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Abstract 
Let P be any non-trivial monotone property which applies to the 

class of v-vertex graphs. We show that, if graphs are represented by 

adjacency matrices> any algorithm for deciding if P holds or not of 

a given graph must, in the worst case, take time proportional to v . 

This provides a positive answer to the question raised by Aanderaa and 

Rosenberg in [5]. 

*This work was supported in part by National Science Foundation Grants 
GJ-43318 and DCR-74-07644-A01. 
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I. Introduction 
Trying to relate the computational complexity of graph properties 

to the data-structure chosen for representing graphs is a natural and 
important question. Despite its many mathematical advantages, the 
adjacency matrix representation of graphs does not appear to be a good 
choice, if one is expecting to produce graph algorithms whose running 
time is faster than ft(v ), v being the number of vertices (nodes) 
in the graph. 

It has been conjectured by Aanderaa and Rosenberg in [5] that recog­
nizing if a v-vertex graph has any particular non-trivial monotone 
property from its adjacency matrix requires, in the worst case, on the 
order of v operations. A graph property P is monotone if adding 
edges to a graph where P holds does not make P false; it is non- 
trivial if P holds of the complete graph and does not hold of its 
complement E v - K̂ , the empty graph. 

In this paper, we provide a proof of the validity of Aanderaa-
Rosenberg*s conjecture. 

II. Notations for Graphs and Groups 
Before attempting to establish any result, we need to set up some 

notations and definitions. We shall usually conform to traditional usage, 
as defined by Biggs [2] and Harary [3] for example, although this has 
not always been possible. 

The notation f(v) - fl(g(v)) means g(v) - 0(f(v)), i.e., there exists 
K > 0, for all v, f(v) >^Kg(v); it is the natural inverse of the 
"big-oh" notation. 
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2.1. Graphs 
A v-graph or graph G (finite undirected labelled graph without 

self-loops or multiple edges) is a pair (V(G),E(G)) where V(G) is 
a finite set of vertices, labelled 1 through v • |v(G)|, and 
E(G) CV(G)' 2' is a subset of V(G)'2' - {{i,j}| l£i,j£v, i*j} of the 
symmetric cartesian product V(G)xV(G). Elements of E(G) are edges 
and, if e • {u,v} e E(G), we say that e joins u and v. For 
example, the complete v-graph has v - |V(Kv> | and EOC^) - V(Kv)'2'; 
it is composed of v vertices and ~v(v-l) edges. Its complement, the 
empty v-graph E v • has E( E

y) • 0; the complement G of a graph 
G is the graph (V(G),V(G)'2'-E(G)). 

Two v-graphs and Ĝ  are isomorphic if there exists a permu­
tation o of {!,...,v} such that {a(u),a(v)> e E(G2) if and only 

if {u,v} e E(G^). Graph isomorphism, denoted Ĝ  2. G2* * s a n e (l u* v a~ 
lence relation over the class of v-graphs. An unlabelled graph is an 
equivalence class of graphs under isomorphism. 

Graph Ĝ  is a subgraph of G^t denoted G- <_ G-, if there exists 
Gl - Gl such that V ( G p " V< G2 ) and E< Gp £ B(G2). Relation £ is 
a partial ordering of v-graphs; it has a minimal element and a 
maximal element K . 

v 
The adjacency matrix M(G) - [m ] of a v-graph G is a symmetric 

v * v boolean matrix such that m. . • 1 if and only if {i,j} G E(G). 
Two v-graphs Ĝ  and G^ are isomorphic Ĝ  2 G2 a n d on^Y it there 
exists a permutation matrix P such that M(G^) • P^Mte^P. 

Consider G 1 a v̂ -graph and G^ a v2-graph. Their sum G ! + G
2 

is the (v1 +v2)-graph G formed by placing a v̂ -graph G^ and a 
v2-graph G2 side by side, i.e., {i,j} e E(G) if and only if 
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(1 £ i,j £ v± and U,j} e E(G^)) or (v± < i,j £ v 1 + v 2 and 
{i-v^j-v^} e E(G2>). The product G^xG^ is obtained from the sum 
Ĝ  + G 2 by joining every vertex in Ĝ  to every vertex in G2, i.e., 
E(G 1xG 2) - E(G1 + G2)U{{i,j}| 1£ i£v x < j £ Vj+v^. Clearly, 
G- + G0 < G- X G o and G, +G 0 - G. xg0; also, E +E - E _^ while 1 2 — 1 2 1 2 1 2 ' * n m n+m 
K x K - K . . We denote by K • E x E the complete (n,up-bipartite n m n+m J n,m n m c * c  

graph. A graph G is bipartite if and only if G £ K for some 
n ,m 

n, m ̂  1. 

2.2. Groups 
In order to minimize confusion, we use Greek letters for groups and 

permutations. If T is a permutation group on {l,...,d}, we say that 
d is the degree of T and we denote by |T| the order of T. If 
and I*2 are two permutation groups of degree d, *\ £ T 2 means that 
T 1 is a subgroup of T^. We use < for proper inclusion, and denote 
by the symmetric group of degree d and order • d!. 

Let and be two permutation groups of degrees d̂  and d2 

respectively. The sum T^ + Î  is the group of degree d
1
 + d

2 and 
order | r i + r 2 | - l ^ l ^ l ^ l resulting from the action 

roy(i) if l < i < d fa e r 
( a . + a J d ) - \ 1 1 with{ 1 

1 L Ia 2(i-d^ + dx if d x< i£d +d2 L a 2 e r 2 

of T1 and T 2 on {l,...,d1+d2>. The product is the group 
of degree x d 2 and order | \ • | I*21 resulting from the action 

(a1xa2)<i,j> - <a1(i),o2(j)> with l £ i £ d r l£j£d 2, 
o 1 e r i and c?2 e 

of 1̂  and T 2 on {l,...,d1}x {!,,..fd2>. 
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I2I 
If r is a permutation group on {l,...,d}, the pseudo-square T1 1 

1 12| is the permutation group of degree -̂ d(d-l) and order | P ' | - | r | 

resulting from the action a({i,j}) - {a(i),a(j)} for 1 < i,j £ d 
and a e T of T over {l,...,d}'2'. If |r| > 1, then r'2' < T x r. 

A permutation group T on {l,...,d} is transitive if the orbit 
i.T - {j| l£j<d, aaeT: j-a(i)} of any i e {lt...9d}- in F has 

|2| 
size | i . r | - d, i.e., i.T « {l,...,d}. For example, £^ and 1 

are both transitive. If T, 1^ and are transitive, r ^ x r2 i s 

l2l 
also transitive but T1 1 is not transitive in general. 

A" automorphism of a graph 6 is an isomorphism of G with itself. 
The set of automorphisms of a v-graph G is a permutation group 
T(G) - {aeEj {i,j}eE(G) iff {a(i),a(j)} e E(G)} called the automorphism 
group or the point group of G. The automorphisms of G also induce a 

|2| 
permutation group r(G)1 1 on the edges (lines) of G, called the line  
group of G. For example T(K ) « T(E ) » Z and T(K )' 2' - T(E )' 2' - z'2'; 

V V V V V V ' 
T(K ) - Z +Z and T(K ) I 2 ' - Z x Z if n * m . m,n m n m,n m n 

In general F(G) » T(G). 

2.3. Symmetric Graphs 
Graph G is point-symmetric (respectively line-symmetric) if T(G) 

l2l 
(respectively T(G)1 ') is transitive. If G is both line and point 
symmetric, we say that graph G is symmetric. For example, E v > K v and 
K are symmetric. If n m, K is line symmetric but not point v,v n,m 
symmetric, while (K̂  + K^) x (Kn + K n) is point symmetric but not line 

symmetric for n > 1. If G is symmetric, G + G is also symmetric; 
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if G is point symmetric, so are G, G + G and G*G. 
We now define a family of symmetric graphs which will be useful 

later on. Let v • 2 P, where p is a non-negative integer. 

Definition Dl: For each 0 £ i £ ps the graphs are defined by: 

(i) lP = K with v = P; p v 
(ii) B1 = B1 -+B% - for^ 0 < i < p. p p-1 p-1 ~ 

For example, BQ • • | | » B 2 « • •, etc. In general, B* 

consists of 2 p~ i copies of K .. It is easy to establish that these 
2 1 

graphs have the following properties: 

Lemma 1: The family {B^\ 0 <_i £p} of graphs defined by Dl has 

the properties: 

(a) E = B° and K » lP with v = P; 

(b) B* < B^1 for 0 <i < p; 

(c) Bp is symmetric; 

(d) Bi+1 < Bi , xB i
 7 for 0 < i < p. 

p — p-1 p-1 — 

III. The Argument Complexity of Boolean Functions 
•̂1« Monotone Non-trivial Properties 

Let {0,l}d represent the set of all (boolean) d-tuples over {0,1}. 
For any two elements x - <x̂ ,...,x̂ > and y » <y^»«»-fy(j> of {0,1}^, 
we write x £ y whenever x^ £ y^ for all 1 £ 1 £ d. For example, a 
v-graph G can be represented by a boolean vector g e {0,l}d with 
d - -|v(v-l), where g is the upper non-diagonal part of the adjacency 
matrix M(G) of G. If another v-graph G1 is represented in a 
similar fashion g1, then G ̂  G' if and only if g - agf for some 
a e E| 2'; similarly, G £ G* if and only if g £ erg1 for some a e lj 2 L 
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Consider a boolean function (property) P: {0,l}d + {0,1} mapping 

the set of boolean d-tuples into {0,1}• If x £ y implies 

P(x) £ P(y) for all x, y e {0,l}d, we say that P is monotone, We 

denote by M ¿ - {P: {0,l}
d {0,1} | P monotone, P(0) =0, P(l) =1} the 

class of monotone non-trivial properties. "Property" will now mean 

"monotone non-trivial boolean property". 

We say that property P e with d •» -|v(v-l) is "invariant under 

graph isomorphism", or simply that "P is a v-graph property" if, for 

any g e {0,1} and o e Z j 1, P(g) = P(a(g)). This boolean vector 

g e {0,l}d can be regarded as the upper non-diagonal part of the adja­

cency matrix M(G) of some v-graph G. We write P(G) rather than 

P(g) or P(M(G)); this notation however means that graph G is repre­

sented as a boolean vector of -|v(v-l) entries. The class of v-graph 

properties is denoted by P̂  - {PeM¿| d--|v(v-l), P is a v-graph 

property}. 

To any property P e M̂ , we can associate a permutation group 

T(P) - {oeld\ Vxe{0,l}d: P(x) = P(a(x))} which is the maximal group of 

permutation of the argument positions leaving P invariant. For 

example, P is a v-graph property if it is invariant under graph-isomor­

phism, i.e., E| 2' £ T(P). 

Similarly, we say that P is an (m,n)-bipartite property if 

I^xE^ £ T(P); the class of (m,n)-bipartite properties is denoted by 

P - { P e M l E x E < r(P)}. 
m,n mxn1 m n — 

3.2. Algorithms and Complexity of Properties 

An algorithm for evaluating P(x^,. •. ,x̂ ) with P e must 

examine some of the individual arguments x^, since P is non-constant. 
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On any reasonable model of machine, the number of arguments which need 
to be examined determines a lower bound on the execution time of the 
algorithm. In order to formalize this idea, we define a decision-tree 
T for property P to be a binary tree whose internal nodes specify 
arguments to be tested and external nodes are marked according to the 
appropriate value of P. 

For example, if P is the 3-graph property, P(G) = "3-graph G 
is connected", the following is a decision tree for P, where {i,j} 
in an internal node means the algorithm is to test the entry m . of 

If J 
M(G). 

X u , 2 > l 

({1,3}/ \{2,3}) 

PEO ({2,3}) Gl> 3>) P E 1 

-0 / V-1 -0 / \-1 
PEO P=l PEO PEI 

Figure 1 

In general, we denote by c(T,x) the number of tests made in deter­
mining P(x) according to the decision tree T. For example, if graphs 

and G 2 are given respectively by the adjacency matrices 
[0 1 l) (O 1 o' 

M(G-) - 1 0 1 and M(G9) - 10 0, then c(T,Gj - 2 and c(T,Gj - 3. 
1 [l 1 oj L [o 0 oj 1 z 

The maximum number of tests made, max c(T,x), or, equivalently 
xe {0,l}d 

the maximum depth of the tree representation of T will be our measure 
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of the cost of a particular decision tree T. The argument complexity 
C(P) of property P will be the cost of the cheapest decision tree T 
for P: 

Definition D2: The argument oomplexity C(P) of property P is 

defined by: 

C(P) » min max ic(T,x)} . 
T a decision- x e {0,1}" 
tree for P 

As mentioned earlier, the argument complexity of property P is a 
lower bound on the time complexity of P. If E CHI. is a class of 

— d 
properties, the complexity C(E) - min{C(P)} is the minimum complexity 
of properties in the class. We are interested in graphs and bipartite 
properties: 

Definition D3: We denote by F(v) and F(n,m) respectively the 

complexity of the classes of v-graph and (n,m)-bipartite properties, 

i.e., F(v) = min {C(P)} and F(n,m) = min {C(P)}. 
PeP, PeP 

V n,m 

In general, if a class of functions is defined by an invariance 
permutation group, 

Definition D4: The complexity C(T) of a permutation group is the 

least complexity 

C(T) = min iC(P)} of properties P left invariant by V . 
(PeMd| r<IYP;} 

Using this notation gives F(v) - C(Z' ') and F(n,m) - C(£ x£ ). v m n 
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It follows directly from (D4) that < ? 2 and degd^) - deg(r2) 
implies C(r^) £ C(F2). It is an easy exercise to show for example that 
C(Zd) - d. 

In [4], Rivest and Vulllemin have shown that: 

Theorem 1: If the permutation group T is transitive and has degree 

d = qa a prime power, then C(T) = d. 

This result has no direct implication as to the complexity of graph 
properties since the degree ^vCv-l) of E^ 1 is never a prime power 
unless v * 2 or 3. For bipartite properties however, we obtain 

Gt 6 PC lQ 
»4 ) " q for any prime q and a, B e I I as a corollary. The 

rest of the paper describes a way to embed some forms of bipartite properties 
2 

into graph properties, so as to show F(v) <> Kv for some constant K. 

IV. Proof of the Main Theorem 
4.1. Embedding Technique 

The general idea is to extract a subset of the entries in the adja­
cency matrix, and "give away1' the other entries. We must keep enough 
symmetry into the problem so that E^ 1 acts transitively on the chosen 
subset and we can apply Theorem 1 in order to get F(v) >_ Kv • More 
precisely, we use: 

Lemma 2: Let P e P y be a v-graph property, Gj and G^ a v^ 

and vg-graph respectively, with vj'hv2 " v' *f P(G^-fG^) - 0 and 
P(G1 x G2) * 1, then C(P) > C(T(G2) x T(G^)). 

Proof: Let E Q denote those edges in G 1 x G 2 but not in Ĝ  + G2t 
i.e. E is the set of edges joining vertices in Ĝ  with vertices in G2, 
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and is a subset of E(K ): 
V V 2 

E Q = {{i,j}| l<i<v 1< j < v1+v2 where v± - |, v 2 « |v(G2>|} . 

Consider the function Pv, a restriction of P, mapping subsets S of 
Eg into {0,1} defined by: 

P»(S) - P(G) , with G- (VCG^^.ECG^^US) • 

By hypothesis, Pf is a nontrivial, monotone function of S, since 
E ( G 1 + G 2 ) U E 0 * E ^ G

1
X G 2 ) * By the definition of P' it follows that 

C(Pf) < C(P), since any decision tree for P can also be used for Pf 

(Pv is just P on a restricted domain). 
It remains to show that C(P') > C(r(G1> *r(G2)) by showing 

r(P') > TiG^) xT(G2). Now P is left invariant by T(P) > E| 2', thus 
l2l V 

also by the subgroup P of E^ 1 which fixes ECGj+G^. But 
r1 > (r(Gx) + T(G2))'21 (acting on (V(G±) UV(G2>)'2'), which contains 
the subgroup r(G1)xr(62) acting on E Q. • 

In order to apply Theorem 1, we need that T(G^) xT(G2) be tran­
sitive and vi* v2 be a prime power. As noticed earlier, it is suffi­
cient, in order for T(G1> *r(G2) to be transitive, that T(G1> and 
T(G2) be both transitive, i.e., that Ĝ  and G2 be point symmetric. 
For the requirement v^* v2 is a prime power, we first consider v-graphs 
where v is a power of 2. 

4.2. Graphs of Size 2 P 

Using Lemma 2, it is now easy to prove 

Lemma 2: If v =* sPs p > 3 , then F(v) > . 
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Proof: Consider the graphs B* for 0 £ i £ p defined by (Dl). 
Any graph property P e P must be such that 0 £ i £ j implies 
P(B^) = 0 and j < i £ p implies P(B*) = 1 for some j such that 
0 £ J < P (this follows from mono tonicity of P and Lemma 1, (a) and 
(b)). In particular, P(BJ) = P(BJ .+B j -) = 0 and P(B:I+1) =1. 

P P-1 P-l P 
Since we proved in Lemma 1, (d) that B**+1 < B̂  . x and P is 

P — P-1 P-1 
monotone, p( Bp. 1

x Bp. 1) 5 !• Applying Lemma 2 then yields 
C(P) > C(r(BJ J xT(BJ .)). As noticed in Lemma 1, (c), graph BJ . — p-1 p-l p-l 
is symmetric, therefore T(B^1) x r(B^) is transitive. Since the 
degree of this group is 2P~* x 2**""* - ̂ jv2 which is a prime power, 
Theorem 1 gives us C(P) >̂  —v . This bound is valid for any P e P̂ , 
thus F(v) > |v2. • 

This proves F(v) j> Kv2 for v - 2 P a power of two. The con­
struction can be adapted (at some cost) to powers of 3, and prime 
powers in general. What to do with numbers v which are not prime 
powers is not clear however. Instead of following this approach, we 
shall prove that F(v) is more or less increasing with v, thus 

obtaining F(v) j> K'v for all v, the constant K' being lower than 
the one (K--̂ ) which applies for v - 2 P a power of two. 

4.3. General Case 
Proving directly that F(v) >̂  F(v-l) is not easy,̂  no matter how 

intuitively obvious this appears to be. We prove the following weaker 
result, which will be sufficient for our purposes: 
As a matter of fact, this question is unresolved as far as the authors 
are concerned. This might not be much simpler than proving 
F(v) - ~v(v-l). 
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Lemma 4: For all v e IN, 

F(v) >_min(F(v-l),22K~2) 

where 2? < v < . 

Proof: For an arbitrary property P e one of three cases holds: 
(i) P O ^ + K^j) - 1, 

(ii) P O ^ X B ^ J ) - 0, or 

(ill) neither of the above. 
Cases (i) and (ii) imply that F(v) >̂  F(v-l) directly, since we may 
induce a function Pv e from P by suitably restricting the domain: 
P'(G) - P Q ^ + G) in case (i) and P'(G) - P(K̂  x G) in case (ii). In 
either case Pv is a monotone nontrivial graph property. 

In case (ill), using u to denote and r to denote v-2u, 
we have 

P ( ( K u X K r ) + V " 0 s i n c e P ( K 1 + Kv-1 ) " 0 

and ((K u*K r)+E u) i ^ + V-l 5 and 
P((Kr + Eu) xR u) - 0 since P ^ ^ E ^ ) - 1 

and (« r + E u)xK u) I ^ X E ^ . 

The function Pv defined as P restricted to those edges between 
and satisfies all the requirements of Theorem 1: We have just shown 
that it is nontrivial, it is monotone since it is a restriction of the 
monotone function P, and it is invariant under the action of Z x £ 
acting on the vertices of and E^, a transitive group. Since 
C(P) > C(P') and P' is exhaustive, this proves the lemma. • 
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(K x K ) + E u r u (K + E ) x K r u u 

Figure 2 

Combining lemmas 3 and 4 yields directly: 

Theorem 4: If P is a nontrivial monotone graph property of 

v-graphs, then 

C(P) > v2/16 . 

K K Proof: If v - 2 + r with 0 <_ r < 2 , then lemmas 3 and 4 give 
C(P) > 22K~2 > v2/16. • 

Of course, this result also applies to other classes of graphs, 
directed, or multi-edges. It can be used directly as a lower bound, or 
the construction can be adapted so as to improve the constant. 

V. Conclusion 
The tantalizing remaining question is the exact value of F(v). It 

is widely conjectured that F(v) - -|v(v-l) and this has been proved in 
[4] for v = 1,2,4,5,7,11,13. This is part of a more general problem 
discussed in [4]: 1B It true that any transitive permutation group T 
of degree d has complexity C(D • d? The results of the paper indi­
cate that it might be easier to prove the existence of a constant K 
such that any transitive T of degree d has C(D >̂  Kd. 
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The monotonicity requirement is also discussed in [4] and, in fact, 
there is nothing to stop us from believing that C(P) > Kv for any 
(monotone or non-monotone) v-graph property, provided P(Ev) ̂  p ( K

y ) * 

+ 
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