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D. HUSEMÖLLER 

Loop space decompositions in the theory of exponents 
by 

D. Husemöller 

The theory of exponents deals with the order of the 
identity map on H-spaces, especially loop spaces, in the group 
of all homotopy classes of maps of the space into itself. We 
consider spaces localized at a prime p, and there is usually 
some indication that the order is finite, for example, the 

•p 
homotopy groups are all p-torsion and kill by some power p of p. 
During the period 1977-1981 considerable progress was made by 
Cohen, Moore, and Neisendorfer in the theory of exponents using 
decompositions of loop spaces. These decompositions were 
constructed by Lie algebra and Hurewicz homomorphism techniques. 
A very striking result proved by the three authors is that the 
identity map on ft2Sm(pr) has finite order when p is odd for a 
mod p r sphere S m(p r) = S^^^r e m. The result is unknown in the 
case of the prime p = 2. Neisendorfer refined the techniques 
considerably and was able to show that the order of the identity 

r+1 
was exactly p which is the best possible since ther are 

r+1 

elements of order p in the homotopy groups. 
In this article we formulate the problems connected with 

exponents and develop some of the main ideas used to decompose 
loop spaces in order to get at a determination of their exponents* 
Our presentation here is inspired by the series of papers of 
Cohen, Moore, and Neisendorfer and of Neisendorfer and is in 
large part a survey of their more recent work. 
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LOOP SPACE DECOMPOSITIONS 

§1. ft*- exponents and S 1- exponents. 

All spaces are localized at a prime p which will usually 
be taken to be odd. The question of exponents is whether or 
not certain algebraic invariants are annihilated by some power 
of p, i.e. are p torsion. Further, if they are p-torsion, then 
determine the minimal r such that p r annihilates the invariant. 
In the following definitions we make this more precise. 

( 1 . 1 ) Definition. A space X has an fi1-exponent r provided 
r r—1 p .id is null homotopic and p .id is not null homotopic on 
the loop space ft^X. 

Observe that if an i-connected space X has an ^-exponent r., 
then priT^(X) = 0. For an H-space we have the notion of 
fi^-exponent, or simply, exponent included in the above definition 
since the property is independent of which H-space structure on 
ST*~(X). A space X has homotopy exponent r provided pr.Torsir^ (X) 
= 0 and pr~"'~. TorsiT# (X) ̂  0. If an H-space has an exponent, then 
observe that all the homotopy is torsion and annihilated by the 
power of p to the exponent. 

(1 .2 ) Definition. A space X has an Si-exponent r provided 
pr.id is null homotopic and p r - 1.id is not null homotopic on 
the suspension S 1(X). 

Observe that if a space X has an S^exponent r, then 
r — D 
p H9e(X) - 0. For a coH-space we have the notion of S -exponent, 
or simply, exponent included in the above definition since the 
property is independent of which coH-space structure on S 1(X). 
A space X has homology exponent r provided pr.TorsH^(X) = 0 and 
r—1 — 
p .TorsH^(X) = 0 . If a coH-space has an exponent, then 
observe that all the reduced homology is torsion and annihilated 
by the power of p to the exponent. 
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(1 .3 ) Examples ( 1 ) . The map p r : S m > S m of degree p r 

has a (homotopy) coflbre denoted S m +" 1'(p r) a called a mod p r sphere 
and a (homotopy) fibre denoted S m{p r}. The coH-space S m + 1(p r) 

r 
has coH-space exponent p . For an odd prime p the localized odd 
spheres s2*11"1""1' are H-spaces and p r : s^m+l > s 2 m +"^ is an H-map 
so that the fibre S 2 m + 1 { p r } has an H-space structure. The 

•p 
exponent of this H-space is p . 

These examples are elementary. The next ones are the result 
of the theory of Cohen, Moore, and Neisendorfer (Theorem I) and 
finally of Neisendorfer (Theorem II). In the remainder of this 
section p is an odd prime. 

(1 .4 ) Theorem I. The double suspension map E 2 : S 2 1 1 - 1 > 
Q2S2n+1 has a partial inverse TT : ft2S2n+1 > S 2 n - 1 in the sense 

2 2 2 that TT<E = p and E ̂ir = Q p where p refers to a map of degree p. 
For the proof of this theorem see the two papers of Cohen, 

Moore, and Neisendorfer in 1979, especially [3]. 
( 1 . 5 ) Examples (2) . Starting with S 1 and using ( 1 . 4 ) , 

we see that p n T r 2 n + 1 + i ( S 2 n + 1 ) = 0 for i> 0 . Since ^(S 1 1 1) « s ( p ) 
for spaces localized at p, we can form S 2 n + 1 <2n+l> the (2n+l) -
connected cover where just the bottom homotopy group is killed 
and deduce that pn7i^ ( S 2 n + 1 <2n+l>) = 0 for this p torsion space 
S2n+"1"<2n+l>. By a result of B. Gray [5] there are elements of 
order p n in these homotopy groups so that S2n+~^"<2n+l> has 
homotopy exponent n at p. By [3] and [10] the space S 2 n + 1 <2n+l> 
has an ft2n-exponet n and by Neisendorfer and Selick [13D the 

k < space does not have an ^exponent for k = 2n-2, 

(1 .6 ) Example (3 ) . Let C(n) denote the H-space which is 
the fibre of the Ĥ -map double suspension E 2 : S 2 n ^ > Q2S^n+^~. 

Then by (1 .4 ) the exponent of C(n) is onej 
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( 1 . 7 ) Conj ecture of Moore. All finite simply connected 
simplicial complexes X such that 7r̂ (X) % Q is of total finite 
dimension have a homotopy exponent when localized at any prime p. 

The conjecture is true for spheres as observed above, and 
an application of the -Hilton-Milnor theorem to the wedge of two 
spheres shows why a hypothesis like total finite dimensionality 
of rational homotopy is necessary for the assertion to be true. 

The following result is contained in [4] and is a proved 
using the fact that H^(ftS(X)) is the tensor algebra on H #(X) 
over a field. 

(1 .8) Proposition. If X is a space with H^(X,Fp) =f 0, 

then S(X) does not have an Q^-exponent. 
This leads to the fundamental result of Neisendorfer [ 1 1 ] . 

(1 .9 ) Theorem II. The mod p r sphere S m(p r) has an 
2 
ft -exponent equal to r+1. 

(1 .10) Conj ecture of Barratt. If a double suspension S2(X) 
p 

has coH-space exponent r at p, then it has an ft -exponent of r+1. 

A final problem is to determine what exponents exist at 
the prime 2 and in particular what part of the work at the odd 
primes extends to the prime 2. 
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§2. Loop space decompositions I. Lie algebra methods. 
The notation S m(p r) for a mod p r sphere is extended to 

S^(pr) or S($(t);pr) for a wedge of mod p r spheres indexed by 
the coefficients of 4>(t) = a 2t 2 + ... + a nt n + ... in t23N[[t]] 
where 
S(cf>(t);pr) - iim > n{s 2( P

r) V .a.2.V s 2( P
r) V .. .V s n( P

r)V .a.n. V s n( P
r)> 

The decomposition of an even sphere, localized at p an 
odd prime, given by Serre [16] 

n s 2n+2 ~ ^ s 2 n +l x fis4n+3 

including a left homotopy inverse of the suspension map 
02n+l ^ ^02n+2 . r , S > ftS has a version for mod p spheres proved by 
Cohen, Moore and Neisendorfer [ 2 ] . 

( 2 . 1 ) Theorem. There is a homotopy equivalence 
r i o 2n+2, r, . 02n+lr r-, ftS (p ) — ^ S ip } t 4 n + 3 

l - t 2 n ' 
r. 

p . 
including a left homotopy inverse of the map defined 
S 2 n + 1 { p r } > ftS2n+2(pr) which is a factor in the factorization 
of the suspension map S 2 n + 1 ( p r ) > S 2 n + 1 { p r } > ftS

2n+2(pr). 
The result of Serre comes from the study of the free Lie 

algebra on one odd generator in degree 2n+l and the integral 
Hurewicz homomorphism and theorem ( 2 .1 ) comes from the study 
of the free Lie algebra on two genearators in degrees 2n and 2n+l 
and the mod p r Hurewicz homomorphism. 

The decomposition of S 2 n + 1 ( p r ) is much more complicated, 
and it begins with making the fibre sequences for each map in 
the composite S 2 n + 1 ( p r ) > S 2 n + 1 { p r } > S 2 n + 1 and using 
the fact that the fibres fit into a fibre sequence also which 
is written vertically. 
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AS2n+1 
E 2 n + 1 { p r } 
-,2n+iy r, ? {p } 

S 2 n + 1 ( p r ) 
S 2 n + 1{p r) s 2 n + 1 . as2n+1 

If C(n) > s n is the fibre of the double suspension map 
S 2 n _ 1 > fi2S2n+"L, then for the corresponding diagram of 
loop spaces we have a commutative square induced by the double 
suspension map C(n) E 2 n + 1 { P

r } 
s2n-l F 2 n + 1 { p r ) . 

Both horizontal maps have a left homotopy inverse decomposing 
n r,2n+l r r-, ^ ^„2n+l r rn , . , , , « ~, N _ „2n-l QE {p } > ftp {p } each into a product of C(n) > S 
with a single space. This is the main result of [2] and [ 3 ] . 

(2.2) Theorem. There is a commutative diagram with 
horizontal arrows being homotopy equivalences 

C'(n) TT s 2 p 1 n - l { p r + l } x f i S ( QE
2n+1{pr} ; p r } _ ^ Q E

2 n + 1 { p r } 

s2n-l n ± > ! S2P n- 1{p r + 1}x^S(^ n + 1(t);p r) — » nF 2 n + 1{p r} 

where ^ 2n+l^ t^ t - t tf/(t) 
1 + t and 

<Kt) = 
i-t2n -t4n-2 -t4n-1 

1 - t 2 n 

TTi=1 i + t 2P l n- a 

i - t 2 p ± n - 2 

This theorem is deeper than (2 .1) in that it involves the 
Bockstein spectral sequence in mod p homotopy and homology and 
properties of differential Lie algebras. The Lie product in 
homotopy is the Samelson product, and in order to choose the 
correct maps for the splittings, the notion of a relative 
Samelson product is introduced and studied for the induced map 
;of a fibre into the total space of a fibration. 
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(2.3) Remark. The splitting of S 2 n _ 1 off of the H-space 
ftF2n+1{pr} for r = 1 gives mappings S2"1"1 > ftF2n+1{p} > S 2 n _ 1 

which compose to the identity up to homotopy. This retraction 
. 02n-l , . „202n+l ^ «1_.2n+lf -i . „ onto S composed with ft S > ftF {p} in the following 

commutative diagram ftF {p} 

n 2 s 2 n + 1 A2p u2s2n+1 

. . . „202n+l ^ _,2n-l yields the quasi-inverse TT : ft S > S where the composites 
2 2 2 TTE = p and E IT = ft p. 

(2.4) Remark. Prom the defining diagram for E E2N+1 and 
p2n+l w e have natural mappings 

f2E 2 n + 1{p r} — > № 2 n + 1 { p r } — * fiS2n+1(pr). 
Composing this second map with one of the maps in the splitting 
(2 .2) , we obtain a basic map 

ftS[n] = ftS(<J>2n+1(t);pr) > ftS2n+1(pr) 
This map of loops on the wedge S[n] of mod p r spheres has the 
property that it induces a monomorphism on homology over HF̂  . 
The next section is devoted to show that ftS[n] is a direct 
summand of ftS2n+1(pr). 
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§3. Loop space decompositions II. Hurewicz homomorphism  
methods. 
The ideas which are used to split ftS2n+1(pr) go beyond the 

results outlined in the previous section and are related to a 
r r characterization of the category s(p ) of wedges of mod p 

spheres S^(pr) within the category of spaces t(p r) of p-torsion 
spaces where the Bockstein spectra sequence EsH^(X5IPp) satisfies 

H#(X,nP ) = E1H^(X) = ... = E rH x(X) and E r + 1H*(X) = 0. 

( 3 .1 ) Proposition. A simply connected CW-type space X in 
J(p r) is a wedge of mod p r spheres, i.e. is in s(p r) if and 
only if the Hurewicz homomorphism followed by reduction mod p 
is an epimorphism -rr#(X,S/pr) > H*(X,Z/pr) > H^(X,JFp). 

This proposition Is proved by mapping mod p r spheres S m(p r) 
into X to realize homology classes in X, taking a wedge of these 
spheres S^(p r), and mapping f : S^(pr) > X such that H^(f) is 
an isomorphism Then the Whitehead theorem implies that f is a 
homotopy equivalence. 

Let Q denote the category of simply connected, acyclic 
complexes over TF , and let §'(pr) denote the category of 
simply connected wedges of mod p spheres and homotopy classes 
of mappings. Then H^ = E rH # : § !(p r) > Q is a functor where 
H^ has the rth Bockstein as a differential. 

(3.2) Proposition. The functor H^ : s r(p r) > g induces 
a bisection between isomorphism classes of objects. A'map 
f : X > Y in s T(p r) has a left (resp. right) homotopy 
inverse if and only if H #(f) has a left (resp. right) inverse. 

The proof of this proposition follows from techniques 
similar to those used in ( 3 . 1 ) . We need an extension of (3.2) 
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for the splitting of S n + 1 ( p r ) which we use for the study of 
the exponents of mod p spheres. 

(3-3) Remarks. Let f : fiX > Z be a map such that 
Sf : SfiX > SZ has a left homotopy inverse h, then so does 
f : fiX > Z. In effect, the left homotopy inverse of f is 
the composite Z > fiSZ ^ h > fiSfiX > fix. Furthe/r, if 
a space X is a wedge of simply connected mod p r spheres, then 

T 

SfiX has the homotopy type of a wedge of simply connected mod p 
spheres. In effect, we use the relation 

s m( P
r) A S n(p r) s m + n ( P

r ) V s m + n - 1 ( p r ) 
and a result of the Hilton-Milnor theorem 

SfiSY = SfiX ^ S ( Y ) V S ( Y A Y ) V ... 
With these two remarks and (3-2) we deduce the following result. 

(3.4) Proposition. For X and Y simply connected wedges 
of mod p r spheres a map f : fix > fiY = Z has a left homotopy 
inverse if and only if H^(f) has a left inverse. 

This proposition will be applied to the inclusion map of 
the fibre into the total space of a fibration, and the following 
splitting result, which easily verified, is of use. 

(3.5) Proposition. Let F -̂ -> X -E-> B be a fibre 
sequence where X is an H-space. Then the following are equivalent: 

(i) The projection p has a right homotopy inverse, 
(ii) The inclusion i has a left homotopy inverse. 
(iii) There is a space T and a map u : T > X such that 

the composite T*F (u>i) > xx X > X is a homotopy inverse 
and p(f|Tx *) is a homotopy equivalence T > B. 
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The above is a version of a discussion in Cohen, Moore, 
and Neisendorfer which is designed to split o JS 2 n + 1(p r). There 
are several extensions of these results in this form which 
should lead to further results which will be considered in a 
later publication. One of the wedges of mod p r spheres S[n] = 
S((J>2n+1(t) ;pr) in (2.2) had the additional property, see (2 .4) , 

that when mapped further from fiP2n+1{pr} into ftS2n+1(pr) by 
ftS[n] > fiS2n+1(pr) induced a split homomorphism on homology 
viewed with the Bochstein, as an acyclic complex over 3Fp. 
The map ftS[n] > ftS2n+1(pr) is the loop of a map S[n] > 
S 2 n + 1 ( p r ) . 

(3*6) Definition. Let T 2 n + 1{p r} denote the homotopy 
fibre of S[n] > S 2 n + 1 ( p r ) . 

This gives rise to a fibre sequence 
n S[n] --> fiS2n+1(pr) — * T 2 n + 1{p r} — » S[n] — * S 2 n + 1 ( p r ) , 

and applying (3.4) and (3-5) to the first three terms of this 
fibre sequence, we obtain the following assertion. 

(3-7) Proposition. There is a homotopy equivalence 
T 2 n + 1{p r} x ns[n] — > n s 2 n + 1 ( P

r ) . 
The importance of T n {pr} is contained in the following 

proposition which is an inductive use of the Hilton-Milnor 
theorem for the decomposition of ftS(X\/Y). 

(3.8) Proposition. For <J>(t)£t3IN[[t]] the space S(|)(pr) 
is an inductive limit of finite products of spaces S 2 n + 1{p r} 
and T 2 m + 1{p r} for n, m = k where order <J>(t) = 2k+l or 2k+2 and 
only a finite number of given n and m occur in the limit. 
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§4. Analysis of the exponent of ftT2n+1{pr}. 
In this section we outline the key steps in the paper of 

r+1 

Neisendorfer [ 1 1 ] which lead to the sharp exponent of p for 
the H-space structure on ftT2n+"L{pr}, and hence also on ft2Sm(pr) . 

(4 .1 ) Remark. We have the fibrations 
0 2n+l ; S-, ^ 02n+lr r+s-, <f> ̂  02n+lr r v 

S ip } > S {p } —r-> S lp } 
and cofibrations 

s 2 n + l ( p S ) s 2 n + l ( p r + S ) _ ^ s2n+1(pV) 

from the properties of the fibre and cofibre of a composite3 

see for example [ 8 , 1 . 5 ] . 

(4.2) Main construction. There are maps w^ defined 
T 2 n + 1 ( p r } > S 2 p k n ~ 1 { p r } such that the following composites 
have the stated form: 
ci) s 2 p J n-l { pr +l } T 2 n + l { p r } 

null homotopic if j 4 fibration $ in (U.1) for s = 1 if j = k. s 2 p kn-l { pr } 

T 2 n + 1 { p r } 

S 2 p k n - T { p r } 

C(n) 

s2n-l 
null homotopic 
composite 

(2) 

Observe that the composite 
uJl s 2 ^ " 1 ^ 1 } — * T 2 n + 1 { P

r } — * nJI s 2P l n- 1{p r} 
is the loop of a product of maps 4> described in ( 4 . 1 ) , and henc< 
the fibre of the composite is fl(U S 2 p k"" 1{p}). These mappings 
w k together with the map QT2n+1{p^} ftJS2n+1{pr} are enough 
to find the order of the identity on the H-space ftT2n+^"{pr}. 

2n + l r 
Recall that w is the restriction of the natural (p ) —> 
flS2n+1{pr}. 
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(4.3) Proposition. Let F > E > B be a fibration 

of H-spaces. If p r.id B is null homotopic and if p
S.id F is null 

nomotopic, then pr+sid,-, is null homotopic. 
r r Proof. Since p .id^ projects to p id^ which is null homotopic, 

£j £5 
r 

there is a homotopy of p .idE with a map E > E whose image 
g 

is contained in F. Composing with p . id^, we have a map which 
r 4" S 

is null homotopic and homotopic to p .id„. This proves the 

proposition. 
Now consider the maps 

nc(n) x n (-|T s 2P " ^ { p ^ 1 } ) — O T 2 n + 1 { p r } and 
„m2n+l r r-, ^ n T T 0 2p n-1 r r-, „ 0 2n+l r r-, fiT {p } > Q1 1 S {p } x fis {p } . This leads to 

the following result. 

(4.4) Assertion. The homotopy fibre of 

OT2n+l{pr} ^ n J 1 s 2p n-l { pr } x f i S 2 n + l { p r } 

is nc(n) x çi(JJ k S 2P n" 1{p}) > OT2n+1{pr}. 

Now we apply (4.3) to this fibration, and we use the fact 

that p.id is null homotopic on the fibre and pr.id is null 

homotopic on the base to deduce the following result. 

(4.5) Theorem. (Neisendorfer) On the H-spaces fiT2n+1{pr} 
2 m r r+1 and ft S (p ) the map p .id is null homotopic. 
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