VT/'S(%) R w2 ) 5

WS(')L.‘))[_V,\V/L"(’X’) = Wk[’xi)) ’V'I'/L‘-(fx)_)) ) W“(X“\I-J,

which contain the inverse image of boundary periodic points

and which at the same time are restrictively deviated from

irrational straight lines and ﬁ/s(ﬁn) and WS (%is)
[V\A;“(’xlc) and \;lv/'“(’x:uu)]

have a similar asymptotic bahaviour in one of the directions

defined by them,

In case the inclusion W (PxX) C A [W™(pPx) < A]
doesn't take place bnly one of the continuity components of
the set \/T/S(x\ ~2% L W x) ~ x ] is restrictive-
ly deviated from some irrational ray and goes into infinity.
THEOREM 4, Let q : M1 —> M be a two sheeted covering of the
non-oriented surface M by the oriented surface M,. If N is
a "loosely arranged" attractor of A-diffeomorphism £ : M— M,
there will be two "loosely arranged" attractors 7\\‘. ) 7\12, of
covering diffeomorphism £, : M; —> M, or its iteration f,’"
so the %K;:A L=,

THEOREM 5. The number of different "loosely arranged"
attractors of A-diffeomorphism of the surface S, ~ , M =0,1,%
obtained from the oriented surface of n kind by means of
cutting out m disks and patching of the cuttings by Moebius
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strips doesn't exceed
n+
V\/'\'Mm_{[;:l*i)()}

Corollary., A-diffeomorphisms of the surfaces S:" s =0, 1, 2

have no "loosely arranged" attractors.

A-diffeomorphisms of the surfaces S::" s, M =0, 1, 2,

n = 0, 1 have zero-dimensional attractors in their spectral
decompositions,

In conclusion let us state the application of the
structure stable diffeomorphisms of two-dimensional sphere
which have one-dimensional attractors to the diffeomorphisms
having an infinite number of zero-dimentional attractors
introduced by Newhouse [3] =
Definition, Some property of the elements of the set Diﬁ‘,z(M)
is called C¥~typical of £ Diffy(M) (k > 1, © > 1) if there
is a residual subset B of an Ck-neighbourhood M(£) of £ in
Di:tf,zM with this property for each element of B.

THEOREM 6 (A.Juw %irov, D.A. Kamaev, R.V. Plykin)
The set of diffeomorphisms in Diff,:M, dim M 2 3 for which the
property of having infinitely many zero-dimensional attractors
is CE-typical where k > 1, 1s CO-dense in Diff,M.

The complete proof of this theorem is given in the appendix
of the paper which is a part of collective report on the
activity of the seminar on topology and dynamical systems in
Obninsk Branch of Moscow Engineering-Physics Institute in 1976.
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