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THE FOURIER TRANSFORM ON SYMMETRIC SPACES 

BY 

Sigurdur HELGASON* 

1. Introduction 

In his paper "Sur la détermination d'un système orthogonal complet dans 
un espace de Riemann symétrique clos" (Rend. Cire. Mat. Palermo, 5 3 
(1929) , 2 1 7 - 2 5 2 ) , Élie CARTAN modified and extended the Peter-Weyl the­
orem [32] to compact symmetric spaces. This incorporated for example the 
classical theory of spherical harmonics and thereby this latter theory merged 
with the representation theory of the orthogonal group. CARTAN'S paper is 
therefore a very important link in the chain which reaches from classical 
Fourier series to harmonic analysis on Lie groups and their homogeneous 
spaces. 

In my lecture I am going to discuss some further developments in Fourier 
analysis on symmetric spaces. This will be in three parts : 

(i) Noncompact Riemannian symmetric spaces. 

(ii) Compact Riemannian symmetric spaces (refinements of CARTAN'S 
theory, suggested by (i)). 

(iii) Noncompact, non-Riemannian symmetric spaces (including non-

compact semisimple Lie groups). 

We shall use the standard notation D { X ) = C 8 c (X) , S{X) = C°°{X), X 

being any manifold. 

* Supported in part by NSF grant MCS-8202127 
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The Peter-Weyl theorem for a compact Lie group U can be stated 

( i . i ) / = 

s eü 

d(6)f * xs , feD(U). 

Here U is the set of equivalence classes of irreducible representations of U, 
d[8) and xs denote the degree and character of 5 , respectively, and * denotes 
convolution. Let V$ be a representation space of 6 with inner product < , > . 
Then ( 1 . 1 ) implies 

( 1 . 2 ) L2{U) = 

seu 
Mu), 

where 

MU)= {/(u) = Tr(«(u)C) : C € Horn (Vi, Vfi)} 

and this space is irreducible under the action 

/ ( * ) f{u1 1uu2) 

of ?7 X U. For a homogeneous space U/K ( 1 . 2 ) takes the form 

1.3 L2(Í7/K) = 

L2{U) 

Hu/K), 

where 
UK = {AE U |6(K) has a fixed vector ^ 0} 

and 
L2{U) =K) = {f(uK) = TT(6(U)C) :C eKom{V6,VsK)} 

V6K denoting the space of vectors in Vs fixed under S(K). In his paper [4], 
CARTAN investigated the case when U/K is symmetric. In this case, V6K is 
spanned by one vector, say v0 (of norm 1 ) , and Ms{U/K) contains a unique 
function <p$ such that 

(1 .4 ) cp E C{K\U/K), <ps{e) = 1; 

in fact the function is the spherical function 

( 1 . 5 ) (p6{uK) =< 6(u)v0,v0 > . 

CARTAN'S result can then be stated as follows. 

T H E O R E M 1 . 1 . — For the symmetric space U/K 

(1.6) F-
L2{U) = 

d(6)f *<ps, feD{U/K). 
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2. Spherical Functions 

The noncompact analog of (1.5) was investigated by GELFAND-NAIMARK 
[14] and in [12], GELFAND made the important observation that if G/K is a 

symmetric space, compact or not, the convolution algebra C =— CC(K\G/K) 

of bi-invariant functions under K is commutative. The continuous homomor-

phisms of C= into C are the maps 

(2.1) F 
d 

F{g)<p{g) dg = F(<P), F e Ce{K\G/K), 

where <p is characterized by the functional equation 

[2.2) 

K 
ip\xky) dk - cpp(x)cp(y). 

These functions <p are called spherical functions because they generalize the 
function <p$ in (1.5). The function F (on the set of spherical functions) is 
called the spherical transform of F. By general Banach algebra theory, sharp­
ened suitably for the case at hand (GODEMENT [16]) one has a decomposition 

(2.3) *\9 =cp 
d 

F{f)f{g) dfi{cp), F G D(K\G/K), 

where fi is fixed measure on the space $ of positive definite spherical 

functions tp on G. If / £ D(GlK) we consider the if-biinvariant function 

F(h) = 
K 

f(gkh) dk 

and deduce from (2.3) 

(2.4) f(g) = 
= 

;/ * <p)(g) dfi{p), f e D{G/K). 

The space D * <p can be given a positive definite inner product by 

(/i * /2 f (g) = 
GxG 

v(g-lh)h (g)f2{h) dgdh 

sdds(= (/1 * /2)1,2 (G) = ( / l j / 2 * <p)L2(G))-

Denoting its completion by ^ we have the direct integral decomposition 

(2.5) L2{G/K) = 
d 

Hp dß{<p), l l / f = 
d 

\\f*<p\\2diil<p), 
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and the natural representation of G on Hcp is irreducible. 

Now assume 

G : connected, noncompact semisimple Lie group with finite center, 

K : maximal compact subgroup. 

Here HARISH-CHANDRA ([17] , [18]) put ( 2 .3 ) and ( 2 .4 ) into a more explicit 
form by relating it to the structure of G. Consider the Iwasawa decomposition 

(2 .6) 
G = NAK, 
g = nexp A(g)k, 

9 — H + QL + K 

p(H) = ( l / 2 ) T r ( a d # | n ) 

Then the spherical functions and the decomposition ( 2 .4 ) can be stated in a 
more explicit form. 

THEOREM 2 . 1 . — The spherical functions are given by the integrals 

L2{U) = 
K 

L2{U)L2{U) =vL2{U) = X e a* 

Moreover, the decomposition ( 2 .4 ) can be written 

( 2 . 7 ) f(g) = 
a* 

( / * ^ ) ( < 7 ) | c ( A ) | ~2 dX 

where dX is a suitably normalized Euclidean measure on a* and 

( 2 . 8 ) c(A) = lim 
#-•+00 

J-i\+p)(H\ x L2{U) = 

Formula ( 2 .7 ) is the noncompact analog of the expansion in ( 1 . 6 ) . Also the 
function c(A) can be expressed explicitly in terms of the structure of G as 
shown by GINDIKIN-KARPELEVIC on the basis of work by HARISH-CHANDRA 
and B H A N U - M U R T H Y . 
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3. The Fourier Transform on G/K 

The direct integral decomposition (2 .7 ) of L2(G/K) that was completed 
by HARISH-CHANDRA about 2 0 years ago is very explicit. Nevertheless, if 
we compare with L2(Rn) we see that something seems missing because the 
theory above does not involve any Fourier transform concept for general 
functions / E D(G/K). (The spherical transform F only applies for F bi-
invariant under K.) The following definition of such a Fourier transform was 
proposed in [19]. 

Let X — G/K, B = K/M where M is the centralizer of A in K. For 
x = gK, b = kM put 

'3.1) A(x,b) = A{gK, kM) <wL2{U) = 

Given a function / on X its Fourier transform is defined by 

(3 .2 ) 7(A,6) = 
x 

f(x)e(-tX+p)Wx>b»dx 

for all A E a*, b E B for which the integral converges. Here dx is the 
volume element on X. If / is if-invariant, i.e., f(k • x) = / ( x ) and we 
put F(g) = f(gK), then / ( A , 6) = F(v9_A) for all 6; thus the definition 
generalizes the spherical transform. 

However, there are other ways of motivating the definition ( 3 . 2 ) . 
In order to invert the Fourier transform ( 3 .2 ) we have to prove a functional 

equation for the spherical function. 

LEMMA 3 . 1 . xw Let g,h eG. Then 

3 . 3 ) L2{U) =L2{U) = 
K 

(-i\+p)(A{kg)] )e(i\+p)(A(kh))dk 

With this lemma formula (2 .7 ) gives the inversion formula for the Fourier 
transform as follows. 

T H E O R E M 3 . 2 . xc If feDiG/K) then 

L2{U) = 
a* B 

L2{U) =L2{U) = (A(x,b)) |c(A)|~2 d\db 

db being a fixed suitably normalized invariant measure on B. 

Formula ( 3 . 4 ) is analogous to the inversion formula for the Fourier trans­
form on Rn when this is written in polar coordinate form : 

F(x) = 
SN-1 

( 
'OO 

0 
L2{U) = ^ ( A a ; ) e t A ^ A n - 1 ^ A ) du. 
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It is therefore natural to try to find analogs for the transform f{x) —» / ( A , 6) 
of classical theorems in Fourier analysis on Rn and then apply these to the 
study of differential equations on X. The analog of the classical Paley-Wiener 
theorem is such a result ([21]). 

T H E O R E M 3 . 3 . — The Fourier transform f(x) —* / ( A , b) is a bisection 
of D(X) onto the space of functions <p G C°°(a* X B) satisfying 

(i) A —» (p(\,b) is an entire function on at of exponential type uniform in 
beB. 

(ii) jB <£>(A, b)e(lX+p)(A(x'b)db is Weyl group invariant as a function of X. 

The range L2(X)~ can also be described ([20]) and so can the range S(X)~ 
where S(X) C L2(X) is the Schwartz subspace ([7], [8]). 

T H E O R E M 3.3 can be used to prove the following result ([21]). 

C O R O L L A R Y 3 . 4 . — Let D ^ 0 be a differential operator onX, invariant 
under G. Then DC°°(X) = C°°(X). 

In other words, the differential equation Du = f has a solution u for each 
feC°°(x). 

In T H E O R E M 3.3 the range D(X)~ is not topologized intrinsically. In 
order to get a topological statement it is better to consider the S-ubspace 
Ds[X) C D(X) of If-finite functions of a fixed type 6 E K. It is then possible 
to characterize and topologize the range Ds(X)~ explicitly and to prove that 
the Fourier transform connecting Ds{X) and De{X)~ is a homeomorphism. 
One can then draw the following consequence ([23]). 

C O R O L L A R Y 3 . 5 . — The K-finite joint eigenj"unctions of the G-invar­
iant differential operators on X are precisely the integrals 

/ ( * ) = 
ds 

(i\+p)(A(x,b)) F{b) db, 

where F is a K-finite function on B. 

A more general result, dropping the if-finiteness condition on / and 
replacing F(b) db by a hyperfunction on B, was given in [20], [22] for X = H2 
(the hyperbolic plane) and in [24] for general X , by powerful new methods. 
A different, representation-theoretic approach, involving COROLLARY 3.5, 
and yielding other results as well, has been outlined by SCHMID (see these 
proceedings). 
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4. Compact Symmetric Spaces 

Since the inversion formula (3.4) refines the decomposition (2.7) by intro­
ducing a genuine Fourier transform one can ask whether a similar refinement 
of the compact case (1.6) is possible. This was done by SHERMAN [38]. Para­
doxically however, the compact case leads to some convergence difficulties, 
which have not been fully resolved except for the rank one case. 

Consider again the compact symmetric space S = U/K and now we 
assume U simply connected and K connected. We can assume U/K and 
G/K dual symmetric spaces so that we have the orthogonal decompositions 
with respect to the Killing form ( , ) of gc = w c , 

(4.1) 0 = « + P = k + a + q, 
( 4 . 2 ) u — k + ip — k + ta + iq . 

Let E be the set of roots of g with respect to a and E+ the set of positive 
roots corresponding to the subalgebra n in (2.6). Let 

(4.3; i = {fi G a* = 
(a, a 
(a, a 

(a, a for all a e E + } . 

Given fi G A there exists a unique irreducible finite-dimensional repre-
sentaion 7rM of U which has a if-fixed vector and whose highest weight has 
restriction to a given by fi. The representation space Vµ = Vrµ can be taken 
as the subspace L2(S) * <p$ C L2(S) if 8 and 7rM are contragredient. We put 
d{ii) — d^TTfj,). Let us now determine the highest weight vector eM of rµ as a 
function of S. We have 

G = NAK, 

g = nexp^4(#)fc, 

9 — Ik + QL + k, 

yP = g° =nc + a c + fcC, 

and it is convenient to assume G contained in G c , the simply connected Lie 
group with Lie algebra gc. The mapping 

( 4 . 4 ) (X,H,T) exp Xexp H exp T 

is a holomorphic diffeormorphism of a neighborhhod of O in n° + a c + fcc = 
uc onto a neighborhood LTp of e in C/c = G c . We can then as in [6], [40] 
consider the map 

( 4 . 5 ) exp X exp H exp T H 

as a well-denned holomorphic map of U„ into a . also denoted A. We take 
^ O as the diffeomorphic image (under exp) of a ball -B(O) C n c . Then (a, a 
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is invariant under the maps u —> kuk 1 and so is the set Uo = Uco D U. 

Viewing 7TM as a representation of Gc we find 

(4 .6 ] e^{uK) - e-M(A(u))5 u G U0. 

We put S0 = {uK : u G ?70} and define the function /M by 

( 4 . 7 ) L2{U) =L2{U) = e(/x + 2p)(A(u)) fX G U0. 

L E M M A 4 . 1 . — For uK, s G S0 and fi E A. we have 

(4.8) 
K 

L2{U) =L2{U) = [kuK) dk — (ps lu-Lé). 

Proof. — Put A = — i[fi + p) so \i = i\ — p. Then the lemma follows from 

(3.3) by analytic continuation [38]. 

T H E O R E M 4 . 2 . — For f e D[S0) define the Fourier transform f on 

A x KM by 

(4.91 f(fi,kM) = 

s 
/ ( * ) / u ( f c - 1 « ) d*. 

Then 

(4.10) / ( • ) = 
cv 

L2{U) 

/C/M 
/( /x, kM)etl(k 1s) dkM, s G SG. 

In fact, the latter integral is by L E M M A 4.1 

KIM d 
f(uK)fu (k^uK) du efl(k 1s)dkM 

s 
u 

f(uK)<ps(u 1s du = / * <p6{s), 

so we are reduced to the expansion ( 1 . 6 ) . 

Example. — We shall now put this in a more explicit form in the case of 

the unit sphere Sd C Rd+1. Let a G Sd be the North pole, B the equator 

and ( , ) the inner product. For n G Z + , b G B consider 

L2{U) = = (a + ib,s)n, s G Sd, 

fb,n{s) = (sgn(a,s)] ¿ - 1 (a + ¿6, s) —n—d—1 
5 

« S S d - B . 
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The Fourier transform of / £ D(Sd) is defined as the regularized integral 
([37]) 

7 ( M ) = 
d 

f(s)fhn(s) ds = lim 
a ^ 0 + \(ats)\>a 

f{s)fb,n{s) ds 

and the following result holds. 

T H E O R E M 4 . 3 . d For fe D(Sd) we have 

(4.11) / ( • ) = R v Z + 
L2{U) = ebJs) dfi(b,n 

where dfi(b,n) = dim En(Sd) x db. 

Here 

(4.12) dim£n(Sd) = 
'd + n - 1 

x + 
d + n - 2N 

n - 1 
L2{U) = 

the dimension of the space of spherical harmonics of degree n. 
Formula (4.11) has an advantage over the customary spherical harmonics 

expansion 

(4.13) / 0 0 = 
oo 

cx l<m<d(n) 
L2{U) =xn,m 

(5n5m (1 < ra < d{n)) orthonormal basis of En(Sd)) in that it is canonical 
whereas the basis 5n>m is not. 

A similar, but a bit more complicated, regularization works for S = U/K 
of rank one ([38]) so T H E O R E M 4.2 holds for all / e D(S). For U/K of higher 
rank this remains however to be carried out. 

Analogies. — Let us now return to th general situation and compare the 
inversion formulas discussed above for G/K and U/K, respectively : 

f(x) = 
a" B 

L2{U) =L2{U) = L2{U) = |c(A)| ~2db dX, 

/ 0 0 = 
vvL2{U) 

L2{U) 
K/M 

f(fi, kM)eJk 1s) dsM-

To what extent are they analytic continuations of each other as the kernels 

(4.14) Ji\ + p)(A(x,b)) and eu(k 1s) 
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certainly are (because of ( 4 . 6 ) ) ? The analogy woulde be complete if the 

density |c(A) |-2 became d{/i) upon substituting A = — i(fi + /9), ¡1 being 

the highest restricted weight above. Then the Gindikin-Karpelevic product 

formula for c(A) [15] would correspond to Weyl's product formula [43] for the 

degree d[/ji). Such a formula was in fact obtained by V R E T A R E [42 a,b]; an 

independent proof was kindly communicated to me by OSHIMA . We sketch 

the idea. The spherical function ^px(g) can for A = —i(fi + p) be identified 

with the coefficient (v0,6(g)v0) where 6 is the irreducible representation of 

G (and Gc) with if-fixed vector vQ / 0 and highest restricted weight jjl. By 

the Schur orthogonality relations, (p\Tpx has integral d(fi)~1 over U. On the 

other hand, (P\1P\2 can De written as a sum of spherical functions and the 

coefficients of the leading terms can be related to the c-function. This leads 

to the desired relationship 

dU) = 
c(A + ifi) c( —A — iji) 

c(X)c(-X) L2{U) =vL2{U) 

5. Semisimple Symmetric Spaces 

By a semisimple symmetric space is usually meant a coset space G/H 
where H is the fixed point group (not necessarily compact) of an involutive 
automorphism of a semisimple group G. CARTAN remarks in [5], p. 8 4 : 
"L'étude géométrique de ces espaces ne manquerait pas d'intérêt." The 
irreducible spaces of this type were classified by B E R G E R [1], [2] (see also 
FEDENKO [10] for G classical). 

Harmonic analysis for such spaces, with particular emphasis on the dis­

crete series, has been developing vigorously in recent years (for a sample see 

[11] , [29] , [31] , [35], [36], [42]). Fourier transform theory in the spirit of § 3 is 

less advanced; in the present context it seems most illuminating to describe 

the results for the quadric 

5.1 
X = G/H = 0 ( p , < z ) / 0 ( p , ? - l ) , pq > 1. 

(x, x) = — X 2 
1 — • • • — X I + X 

f ,! + ••• + X 
2 
P f 

= 1. 

Here the basic harmonic analysis has been worked out by a number of people 

with varying rigor, generality and methods ( [13] , [34] , [39] , [27] , [28] , [26], 
[41] , [33] , [9]). Here I describe ROSSMANN'S formulation. Let 

B = ibG Rp+9 : b 2 
1 + ••• + 6 2 

p 
= 1,6: 9 -hi 

+ ••• + 6 2 
P+9 = 1} 

i.e., B = S?"1 X S » - 1 . Put p = ( l / 2 ) (p + q - 2). For e = 0,1 we define for 

/ G D{X) the Fourier transform 

(5.2) L2{U) =L2{U) 

X 
\ ( x , b ) \ t X ~ P ^ s g n x,b)f(x) dx, X G R , b e B. 
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Thus the Fourier transform of / is a pair of functions /0 , / 1 on R x B. 
The integral ( 5 . 2 ) is in fact defined for all A £ R by analytic continuation : 
the integral is convergent for 5R(2-A) > p — 1 and extends to a meromorphic 
function of A with poles at most for iX — p+1 G — 2 Z + . The Fourier transform 
(5 .2 ) is now inverted by the following result. 

T H E O R E M 5 . 1 . — For a certain dense subspace of D(X) we have 

L2{U) = 

e 

l 
2TT 

• OO 

0 
|(«,6)|-*A-"sgn£ (x,6)/£(A,6)2-"l Ce (A)P2 dXdb 

+ 
xs 

ReSA=A0 f Q S C . ( A ) - 1 
B 

q s | ( * , 6 ) n A - < w (x,b)fe(X,b) db). 

Here Xq ranges over 

i\0 > 0 , p + iX0 G Z + , e = p -f iX0 - Q (mod 2 ) 

and the CE -function is given by 

CAX) = 22p+l7rP: r ( .A) 
T(p + iX) 5 

g odd; 

Ce(A) = ( - l )E22^+17r^ 
TUX) 

T{p + iX) tan 
7T 
2 

f/9 + iX + e) 5 g even. 

The principal contrast with the Riemannian case is the appearance of the 
discrete series. The theorem generalizes ([9] , [25]) with similar features to 
the quadrics over the complexes, or the quaternions and to the indefinite 
Cayley plane. These spaces are all symmetric and according to W O L F [44] 
they exhaust the non-Riemannian isotropic pseudo-Riemaniann manifolds 
up to local isometry. The proofs proceed via delicate spectral theory of the 
radial part of the Laplace-Beltrami operator on X — which is a singular 
ordinary 2nd order differential operator. 

In recent years OSHIMA [30] has attacked the case of a general non-
Riemannian symmetric space. He has arrived at a reasonable general def­
inition of the Fourier transform as well as at a working hypothesis for the 
inversion formula. He has announced the proof of such a formula for the 
case X = Gc/Kc where Gc is a complex semisimple Lie group and Kc a 
complexification of a maximal compact subgroup K of a real form G of Gc 
(Example : S L ( n , C ) / S O ( n , C ) ) , and for some spaces X of rank one. 
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