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AN ALGEBRAIC MODEL FOR G-HOMOTOPY TYPES 

1. INTRODUCTION 

Let G be a finite group. Throughout this paper we consider 

simplicai complexes X on which G acts simplicially. We assume 

that a l l spaces in sight are G-nilpotent in the sense that the 

fixed point spaces are nonempty and nilpotent for a l l sub­

groups H of G . We also assume that the rational homology of 

each is of finite type. 

In [7] we constructed an algebraic invariant 3Ĵ  for a 

G-complex X , the equivariant minimal model of X , which generalizes 

D- Sullivan's [6] minimal model in the nonequivariant case ( t r ivial 

G-action) . The equivariant minimal model has properties analogous 

to the nonequi variant one and determines X up to rational 

G-homotopy type. 

The object of this paper is to use 93̂  together with certain 

additional structure to classify G-coraplexes up to (integral) 

G-homotopy type. 

SJt̂. is a minimal system of differential graded algebras 

(Definition 2-3), a concept which plays the same role in our 

context as the concept of minimal algebra in the nonequivariant 

case. We specify the notion of lattices of a minimal system of 

DGA's and the notion of torsion bound of G-complexes in section 3, 

and we prove 

Theorem 1.1: Let 3Xc be a minimal system of DGA's with 

lattices Z and Z* and let M be a positive integer. Then 

there are only finitely many finite G-complexes, up to G-homotopy 

type, of torsion bound M with equivariant minimal model Wl and 

lattices Z and Zf . 
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G. TRIANTAFILLOU 

The proof is based on the study of the group aut_(x) of 
G-homotopy classes of G-self homotopy equivalences of a G-space X -

Let f: X —X be an equivariant rationalization of X . o 
Theorem 1.2: ( i ) The group aut_(X ) is an algebraic 
————————— Lr O 

Q - matrix group. 
( i i ) aut^(X) is commensurable with an arithmetic subgroup of 

aut._-(X ) . Hence aut^(x) is a finitely presented group. G o G 

Theorem 1.1 generalizes work by D. Sullivan [6] and Theorem 1.2 

work by C. Wilkerson [9J and Sullivan [6] in the nonequivariant case. 

Because of the nature of our algebraic invariant we shall follow 

Sullivan's approach. The main arguments work equivariantly but 

they are technically much more delicate. Since the proofs in [6] are 

very sketchy we shall prove 1.1 and 1.2 ( i i ) in detail in section 3-

In section h9 we prove 1 . 2 ( i ) . 

Whereas the algebraic models of rational homotopy theory did 

not produce any new information about the usual spaces like spheres, 

projective spaces, H-spaces etc., in the equivariant case there are 

already nontrivial questions to ask about the rational homotopy type 

of G-actions on spheres, H-spaces and so on. This indicates that in 

some sense these models could be more useful equivariantly than non­

equi variantly. Applications of this type wi l l appear elsewhere. 

I would like to thank Peter May and Donald Kahn for helpful 

discussions and Dinakar Ramakrishnan for teaching me some elements 

of the theory of algebraic groups. 
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AN ALGEBRAIC MODEL FOR G-HOMOTOPY TYPES 

2. THE NILPOTENT CASE 

In this section we generalize the construction of the equivariant 

minimal model for G-siraple G-complexes [7] to the nilpotent case. The 

two constructions are basically the same. We give an outline of the 

results which will serve as a reference for later sections. 

We recall that a group K is nilpotent i f its lower central 

series T 1 (K) = K , r 1 + 1 ( K ) = [K.T^TC] , reaches { l l in a finite 

number of steps. Let K act from the left on an abelian group A 

by automorphisms. Let r"*"(A) = A and let r ^ + 1 ( A ) be the subgroup 

generated by {xa-a, x € K, a € r 1 ( A ) } . We say that K operates 

nilpotently on A i f I"1 (A) = {0} for some i . 

Definition 2.1: A space X is said to be nilpotent i f ir̂ (X) 
is nilpotent and acts nilpotently on the higher homotopy groups of X . 

Definition 2.2: A G-space X is said to be G-nilpotent i f a l l 

fixed point sets x* are nilpotent spaces, H subgroup of G (H < G) -

We consider the category of canonical orbits <&_ of G the  u 
objects of which are quotient spaces G/H, H < G, and the morphisms are 

G-maps, where G acts on G/H by left multiplication. A (coefficient) 

system of groups for G is a functor from into the category of 
G 

groups. Similarly, systems of abelian groups, systems of vector spaces, 

systems of chain complexes etc. are defined. 

We denote by ^ n (x) the system of groups associated to a 

G-space X defined by 
« n(X)(G/H) ^ ( X 1 1 ) 

on objects of , where gx=x,g€H} . Because of the func-

toriallity of the lower central series of a group we can define systems 
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r*-{*nW) by 

r ± ^ n ( X ) ) ( G / H ) = ^ ( ^ ( X * ) ) > 

n > 1 Then riTT1 (x)) T i + 1 r x (x) ^ r ( i ) « x ( x ) is a system of abelian 

groups and -iTT-n (x), T i + \ n ( x ) ^ r ( i ) «_ n (x ) is a system of abelian 

groups with trivial ir, (X)-action (at every G/H € <Su) . 
—J. G 

For any G-nilpotent space X there is an equivariant Postnikov 
decomposition ([7],[k]) which is a sequence of principal G-fibrations 

p . : X . - X . with fibers K ( r ^ n (X) ; n+l) . Here the fibers n, 1 n,x n,1-1 v —n+lv ' ' 
are Eilenberg-Mac Lane G-spaces in the sense of [ 3 ] . We have the familiar 

property for Bredon equivariant cohomology 

KG <Xn,i-l >• r ( i l i n + l W ) S [ X n, i - l> K f r ( 1 ) 2 L n + 1 ( X ) . n ^ ) ] G , 

where [ > 1Q means G-homotopy classes of G-maps, and the equivariant 

k-invariants l ie in these cohomology groups. A rationalization in this 

context is a G-map f: X XQ such that each fH: XH-> XOH is an 

ordinary rationalization. 

The algebraic analogue of the situation described so far is as 

follows: 

We consider systems of differential graded commutative algebras 

over Q (systems of DGA's) d which have the following property: 

G is an infective object in the abelian category of systems of 

rational vector spaces by neglect of structure. For instance, let 

6X be the system of DGA's defined by 

C^G/H) = 6 ^ 

on the objects of &G , where X is a G-complex and ^ is the 

de Rham - Sullivan algebra of EL forms. ^ is infective in the 

above sense ( [ 7 ] ) . This property turns out to be crucial for the 

316 



AN ALGEBRAIC MODEL FOR G-HOMOTOPY TYPES 

construction of the minimal model. We consider only infective 

systems of DGA's henceforward. 

Definition 2.3: A system of DGA's 931 is said to be minimal 

i f i t has the following properties : 

( i ) TO (G/H) is a free DGA, H < G , 

( i i ) El (G/G) is a minimal DGA (init ial condition) and 

( i i i ) d|HH > H 
ker LjLjj jji , c: 5» (G/H) is decomposable, where 

H » : SCR (G/H) -• an (G/H1 ) is the map induced by the projection 

G/H - G/H* . 

We recall ([ 6 ] ) that a minimal DGA 7f{ is said to be nilpotent 

i f each subalgebra 771 (n) is constructed from 77i (n-1) by a finite 

number of elementary extensions; here 7?l (n) is the subalgebra 

generated by elements of degree less or equal to n. An arbitrary 

connected (H° = Q) DGA is said to be nilpotent i f its minimal 

model is nilpotent. 
Definition 2.U: A system of connected DGA's G is said to be 

nilpotent i f each G(G/H) is a nilpotent DGA, H < G . 

By methods entirely similar to those of [7 ]» we can prove 

Theorem 2.5: For any system of nilpotent DGA's G there 

exists a minimal system of DGA's !0l and a cohomology isomorphism 

p : 3JI — G (for every G/H € <S )̂ • 

We omit the proof here and refer to [7 ] - There we specify the 

notion of equivariant elementary extension which is described as 

follows: Let G be a system of DGA's and let Wn be a system 

of rational vector spaces (concentrated in degree n) . Let 
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d: Wn Z n + 1 ( G ) be a into the cocycles of G. We consider a 

minimal infective resolution 

о - w n W0n W1 n 
->Wkn ->0 

of W and form the system of DGA's 

G(WN) = Q ® Q(W°)<S> • • •• ® Q(W^) , (2.6) 

where Q ( < ) is the system of free DGA's generated by Ŵ  

with deg(W^) = n + i . There is an appropriate differential on 

G(WN) which extends the differential of Gc O (W N ) and the dif­

ferential d: WN - . Z N + 1 ( G ) . G (W N ) is called the elementary 

extension of G. with respect to d: WR - * Z N + 1 ( G ) . 

Corollary 2.7: A minimal system of nilpotent DGA's S№ can be 

written as the union of an expanding sequence of elementary extensions 

t: U SJl(n). iusjl 
n,i 1 

Proof: The proof of the injectivity of t is word for word 

the same as in [ 7 ] . 
For the surjectivity of t we give the following new argument. 

Let TO' s U 3tt (n) . We wil l show that t (G/H) : 201* (G/H) - SR(G/H) 
n,i 

is a surjective map of DGA's for every H < G . Observe that 

t(G/G) is an isomorphism. This follows from the non-equivariant 

case since TO1 (G/G) and !ER (G/G) are minimal DGA's. Assume 

inductively that t(G/H F) is an isomorphism for every H 1 ^ H . 

The algebras SDf (G/H) and 2CR(G/H) are free and t(G/H) is an 

injection. So 
2tt (G/H) = 3R ' (G/H) <B> A , 
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where A is free and acyclic ([6]). Let y be a generator in A 

with dy indecomposable and let y H , = ^ R ( (y) € 301 (G/H'), H' > H, where 

JJ, is the map induced by the projection G/H G/H' . Consider 

the preimages* y„> € 2R'(G/H') . 
Claim: There is an element y € 93* (G/H) such that 

M ' , H,H , ( ? ) = ^H' » H1 > H • 

This claim is proved in [7]- Now replace y by y - t(G/H)(y) , 

which has s t i l l indecomposable differential, and so assume that 

P H , H ' ( Y ) = o , 

for every H' > H . But this contradicts the minimality of 93* . 

Theorem 2.8: I f f: 93* -»ft is a cohomology isomorphism between 

minimal systems of nilpotent DGA's then f is an isomorphism. 

Proof: Consider t: U 93l(n)̂  = 931 as before. For the same 
n,i 1 

reasons f« t is an isomorphism. This proves the theorem. 
Horaotopy between two maps of systems of DGA's means the 

following: Let G(t,dt) be the system of DGA's defined by 
G(t,dt)(G/H) = G(G/H) 0^ ( t , d t ) . 

Two maps f ,g: G — Si are homo topic i f there is a map H: G — & (t ,dt) 
such that H | t = 0 = f and H | t = 1 = g . The same universal lifting 
property 

9QR *G 
f 

(2.9) 

holds for maps of nilpotent systems of DGA's, where 331 is minimal 

and it is a cohomology isomorphism. 

We establish some notation: Let 901 be a minimal system of DGA's. 

Define *n(93*) by 
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it n(SCR) (G/H) s itn(33R(G/H)) 

and H ŜJi) by 

Hn(üß) (G/H) = Hn(3XG/H) ) . 

Also define I - ( i ) « n ( 0 ) } ) = H n(íffi(n-l) i,ÍDÍ(n-l) i_ 1) , n > 1 . 

Let X be a G-space. In analogy to earlier notation, we denote 

by H*(X;Q,) the system of graded commutative algebras 

H * ( X ; Q ) ( G / H ) = H * ( X H ; Q ) . 

Now let X be a G-nilpotent G-complex and let p : 30̂  — & x be 

a cohomology isomorphism from a minimal system 30̂  . (This exits by 

Theorem 2-5). 90̂  is called the equivariant minimal model of X -

The main result of this section is the following. 

Theorem 2.10 : The correspondence X Sft̂- induces a bisection 

between equivariant rational homotopy types of nilpotent G-spaces on 

the one hand and isomorphism classes of minimal nilpotent systems of 

DGA's for G on the other. Moreover, the following relations hold: 

(1) H* (X;N) = H*(ex,N*) = H ^ C D ^ N * ) , where N is a (contra-

variant) system of rational vector spaces and N"* is its dual 

(covariant) system. For a definition of these cohomologies see 

[3l> [7] (and U . l l of this paper). 
(2) i f (X;Q) = H 1 1 ^ ) , 

(3) U n ( x ) Ä d ) * = Ä | i(2Ä) , n > 1 

w ((r^K^x)) ® Q)* = r ( i ) * n e m ) , n > 1 , 

(5) ( i ) SOL(n). is the equivariant minimal model of X . and A 1 n, i 

( i i ) the differential d: W n + 1 ± - Z n + 2(23^(n) ) of the 
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elementary extension SQf^n)^ = 30 (̂n) i_ i (W n + i j ) determines the equi­

variant rational k-invariant 

* r 2 

1 
E HGn+2(Xn,i-1;r(i)TT-n+1(X) 0 Q) 

Theorem 2.11: There exists a bisection 

[ X , Y ] g = [ar^soy , 

where Y is a rational G-space and [ , ] denotes homotopy classes 

of maps. 

Again we refer to [7] for an inductive proof (over the equi­

variant Postnikov decomposition) of these results-
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3 - THE MAIN RESULTS 

In this section we shall prove the main results of this paper 

granting 1.2(i) (that autG(XQ) is an algebraic matrix group over Q) 

and certain facts about algebraic groups which we discuss in section h. 

Definition 3 .1 : Two groups A and B are commensurable i f there 

exists a finite chain of maps A -» «- C2 • • • *- B such that each 

map has finite kernel and its image has finite index. 

Theorem 3.2: Let X be a G-nilpotent space which is a finite 

G-complex or has a finite equivariant Postnikov system. Then 

aut^(x) is commensurable to an arithmetic subgroup of aut^(X0) -

Proof: Let {XM .1 be an equivariant Postnikov system of X n, i 
such that a l l spaces are G-complexes and a l l maps are simplicial 

equivariant inclusions. The first diagram below induces a diagram 

of systems of de Rham algebras and we can construct the equivariant 

minimal model of X as the union of the models of the X . 's-
n, 1 

X 
X 

n, i+l 
X n, i 

a 
-X 

t

X n , i + l 

^X 
. X n, i 

» ( n ) 1 + 1 

P n, i 2K(n) 

Let f..-, be an equivariant self homotopy equivalence of x+i 
Xn i+1 * Just as in the nonequivariant case, this map can be 

extended to an equivariant self homotopy equivalence f ^: X n ^ -* X R ^ , 

unique up to G-homotopy. Moreover i t induces an automorphism 

g of r i + 1 « n + 1 ( x ) / r i + 2 « _ n + ; L ( x ) , r < i + 1 > • 

Given the morphisms P N ^ > each map f̂  induces an auto-
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morphism f of the model Sn?(n)̂  , unique up to homotopy, such 

that the diagram 

A n,i X n,i 
p n,i t - t Pn,i 

commutes up to homotopy. Moreover, f±+i_ restricts to an auto­

morphism of IR(n)^ which is homotopic to f̂  . Therefore i t induces 

an authomorphism of 

r ( i + 1 ) * n + 1 ( W ) = Hn+1(33l(n) i+1,OJl(n) i) = r ( l + 1 ) ® « 

as well. 

So we have a commutative diagram 

a u t G< X n , i + l> - ^ a U V X n , i > X au t (r< i + 1 ) ) 
i 1 

aut(SK(n) i + 1) ^ aut(l>i(n)i) x a u t ( r ( i + 1 ) ® Q) 

By Theorem h.Y, aut(DCR) , the set of homotopy classes of automorphisms 
of a minimal system of DGA's is an algebraic matrix group over Q, and 
by Lemma aut(r^ i + 1^) is commensurable to an arithmetic subgroup 

of aut(r^ i + 1^ <8> ty) . Using the latter fact to start the induction, 
we assume that aut-(x . ) is commensurable to an arithmetic sub-

Lr n, 1 

group of autC-DtCn)̂  . Vie wi l l prove the analogous statement for 

autQ(Xn * We study the kernel and the image of the maps A and 
V 

The image of A , say M , consists of pairs ( [ f ^ j g ) such 
that the diagram 

x „ i - S - K O - l " 1 ' , . ^ ) 

X n > ± .K (H x + : L ) ,n42) 
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commutes up to homotopy, where k is a representative of the 

equivariant k-invariant k E HGn+2(Xn,i,r(i+1)) On the minimal model 

level this translates into the following: the element ([f^] ,g) £ 

autWn^) x *aut(r(1+1) ® Q) is in the image MQ of AQ if it is in 

the isotropy group of the k-invariant kQ under the following action. 

aut(I(n).) x aut(r ( i + 1 ) ® Q) X H**2(3M(n) ; ( r ( i + 1 ) ® Q ) * ) -H n + 2(331(n) i;(r ( i + 1®Q)^) 

( [ f ^ . g ) x kQ ( f i i . f r 1 ) * ^ ) 

It follows from Proposition lj-.ll that this action is algebraic. 

Hence the isotropy group MQ is an algebraic group ([1], p. 97) 

and M is commensurable to an arithmetic subgroup of MQ . 

Now consider the kernel N of A . We will prove the following 

statement: N is an abelian subgroup of aut̂ ,(X . ) and N~ , the 
G n, 1 U 

kernel of AQ , is isomorphic to N 0 Q. 
Let 

fìK-Xn,i+l-
Xn,i T K ( r ( Ì + 1 ' n + 2 ' 

be the Barratt-Puppe sequence. Here all spaces are G-spaces and 

the maps are equivariant. Consider the orbit of [id] £ [X^ i+i'X^ i+^Q 

under the action from the right of [X1 CK]„ N is a subset 

n, l+X \a 

of this orbit consisting of G-homotopy classes of maps which induce 

the identity on r^ i + 1^. The proof of this is entirely anologous to the 

nonequivariant case ( [ 8 ] ) . So, we consider classes [a] € [X* .,-,>fiK]_ 
n, 1"**J_ Q 

such that [ida|^K] = [ i d ^ ] , i.e. [ « I Q K ] = 0. The set of such classes is the kernel of H^X -r(i+1))-->HN+1G(^K,r(i+1)) 

which is equal to H ^ X - r ( i + 1 ) ) as follows from the long exact 

sequence. Hence N is a quotient of 0 < * , i * r ( 1 + l ) > 
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I t remains to show that the group structure of N , namely 

composition of maps [ idaoida*] , coincides with the addition 

[ i d a a f ] in H11*1. Since [ a ] and [a9] belong to the kernel 

of i** , the "maps a and a' can be replaced by G-homotopic maps 

which factor through X . , i . e . do not depend on the path 
n, 1 

variable of X* . . 
n, 1+1 Similarly Nn is isomorphic to a quotient of 

Н П + 1 ( Ш ! ( п ) 1 ; ( Г ( 1 + 1 ) ® « * ) * ) H^X -r(i+1)) OQ) H^X -r(i+1)).OQ) 

In a trivial way, a vector space is an algebraic group and a 

finitely generated subgroup of maximal rank is an arithmetic 

subgroup. 

Now we have the diagram 

0 - N - a u t G ( X n > . + 1 ) - M ^0 
1 1 1 

0 -.N0-aut(3Di(n) i + 1) - M 0 - 0 , 

where the lower row consists of algebraic groups and N and M 

are commensurable to arithmetic subgroups of NQ and MQ respectively. 

By a result in [2 ] , aut̂ ,(X . , n ) must be also commensurable to an 

Cj- n, 1+JL 

arithmetic subgroup of aut(SK(n)^+^) . This completes the proof of the 

theorem for G-spaces with finite equivariant Postnikov systems. For 

finite G-complexes we only need to observe that aut_(x) = aut_(x ) 
G G n 

for n sufficiently large. 

Now we will use the above result to prove the classification 

theorem 1.1. Before this we establish some terminology. 

Let X be a G-complex and let p: 2JI -» £ x be an equivariant 

minimal model of X . By the universal lifting property of SCR (2-9) 
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the map p determines maps p . : 2Dl(n) . 6 uniquely up to n, 1 X ~~A. . n,i 
homotopy, where the spaces X . are as in the previous theorem. 

n, i 
The composite map 

Horn ( r U ; j t n ( X ) , ^ ) - Hom ( r ( i )

5 n ( x ) , Q ) = r ( i ) * (a*) n > 1 , 

defines a system of lattices Z n ^ of r*^jtn(2R) > i . e . a system 

of finitely generated abelian groups ZM . (G/H) such that 
n, i 

Z n ±*-+ Z n ± 0 s r^1^TTn(2Jt) for every n > 1 and i > 1 . Here 

Hom(A,Z) is defined by Hom(A,Z) (G/H) s Hom ( A ( G / H ) , Z ) for a 

system of abelian groups A . Also the composite 

^ ( i + 1 ) 2 n + 1 W ) " ^ ( X ^ ^ ( i + l ) « - n + 1 W 
HN+2(M(N)I;R(I+1)TTN+1(M) 

defines a lattice Z n ""£1 , JL"t~JL_ . _ of the vector space over Q H n + 2(3K(n).; 
3-

r^1+1^îtn+:L(îm)) for every i > 1 and n > 0 . 

Again we restrict attention to G-spaces X which are finite 

G-complexes or whose equivariant Postnikov system is finite and 

it n(X ) is finitely generated for every H < G and every n . 

Such a space is said to have a torsion bound M i f 

I torsion(Tc n(XH)) J < M , n < N, 

for every subgroup H < G , where N is the dimension of X ( i f 

X is a finite CW - complex) or the length of the Postnikov tower. 

Now we can express the main result of this paper precisely. 

Theorem 3 - 3 : Let 9Ji be a minimal system of finitely generated 

nilpotent DGA's with systems of lattices Z . c: r̂ *̂ it (2tt),n,i > 1 , 
n9 I n -— 
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and lattices Z'n+2,i+1CHn+2(m(n)i,r(i+1)TTn+1(R) » n > O , i > 1 , 

and let M be a positive integer. Then there are only finitely many 

G-homotopy types [X] of torsion bound M such that there exist 

cohomology isomorphisms p x: 3ft -* which induce isomorphisms of 

the lattices. 

Proof: We proceed by induction on a filtration Q c • • -c 3B(n)̂  

c: c • • • of 5» . We start the induction with the observation 

that there are only finitely many G-homotopy types which are rationally 

equivalent to a point because of the given torsion constraint. 

We fix a space X . with a morphism p . : 3ft(n). -» 
n, 1 n,l 1 —X -5 

n, 1 

which induces an isomorphism of the lattices on homotopy and 

cohomology. Let r^ i + 1 ^ be a system of finitely generated abelian 

groups such that Hom (r(-i+1),z)=Zn+1,i+1 

There are only finitely many such systems since we restrict the 

possible torsion by the given bound M . We have a map 

0 ^ i ' r < 1 + 1 ) > - 0 < > u i ' r ( 1 + 1 ) « » « > 
B/=Hn+2(R(n)i;r(i+1)TTn+1(R) 

where B is induced by p . and a . Let 
n, 1 

d: r ( i + l ) * n + : L !D! -HCn^ 

be the differential of the elementary extension »C«0 1 + 1 = n ( n ) 1 and 

let d be its cohomology class in H n + 2(aji(n) i ; r< i + 1 ) * n + 1 Cm)) The 

preimage of d under B~"o A consists of all possible k-invariants 

for the next stage of the Postnikov system (for fixed p . and a ) • 
n, i 

This preimage is a finite set because A is an isomorphism after 

tensoring over Q . 
Now suppose that p n ± : W(n)± - £ x is another cohomology 

n,i 
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isomorphism preserving the lattices. Instead of B above we have an 

isomorphism B* and an element k' = B* (d) . 

By (2.9) there is an isomorphism a: 3K(n)̂  -*2^(n)^ such that 

the diagram 

aji(n). 

Di(n) 

Pn,i 

P n, i 

X n,i 

commutes up to homotopy. The isomorphism a preserves the lattices 

isomorphically since p n ^ and p n ^ have this property. 

We consider the following equivalence relation in aut(3H(n)^) : 

[a] —[b] i f a and b induce the same map on Hn+2(R(n)i;r(i+1)TTn+1R) 

and we call autCDKrOjVH the group of such equivalence 

classes. By Proposition ^.11, aut(2E(n)i)/H is an algebraic group 

and the projection p: aut(3K(n)i) -» aut(9}i(n)i)/H is algebraic. 

Let r be the subgroup of aut(3H(n) . )/H consisting of those elements 

which preserve the lattice in Hn42(2Ji(n)i,- r ( i + l ) * û + 1 ( ! D i ) ) isomor­

phically. Then f is an arithmetic subgroup. We observe that the 

set of al l images k' = B1 (d) of d in Hn+2G(Xn,i;r(i+1) Oq) 

as we vary p . , is the orbit of k = B(d) under the action of r . n, 1 

We have a commutative diagram 

aut(3R(n). ) —aut(93?(n). )/H 

1 U 
a u V X n , i > — F • 

Now we use a theorem in the theory of arithmetic groups which 

states that i f f: C — c ' is a surjective homomorphism of 
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d-algebraic matrix groups then the image of an arithmetic subgroup 

o£ G is commensurable with an arithmetic subgroup of* C* ( [ 2 ] ) -

Hence the image of autQ(X n ± ) is a subgroup of finite index in r -

In order to complete the proof of the theorem, i t suffices to 

observe that the orbit of k under the action of aut_,(X . ) (and 
G n, x 

therefore the orbit of k under the action of any cos et of 

aut Q(X n ^ ) in T ) contains equivalent k-invariants, i . e . elements 

which induce the same G-homotopy types [ X n • 
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U, THE AUTOMORPHISM GROUP OF THE EQUIVARIANT MINIMAL MODEL 

In this section we develop the algebraic material needed in 

the proof of Theorems 3-2 and 3-3-

We recall some definitions and elementary facts from [1] and [ 2 ] . 

Definition U . l : A group K is called an algebraic Q-matrix 

group i f K is a subgroup of GL(n,Q) for some n and its elements 

have the following property: the coefficients of the matrices in K 

annihilate some set of polynomials in M(n,Q,) with rational 

coefficients. 

Definition k.2: Let be the subgroup of elements of K 

which have integral coefficients and determinants ± 1 . Then 

is said to be an arithmetic subgroup of K 

Typical examples are SL (n,z) a SL(n,Q) . 

Let V be an n-dimensional rational vector space and let Z 

be a lattice in V i . e . a finitely generated subgroup of maximal 

rank. By choosing a basis of Z we can identify (K=) GL(V) = GL(n,Q) , 

and K ^ with the subgroup of those isomorphisms of V which yield 

isomorphisms of the lattice Z (not only preserve i t ) . 

The concept algebraic group is more general than algebraic 

matrix group, namely 

Definition k*3: A group M is called an algebraic group 

over Q, i f M is an algebraic variety over Q and the multipli­

cation and inverse (x — x " 1 ) maps are maps of varieties. 

(IJ-.H) Let f: K — K* be a group homomorphism between two 

algebraic Q-matrix groups and let f. .(A) be the ( i , j ) entry 

of the matrix f(A) € K 1 , where A is a matrix in K . I f ^ ( A ) 

is a polynomial with rational coefficients of the entries of A 
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for every ( i , j ) then f is a morphism of algebraic Q-matrix 

groups. The kernel and the image of such a map are algebraic 

Q-matrix groups. 

Let Aut.(90fl) denote the group of automorphisms of the minimal 

system of finitely generated DGA's SDR and let aut(SDR) be the group 

of homotopy equivalence classes of automorphisms of 3JI . 

The main result of this section is that aut(9tt) is an algebraic 

matrix group. Since 

aut(SD^) « autG(XQ) 

(see Theorem 2.11) , this wil l prove Theorem 1 .2( i ) . 

Lemma h.5 : Let M be a covariant system of finite-dimensional 

rational vector spaces and let i : Z —»M be a system of lattices 

in M . Then 

( i ) Aut(M) , the group of isomorphisms of M , is an algebraic 

^-matrix group and 

( i i ) Aut(z) is an arithmetic subgroup of Aut(M) . 

Proof : Let f: M — M be an isomorphism. The diagram 

M(G/H) F ( G / H ? M(G/H) 
M(a) J J M(a) 

M(G/H') M(G/H F) 

must commute for every morphism a: G/H — G/H in $G and f(G/H) 

is an isomorphism of vector spaces for every G/H € . Observe 
G 

Aut(M) z: x GL(M(G/H))CZ GL(© M ( G / H ) ) , 
G/H ç & G/H € fcG 

where the product is finite and 

the second inclusion is obviously an inclusion of algebraic Q-matrix 

groups. Similarly, 
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Aut(z) c x Aut(z(G/H)) cr Aut(© Z(G/H) ) , 
G/H € &G G/H € G Q 

where the latter two groups are arithmetic subgroups of the algebraic 

groups above respectively. Here we consider a basis for e M(G/H) 
G/H 

consisting of bases for each Z(G/H) . The elements of x GL(M(G/H)) 
G/H 

are matrices of the form 
A 0 0 • • • 0 ' 
0 B 0 
0 0 C. # 

0 > 
where A , B , a r e invertible matrices. The commutative diagrams 

above impose a finite number of polynomial (in fact linear) equations 

on such matrices to give elements in Aut(M) . This means that Aut(M) 

is an algebraic Q,-matrix group. Moreover, the elements of Aut(z) are 

exactly those matrices in Aut(M) which have integral coefficients and 

determinant ± 1 - So Aut(z) is an arithmetic subgroup of Aut(M) -

This completes the proof of the lemma. 

Proposition h.6: I f SQR. is a minimal system of finitely 

generated DGA's over Q, then Aut (SDR) is an algebraic ^-matrix 

group. 

Proof: I f A is a DGA which is finitely generated by 

elements of degree at most n then Aut ( A ) is an algebraic matrix 

group. In fact, Aut ( A ) c x GL(A I) , where upper i means degree 
i< 2n 

and where the matrices 
A1 

О 
0 
A 2 1 

in Aut(A) satisfy the equations 

A 1 ® A J J^Ai+S 

A1® A3 | J Ai+3 

Ai O Ai--WAi+j 

and 

Ai Ai Ai 

1+1 1+1 
Ax+1 
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i,d < n . 

This fact together with Lemma k.^(±) proves the proposition. 

Theorem The group aut(SDR) is an algebraic Q-matrix group, 

where 3J? is -a minimal system of finitely generated DGA's. 

Proof: In order to prove that aut (SO?) is an algebraic group, 

we wi l l prove that the kernel of Aut (9)1) aut (IP) is a unipotent 

subgroup of Aut(3K) which is constructed from a nilpotent Lie 

algebra L by the Campbell-Hausdorff formula. So the proof consists 

of the following two propositions. 

Proposition h.8: An automorphism a :90R -> TO. Is nomotopic to the 

identity i f f there is a derivation i : 2R -* of degree -1 (at 

each G/H) such that a = exp(di+id) . 

Proposition JJ-.9* The set of "inner derivations" 

I = [di+id, i : 9ft — 3JI derivation of degree - l ] 

is a nilpotent Lie algebra under bracket [X,Y] = X * Y - Y o X . 

The proofs of these propositions are essentially the same as 

in the non-equivariant case [6] . We can apply word for word 

the methods given (in detail) in [5] using, in addition, the following 

technical arguments. 

In order to prove that any inner derivation di + Id is 

nilpotent we use induction on the subgroups of G . We know that 

(di+id) (G/G) is nilpotent because 9#(G/G) is a minimal DGA 

(no n-equi variant case) . Let H be a subgroup of G and assume 

inductively that (di+id)(G/H*) is nilpotent for every subgroup 

HR of G which contains H as a proper subgroup. Then 

(di+id) M (G/H) : m (G/H) - m (G/H) , 

for some m , takes values in 
H J H 

ker ' U H ' By definition of a 

minimal system of DGA's, the differential restricted on 
H> H 

ker uH,H' 
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is decomposable. Therefore d increases the weight of the monomials 

in this subset and i preserves i t . So (di+id) (G/H) is nilpotent. 

As in [ 5 ] , we construct SCfiF and use the circle construction 

(Au ® 3JI, Dtp) for a given unipotent automorphism cp: 9JI -» 30R . 

I t follows from the characterization of infectives in [7] that 

these constructions preserve the injectivity of systems of DGA's. 

In particular, Au <8> 3Ji is a direct summand of 2K(t,dt) which is 

infective. 

Proposition k.10: The map p: Aut(3fl) - Aut ( H 1 ^ ) ) , and 

therefore the map q: aut($R) -* Aut (H^SK)) , is a map of algebraic 

groups. 

Proof: We know that the map 

Aut ( A ) - GLCH^M)) 

is algebraic, where A is a finitely generated DGA ([6]). This and 

lemma h.^(l) imply that the map p is algebraic. Then the map q is also 

algebraic by a result in [ 1] p. 17 -̂

Proposition ^.11: The maps 

Aut CD*) - aut(9Jï) GL(H^"(SDR;M) ) 

are algebraic, where M is any covariant system of finitely 

dimensional rational vector spaces. 

Proof: As before, i t suffices to prove that the composite 

map p is algebraic. We recall the definition of H ŜQ^M) . We 

consider the set of natural transformations Nat(M,2H) . 

This set is a differential graded rational vector space. Its 

ith cohomology is denoted by ,-M) . We have the following 

diagram of algebraic maps 
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Aut(SDl) GL (Nat (M,3Dfi?" ) ) 

GL(Nat(M,aJ?-))z>B 

GL(Hi(M,3K)) ; 

here r is given by composing an automorphism of 3JI with any 

natural transformation (multiplication of matrices) and GL(Nat(M,3)?")) 
Zi,B 

contains only those isomorphisms of Nat(M,3Ĵ ) which preserve the 

sub-vector space of cocycles and the subspace of coboundaries. A l l 

maps in the diagram are obviously algebraic and therefore p = t • s 

is algebraic. 
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