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K. SHIBATA 

SULLIVAN-QUILLEN MIXED TYPE MODEL FOR FIBRATIONS 
AND THE HAEFLIGER MODEL FOR THE GELFAND-FUKS COHOMOLOGY 

by Katsuyuki SHIBATA 
(Saitama University) 

1. Introduction (The Bott "Conjecture"). 
oo 

Let M be a paracompact Hausdorff C -manifold of dimension n > 1 and L 
be the topological Lie algebra of C -vector fields on M. Gelfand-Fuks [1J 
considered the differential graded algebra (DGA for brevity) C (L ) of continuous 

j£ C M 
cochains of L̂ , and its cohomolgy H (Ĉ CL̂ )) is called the Gelfand-Fuks cohomo- 
logy of M. On the other hand, let EU ( 2 n ) n B U

( 2 n > 
n 

be the universal U -bundle restric-n 
ted over the (homotopical) 2n-skelton of the base and 

(1.1.) Yn: EU ( 2 n ) 

n EU ( 2 n ) n x EU •> BU U n n 

be the associated fiber bundle over BU with fiber EU^n^ . And let be the 
n n C complexification of the tangent bundle of M classified by a map f̂  : M •> B U

n-
Consider the cross-section space T((f5) * (Y )) °f tne induced bundle C 
(f̂ ) * (yn) equipped with the compact open topology. Then the Bott "Conjecture" 
asserts ; 
(1.2.) H*(C*(LM)) s H*(r((f£) * (yn));R). 

A. Haefliger [3] , [_4] affirmatively solved this conjecture by constructing 
a Sullivan-Quillen mixed type model for the fibration (fM) * (y ) . Here, by a. 
Sullivan-Quillen mixed type model for a fibration, we mean a DG Lie algebra 
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L = A 0 L over a DGA A with a differential d, whose restriction 
(A ,d A = d̂ ) is a model for the base space in the sense of Sullivan and whose 
quotient (L = R ® L, 1 8 d) is a model for the fiber in the sense of Quillen. 

A A 
The superiority of the mixed type model lies in the following fact. The 

cochain complex Ĉ (L) over A of L is a Sullivan model for the total 
space of the fibration while the cochain complex C*(L) over R of L is a 
Sullivan model for the cross-section space of the fibration. 

But if we want to construct a mixed type model on the universal level, i.e. 
C * >s a model for y itself instead of the induced one (fw) * (Y ) » we have no 'n M n 

longer a differential on L but a pair (D,x) of a derivation D on L and 
the Euler element x ^ n L_2 * X being the obstruction for D to be a diffe­
rential and, at the same time, being a representative for the obstruction class to 
the existence of a cross-section of the fibration. 

In this note we give a sketch of the following two subjects, the details of 
which will appear elsewhere. First we present a general view of the Sullivan-
Quillen mixed type model in section 2, generalizing the Haefliger-Silveira theory 
of mixed type model for fibrations with a given cross-section [7]. In section 3, 
we exhibit a very explicit description of the mixed type model for the fibration 
(1.1.), and thus give a complete answer to the algebraic computational problem 
posed by Haefliger [3]. We remark that partial results to this problem permitted 
us to deduce the following result. 
THEOREM (1.3)([6]) : A closed connected orientable manifold M of dimension ̂  1 
has finitely generated Gelfand-Fuks cohomology (as an R-algebra) if and only 
if M - S1. 

I am greatly indebted to S. Hurder's suggestion for accomplishing my compu­
tations of the differential in Haefliger*s model. I also owe a great deal to A. 
Haefliger for suggesting me to generalize the mixed type model theory to fibra­
tions without cross-section. Finally the discussions with H. Sliga clarified me 
the role of the Euler element in the mixed type model. 

2. Sullivan-Quillen mixed type model for fibrations. 
Let A (= A ) be a positively graded DGA with a differential d and L 

id 
be a graded Lie algebra over A with the grading deg (a.y) = deg(y) - deg(a) 
for a e A and y e L. 
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DEFINITION 2.1. : A graded Lie algebra L over A is an algebraic fibration 
* * 

of mixed type over A if (R 8 L ) = 0 for p ̂  0 and if it is equipped 
A P 

with a pair (x>D) , where x is a n element of L « called an Euler element 
and D : L̂  •> L̂  is an A -Lie derivation of degree -1 , i.e. (2.2) D< a -[ypy2]> = d

A
( a )-&py 2] + (_ 1 )deg(a) a > { 

[D(yi),y2] + (-l)deg(yl)[y1,D(y2)]}, 

satisfying the following trace formulas ; 
(2.3) D(x) = 0 , and 
(2.4) (D)2(y) - |_X,Y] for every y e L̂  . 

The quotient DG Lie algebra (R 8 L ,1 8 D) is called the fiber of this 
A A 

algebraic fibration. 

DEFINITION 2.5. : Let (L̂  , X»D) be an algebraic fibration of mixed type over A . 
A Y * A Its chain complex C ,A(L^) over A is the DG coalgebra (SAoL),d = dT+D+d ), 

1 1 1 ^ • *F ?n ^ _L, ^ 
where aL is the suspension of L̂  (the shift of degree by +1), S (aL ) 
denotes the symmetric coalgebra of oL taken over A , d is the usual diffe-

A 
rential on s^aL^) arising from the Lie bracket of L̂ , D is the coderivation 
on Ŝ (aL̂ ) induced by the derivation on L̂  denoted by the same symbol, and d 
is the differential which is nothing but the multiplication by the suspension ax 

A Y 
of x> i-e. d (x) = aX*x« W e c a l 1 d the Euler differential in C 'A(L^). 

X X 2 A 
The trace formulas (2.3) and (2.4) are equivalent to ; d = 0 in SQ(aL̂ ). The cochain complex C* (Lv) over A* of L̂  is the A*-dual of C **(L^), • A,X — *r ^ + 
namely (2.6) Horn ̂(Ŝ (aL̂ ),A*) = A* 8 S*(R 0 aL̂ ) A A Horn *(d,l). 

A 
This is an algebraic fibration over A in the sense of Sullivan. 

Conversely, starting from an algebraic fibration A E in the sense of 
Sullivan, we can construct a mixed type fibration (L̂  , D, x) over A with x 
being a representative of the obstruction class to the existence for a cross-
section in the minimal model for the fibration above. 

3. The Haefliger model. 
Now we return to the fibration Z of (1.1). The minimal model for the base 

'n 
294 



SULLIVAN-QUILLEN MIXED TYPE MODEL 

space BU^ is given by 

(3.1) I n = R Cl,c2,...,cnJ deg ĉ  « 2i, dCĉ ) = 0. 

A model for the fiber EU(2n> n is given by 

(3.2) W n = E(hj,h2,...,hn) 0 (R[c1,c2,...,cn]/(deg > 2n)) 

with deg h. = 2i-l, deg c. = 2i, d(hi) - c^ d(ci) « 0. 

A model (in the sense of Sullivan) for the total space is given by 

(3.3) I n 0 W ; n d(h.) = c. - c. , d(c.) = d(c.) = 0. l l l l l 

The fiber EU^11^ has the rational homotopy type of a bouquet of spheres 

and its minimal model (in the sense of Quillen) is 

(3.4) L^H*^)') d = 0 • 

A convenient basis { [he ] ; partitions I and J satisfy certain 

inequalities} for H (Wn) was found by J. Vey [2J . 

Now I n 0 L(a 1H*(Wn)
f) has the natural graded Lie algebra structure over 

In. We define the Euler element x *-n by 

(3.6) X = 
CO 
c 0 ö 
U) 

h c c . . .1 
. wl 2̂ œ3 J 

where the summation runs over all the partitions a) = (o)j ,o) 2,ai 3,...) such that 

1 £ (A)J £ 0)2 £ — , + CJÜ̂  + .. . £ n, and that 03j + o)2 + U)̂  + ... > n. And 

we define In-Lie derivation D as a sum of two differentials dj and d2 ; 

(c.f. [6j, p. 398 for the notations) 

(3.7) D = d. + d2 : l
n 0 L(a ̂ (W )») n l n 0 L(a 1H*(wn)'), 

(3.8) d (1 8 y(I,J)) = 
(1) 

sign 
I<v 

(a)1-î )ĉ  8 y(a)1+I;a)-a)1+J) 

(2) 
sign 

I<v 
(Jt"i )ca) 0 y(a)1+I-i1+Jt;(jo-co1+i1+J-Jt) , 

where y(I;J) = a 1 [hj-Cj] 1 > and 
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(3.9) d„(l 0 y(l;J)) 

- I 
(1) 

(-1)|I(1) sign 
Ky,v 

(i^-i^hc^ 0 [y(I(l);J(l)), 

y(aJ1+I(2)-i[2) ;a)-a)1 + i^2)+J(2))] 

(2) 
(-1)|I(1)sign 

Ky,v 
(iu(1)-iv(2))cw(1)cw(2) y(w1(1)+I(1) 

- i;i);a)(l)-a);i>+i;i)+J(l)),y(a)<2)+I(2)-i(i
2);aJ(2)^2)+i;2)+J(2))]. 

One checks by direct computations that x a nd D defined above satisfy 
the trace formulas (2.3) and (2.4). Thus (in 0 L(a_1H*(W ) f ) , x,D) is an 
algebraic fibration of mixed type. Its cochain complex C*n (ln 0 L(a ̂ H*(W )f)) 

I »X 
is proved to be the minimal model for the fibration (3.3). 

Now let M be an n-dimensional manifold as stated in the introduction, and 
fi*(M) be its de Rham algebra. A choice of Pontrjagin forms p̂  e ft^(M) makes 
fi*(M) an in-algebra via the homomorphism defined by ĉ ^ ^i,C2i-l "̂ B^ 
the scalor extension, we obtain a DG Lie algebra over ft*(M) 
(3.10) (ft*(M) 0 (in 0 L(a 1H*(w )') = n*(M) 0 L(a lE*(Q )');1 0 D) n̂ n n .̂n 

^ ¥ — 1 ¥ — 
whose cochain complex C (ft (M) 0 L(a H (W )') over R is a model for the cross-

K n C ~ section space T((f ) * (y )). This is the Haefliger model for the Gelfand-Fuks M n *•* 
cochain complex Cc(LM). Notice that (f̂ ) * (ŷ ) admists a unique homotopy 
class of cross-sections since the fiber EU^2n^ is 2n-connected. 

n 
REMARK 3.11. : The minimal model for the algebraic fibration (3.3) is isomorphic 
to that of DGA 1 ^ = in/(deg > 2n) . So the minimal model above can also be 

- 3 
regarded as the minimal model M . In fact, the modulo (M ) -reduction of 

I(n) I(n) the formulas (3.6)-(3.9) gives rise to formulas (2.15)-(2.19) of Hurder-Kamber [5J . 
Since R[PJ ,P 2 > • • • >Pn/2-l ~ ̂ n/(c2i-P» we °bta.in tne minimal model 

(= the Postnikov decomposition) for the algebraic fibration P̂  -> P̂  0 Wr by 
putting c2i_i *-n t*ie mo(iel above. This is a complete answer to the computational 
problem posed in [3] . 
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